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Abstract: While plastics are regarded as the most resourceful materials nowadays, ranging from
countless utilities including protective or decorating coatings, to adhesives, packaging materials, elec-
tronic components, paintings, furniture, insulating composites, foams, building blocks and so on, their
critical limitation is their advanced flammability, which in fire incidents can result in dramatic human
fatalities and irreversible environmental damage. Herein, epoxy-based composites with improved
flame-resistant characteristics have been prepared by incorporating two flame retardant additives into
epoxy resin, namely 6-(hydroxy(phenyl)methyl)-6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide (PFR)
and boric acid (H3BO3). The additional reaction of 9,10-dihydro-oxa-10-phosphophenanthrene-10-
oxide (DOPO) to the carbonyl group of benzaldehyde yielded PFR, which was then used to prepare
epoxy composites having a phosphorus content ranging from 1.5 to 4 wt%, while the boron content
was 2 wt%. The structure, morphology, thermal stability and flammability of resulted epoxy compos-
ites were investigated by FTIR spectroscopy, scanning electron microscopy (SEM), thermogravimetric
analysis, differential scanning calorimetry, and microscale combustion calorimetry (MCC). Thermo-
gravimetric analysis indicated that the simultaneous incorporation of PFR and H3BO3 improved
the thermal stability of the char residue at high temperatures. The surface morphology of the char
residues, studied by SEM measurements, showed improved characteristics in the case of the samples
containing both phosphorus and boron atoms. The MCC tests revealed a significant reduction in
flammability as well as a significant decrease in heat release capacity for samples containing both
PFR and H3BO3 compared to the neat epoxy thermoset.

Keywords: epoxy composites; phosphorus-containing flame retardant; boric acid; thermal stability;
flame resistant

1. Introduction

Epoxy resins represent one of the most developed classes of thermosetting polymers
due to their numerous applications in the construction, transportation, aerospace industry,
biomedical systems, electrical and electronic fields. They have excellent mechanical proper-
ties, good thermal and chemical resistance, good electrical insulating properties, and low
shrinkage after curing [1–3]. Epoxy resins have been widely used as polymeric matrices for
the preparation of composites with improved characteristics. The properties of composites
depend on the structure of the resins, curing agent, and organic or inorganic fillers [4–6].
However, cured epoxy resins have high flammability, which reduces their application in
areas where flame-resistant polymeric materials are required. A commonly used method to
improve their flame resistance characteristics is to incorporate flame retardant additives
into epoxy resins [7–9]. In the last decades, conventional halogenated flame retardants
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have been frequently mixed with epoxy resins to improve their flame resistance, but these
compounds can release toxic chemicals into the environment and by combustion can pro-
duce very dangerous toxic compounds [10,11]. Therefore, much research has been done to
develop new environmentally friendly high-efficiency flame retardant additives.

Phosphorus-containing flame retardants have received extensive attention because
they are environmentally friendly, highly efficient in reducing the flammability of poly-
mers, and do not produce very toxic compounds by burning [12–18]. A special class of
phosphorus-containing flame retardants frequently used to improve the flame-resistant
properties of epoxy resins is represented by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-
10-oxide (DOPO) and their derived compounds [19–21]. It has been demonstrated in
numerous studies that due their high degree of aromaticity they exhibit high flame retar-
dant performance. These flame retardants present a twofold mechanism of flame inhibition:
on one hand in the gas phase by producing PO· radicals, and on the other hand in the
solid phase by their direct interaction with the decomposition species evolved from the
polymer backbone, to produce a more compact carbonaceous char layer on the surface of
the polymeric material [8,20–26].

A literature survey reveals that boron-containing compounds can be also used as
flame retardant additives for epoxy resins [27,28]. These compounds improve the flame
resistance of the polymers by acting in the gas and the condensed phases. They decompose
endothermically, reducing the temperature of the system and producing water that can
dilute flammable gases that result from the pyrolysis process [29]. In the condensed phase,
they improve the formation and stabilization of a protective char layer on the polymer
surface [30,31]. The presence of inorganic particles in the epoxy resin may provide useful
characteristics such as heat resistance and flame retardancy. The incorporation of boric acid
(H3BO3) particles into epoxy resin leads to a significant modification of the structure and
properties of epoxy thermosets, and to a reduction in the flammability of the composites.
H3BO3 is colorless, inexpensive, and exhibits low volatility and relatively low toxicity. This
compound eliminates water at a temperature higher than 100 °C [32,33]. The water released
during its decomposition reduces the temperature and can dilute the combustible gases
in the combustion zone. At higher temperatures, H3BO3 is converted to boric trioxide
(B2O3) [34,35] which can form a glassy film on the burning surface of the polymer, thus
inhibiting the diffusion of flammable gases in the combustion zone and reducing the flame
spread on the polymer surface [36,37].

One way to increase the effectiveness of flame retardants and to reduce the costs
associated with their use is to incorporate into epoxy resins two flame retardants that
have a synergistic effect in reducing flammability. Several studies have demonstrated that
boron-containing flame retardants have a synergistic effect with flame retardants containing
phosphorus and nitrogen atoms in improving the flame retardancy of epoxy resins [28].
They improve the char formation with efficient barrier properties and promote the increase
in the phosphorus content in the condensed phase [38,39].

In this study, a phosphorus-containing DOPO derivative (PFR) and H3BO3 were
introduced into epoxy resin to improve its flame resistance. The main advantage of choosing
PFR and H3BO3, over other phosphorus-containing flame retardants with complicated
architectures that require difficult and time-consuming preparation methods, is related
to the simple and cost-effective synthetic procedure of PFR and the ready commercial
availability of boric acid, which is doubled by the expected synergistic effect of the two
flame retardants. The effect of H3BO3 and PFR containing phosphorus on decreasing
the flammability of epoxy resin was studied. Scanning electron microscopy was used to
investigate the morphology of the cured epoxy composites and the char layer resulting
from the pyrolysis of the samples. The thermal stability and flame retardance of the
composites were investigated by thermogravimetric analysis and microscale combustion
calorimetry tests.
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2. Materials and Methods
2.1. Materials

The 9,10-Dihydro-oxa-10-phosphophenanthrene-10-oxide (DOPO, 14.32% P) was pur-
chased from Chemos GmbH (Germany) and was freshly dehydrated before use. Ben-
zaldehyde and H3BO3 (17.48% B, having the mean particle size distribution of 74.395 µm)
were supplied by Sigma-Aldrich and used as received. The two-component based epoxy
resin used as the polymeric matrix was supplied by DEVE PRODEXIM Oradea, Roma-
nia. The first component (EP) consists in a mixture of bisphenol A diglycidyl ether and
an adduct of oxirane with mono (C12-C14-alkoxy) methyl derivatives. The second com-
ponent (HA), used as a hardener, is a mixture of benzyl alcohol, 3-aminomethyl-3,5,5-
trimethylcyclohexylamine, m-phenylenebis(methylamine) and bisphenol-A.

2.2. Synthesis of 6-(Hydroxy(phenyl)methyl)-6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide

The 6-(Hydroxy(phenyl)methyl)-6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide (PFR)
was prepared by the additional reaction of the P-H group of DOPO to the carbonyl group
of benzaldehyde, as was previously described in the literature [40]. Benzaldehyde (10.6 g,
0.1 mol), DOPO (23.76 g, 0, 11 mol) and toluene (190 mL) were placed in a 500 mL three-
necked glass flask equipped with a magnetic stirrer, temperature regulator, and reflux
condenser. The reaction mixture was heated at 110 ◦C for 10 h under a nitrogen atmosphere.
After the reaction was complete, the mixture was cooled to ambient temperature and the
resulting precipitate was filtered off. The product was dried in a vacuum oven at 60 ◦C for
4 h.
Yield: 93%. (30.97% P).
FTIR (KBr, cm−1): 935 (P–O–Ph stretching vibrations), 1203 (P=O stretching vibrations),
1474 (P–Ph aromatic ring in-plane stretching vibrations), 3245 (O–H stretching vibrations).
1H NMR (CDCl3-d1): 3.15 (1 H, bs, OH one isomer), 3.58 (1 H, bs, OH second isomer),
5.26 (1 H, d, JH-P = 6.9 Hz, H-5 one isomer), 5.31 (1 H, d, JH-P = 9.4 Hz, H-5-s isomer),
7.19–7.08 (8 H, m, H-1 both isomers, H-2 both isomers, H-14 both isomers, H-16 both
isomers), 7.33–7.23 (7 H, m, H-15 both isomers, H-3 both isomers), 7.47–7.40 (2 H, m, H-9
both isomers), 7.72–7.63 (3.5 H, m, H-8 both isomers, H-10 one isomer, H-13 one isomer),
7.97–7.81 (4 H, m, H-7 both isomers, H-10 s isomer, H-13 s isomer).
13C NMR (CDCl3-d1): 73.55 (d, JC-P = 113.1 Hz, C-5 one isomer), 73.73 (d, JC-P = 109.6 Hz,
C-5 s isomers), 119.93–119.86 (C-16 both isomers), 121.82–121.10 (m, C-11 both isomers,
C-12 both isomers), 122.9 (d, JC-P = 11.1 Hz, C-7 one isomer), 123.3 (d, JC-P = 10.0 Hz, C-7
s isomer), 124.2 (d, JC-P = 7.0 Hz, C-14 both isomers), 124.8 (d, JC-P = 11.8 Hz, C-13 both
isomers), 127.02–126.97 (m, C-3 both isomers), 128.31–127.91 (m, C-9 both isomers, C-1 both
isomers, C-2 both isomers), 130.4 (d, JC-P = 8.3 Hz, C-15 both isomers), 132.10–131.88 (m,
C-10 both isomers), 133.7 (d, JC-P = 10.2 Hz, C-8 both isomers), 134.9 (d, JC-P = 15.9 Hz, C-4
both isomers), 136.92–136.79 (m, C-6 both isomers), 150.35–150.18 (m, C-17 both isomers).

2.3. Preparation of Epoxy Resin Composites

Various amounts of PFR were mixed with Epoxy, under stirring at 130 ◦C for 30 min.
The mixtures were cooled to 50 ◦C, and H3BO3 was introduced. They were ultrasonicated
for 30 min and cooled to 25 ◦C. Then HA hardener was added, and the stirring was
continued for 30 min. The product was cured at room temperature for 24 h, and at 60 ◦C
for 4 h. The formulation of the epoxy resin, PFR and H3BO3 pre-curing mixtures is listed in
Table 1.
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Table 1. Preparation details of epoxy resin composites.

Sample
Epoxy Resin

(EP)
(g)

Hardener
(HA)
(g)

Flame
Retardant

(PFR)
(g)/(%)

H3BO3
(g)/(%)

Phosphorus
(wt%)

Boron
(wt%)

EP-0 10 5 - - 0 0
EP-1 3.96 1.98 1.56/0.12 - 2 0
EP-2 2.35 1.17 1.58/0.08 - 3 0
EP-3 2.92 1.46 3.14/0.23 - 4 0
EP-4 2.48 1.24 0.73/0.04 0.42/0.02 1.5 2
EP-5 3.39 1.70 1.55/0.12 0.86/0.06 2 2

2.4. Measurements

The structure of PFR was investigated by using FTIR and NMR spectroscopy. The
FTIR spectrum was recorded on a FTIR Bruker Vertex 70 Spectrophotometer. The proton
and carbon NMR experiments were recorded on Bruker Avance NEO 400 MHz operating at
400.1 and 100.6 MHz, equipped with a 5 mm direct detection four nuclei probe (H, C, Si, F).
The phosphorus NMR spectrum was recorded on a Bruker Avance NEO 600 MHz operating
at 600.1 MHz and 242.9 MHz, equipped with a 5 mm inverse detection multinuclear probe.
1H and 13C NMR chemical shifts (δ) in ppm are calibrated to residual solvent peaks (CDCl3,
7.26 ppm for 1H and 77.01 ppm for 13C).

The structure of the thermosets was determined by FTIR spectroscopy using a BioRad
‘FTS 135′ FTIR spectrometer equipped with a Specac “Golden Gate” ATR accessory. A
LUMOS Microscope Fourier Transform Infrared (FTIR) spectrophotometer (Bruker Optik
GmbH, Ettlingen, Germany), equipped with an attenuated total reflection (ATR) device,
was used to record the scans between 4000 and 600 cm−1 at a resolution of 4 cm−1.

Microscopic investigations of epoxy thermosets and of their corresponding chars were
performed on an Environmental Scanning Electron Microscope Type Quanta 200, operating
at 10 kV with secondary electrons in a low vacuum mode (LFD detector). The Quanta
200 microscope is equipped with an Energy Dispersive X-Ray (EDX) system for qualitative
and quantitative analysis and elemental mapping.

Thermogravimetric (TG) curves and thermogravimetric derivative (DTG) curves of
PFR and epoxy thermosets were recorded with Mettler Toledo TGA-SDTA851e equipment,
in a nitrogen atmosphere, and a heating rate of 10 ◦C min−1, in the temperature range
of 25–800 ◦C. Differential scanning calorimetry (DSC) measurements of PFR and epoxy
thermosets were carried out using a Mettler Toledo DSC1 type device in an inert atmosphere,
with a heating rate of 10 ◦C min−1 and nitrogen purge at 100 mL min−1.

The flammability behavior of PFR and epoxy thermosets was tested using an FTT
Micro Calorimeter [41].

3. Results and Discussion
3.1. Synthesis and Characterization of PFR

PFR was prepared by adding DOPO monomer to the carbonyl group of benzaldehyde,
following an adapted method previously reported [40]. The reaction took place in toluene,
at 110 ◦C for 10 h. The structure of PFR was characterized by FTIR, 1H NMR, 13C NMR and
31P NMR spectroscopy. The NMR analysis of PFR showed the existence of two diastere-
omers in molar ratio of 1:0.7. This phenomenon has been reported in the literature [42] and
it was attributed to the chirality of the phosphorus stereocenter of DOPO. The presence
of the phosphorus atom in the structure complicates the shape of the signals in the NMR
spectra. The 1H NMR spectrum of PFR displays some characteristic signals: the hydroxyl
group has a broad resonance signal in the region 3.15–3.58 ppm, the CH group proton was
associated with the two doublets (one for each isomer) from 5.31 ppm and 5.26 ppm, and
all aromatic protons have complex resonance signals were in the region 7.00–8.00 ppm,
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mainly due to the proton–phosphorus couplings, and also due to the presence of the two
isomers causing more overlap of the signals (Figure 1).
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Figure 1. 1H NMR spectrum of PFR.

In the case of the carbon spectrum, all the signals appear as doublets or multiplets
due to carbon–phosphorus coupling. As can be seen in Figure 2, the CH group has two
characteristic doublets at 73.5 ppm and 73.7 ppm while the signals for the aromatic carbon
atoms appear in the range 118 ppm to 151 ppm, the quaternary carbon directly linked
to oxygen being the most de-shielded in the interval 150.1–150.3 ppm. The existence of
the two isomers is clearly seen in the 31P NMR spectra, by the presence of two signals at
31.88 ppm and 30.65 ppm, respectively (Figure 2 inset).
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The thermal properties of PFR were investigated by TGA analysis. The TG and DTG
curves of PFR showed that it decomposed in two steps (Figure 3). The first decompo-
sition step was in the temperature range of 180–320 ◦C, which may be attributed to the
catalysis of acidic phosphorus-based products evolved during the thermal decomposition
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of oxaphosphinine-6-oxide structure, while the second step took place in the interval of
320–520 ◦C as a result of the further thermal decomposition of the enriched aromatic car-
bonaceous structure [43]. The maximum weight loss rate in the first step of decomposition
was 0.55 %/◦C while the maximum weight loss rate of the second step of decomposition
was lower (0.34 %/◦C). The temperature at which the mass loss rate is the highest in the
thermal decomposition process of the first step of decomposition was 208 ◦C, while that of
the second step of decomposition appeared at 408 ◦C.
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3.2. Structural and Morphological Characterization of Epoxy-Based Composites

Epoxy-based composites were prepared by incorporation of PFR and H3BO3 in epoxy
resin (Figure 4). The PFR content was adjusted so that the phosphorus atom concentration
varies between 0 and 4 wt%. H3BO3 content was calculated to have a concentration of
2 wt% of boron in the thermosets (Table 1).
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The resulting thermoset structures were investigated by FTIR spectroscopy (Figure 5).
The neat EP-0 system presented characteristic absorption bands at 3350 cm−1 (O-H stretch-
ing vibrations), 3053 cm−1 (C–H tension of the methylene group of the epoxy ring (stretch-
ing vibrations)), 2926 (aliphatic C–H asymmetric stretching vibrations), 2865 cm−1 (aliphatic
C–H symmetric stretching vibrations), 1610 and 1510 cm−1 (aromatic –C=C– stretching vi-
bration), 1240 and 1036 cm−1 (aromatic ether C–O–C asymmetric and symmetric stretching
vibrations, respectively). The EP containing phosphorus and boron additives (EP1-EP5)
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exhibited characteristic absorption peaks at 3340 (O–H and N–H stretching vibrations),
2960 and 2865 cm−1 (aliphatic C–H stretching vibrations), 1607 and 1510 cm−1 (aromatic
C=C stretching vibrations), 933 cm−1 (aromatic P–O–C stretching vibrations), 754 cm−1

(deformation vibrations caused by the 1,2-disubstituted aromatic phosphaphenanthrene
rings) and 699 cm−1 (deformation vibrations of the aromatic rings).
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Scanning electron microscopy (SEM) characterization was used to investigate the
morphology in the fracture surfaces of cured epoxy resin and its composites. Certain
amounts of each sample were immersed under liquid nitrogen, then they were broken
by applying mechanical stress. The SEM micrographs taken upon the fractured area of
each sample are shown in Figure 6. The neat epoxy resin EP-0 had a smooth fracture
surface, and showed a typical brittle fracture. When PFR was incorporated into epoxy resin,
different rough fracture surfaces were observed (EP-1, EP-2 and EP-3). The maximum in
fracture roughness increased with the amount of PFR content. In the case of EP-4 and EP-5
containing 2 wt% boron and 1.5 and 2 wt% phosphorus, respectively, some agglomerations
of H3BO3 were observed.
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3.3. Thermal Characterization of Epoxy Composites

The thermal stability of epoxy composites was evaluated by TGA analysis. The main
parameters Tonset (the temperature at which the thermal degradation starts), Tmax (the
temperature at which the mass loss rate is the highest), and char yield (mass residue
remaining after thermal degradation at 800 ◦C) are summarized in Table 2. Figure 7
shows the TG and DTG curves of epoxy composites. The samples exhibited two steps
of weight loss. The first step, in the temperature range of 100–250 ◦C, was due to the
thermal decomposition of PFR, first thermal dehydration of H3BO3, and second thermal
dehydration of the latter [29,44]. The second step of weight loss appeared in the temperature
range of 300–550 ◦C, due to the thermal decomposition of polymer matrix [43]. The Tonset of
the second step of thermal decomposition was in the interval 295–342 ◦C. The introduction
of PFR and H3BO3 slightly decreased Tonset of the samples due to the lower thermal stability
of PFR and thermal dehydration process of H3BO3.

Table 2. Thermal properties of epoxy composites.

Sample Tg
1

(◦C)
Tonset

2

(◦C)
Tmax

3

(◦C)
Char Yield 4

(wt%)

EP-0 55.6 342 373 14.57
EP-1 53.0 307 344 14.04
EP-2 52.5 303 336 12.91
EP-3 56.0 295 330 17.95
EP-4 71.0 323 373 21.51
EP-5 64.5 308 357 25.60

1 Glass transition temperature; 2 Temperature at which the thermal degradation starts, in the second step of
weight loss; 3 Temperature at which the mass loss rate is the highest in the second step of weight loss; 4 Char yield
after thermal degradation at 800 ◦C.
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The maximum weight loss temperature in the second step of decomposition was in
the interval 330–370 ◦C. This temperature decreased slightly as the PFR content increased.
As can be seen from Figure 7 inset, the neat epoxy thermoset showed the highest weight
loss rate (WLR) of 1.161 %/◦C at 375 ◦C. The introduction of phosphorus-containing
PFR decreased WLR; for example, for EP-3 containing 4 wt% phosphorus, the WLR was
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0.435 %/◦C. Moreover, EP-4 and EP-5 containing 2 wt% boron and 1.5 or 2 wt% phosphorus
exhibited lower WLR values (0.655 and 0.516 %/◦C, respectively).

The char yield values at 800 ◦C were in the interval 12.9–25.6 wt%. The chars of
the samples were relatively stable in the temperature interval of 500–800 ◦C. The lowest
values of the char yield were obtained for the EP-0, EP-1 and EP-2 having lower phos-
phorus content. An increase in the char yield value was observed for the EP-3 containing
4 wt% phosphorus. The highest values of the char yield were obtained for EP-4 and EP-5
containing 2 wt% boron and 1.5 and 2 wt% phosphorus, respectively. This could be at-
tributed to a synergistic effect of PFR containing phosphorus and H3BO3 in increasing the
char yield values [28]. It is advantageous to have a higher char yield value because in this
case a smaller amount of polymeric material is decomposed, thus resulting in a smaller
volume of combustible gases that can cause a fire. This effect has been also observed by
other researchers when H3BO3 was used together with a phosphorus-containing compound
to improve the flame-resistant characteristics of epoxy resins [38].

The glass transition temperature (Tg) of the samples was in the interval 52.5–71.0 ◦C
(Table 2, Figure 8). An increase in Tg appeared for the samples containing both H3BO3 and
PFR (EP-4 and EP-5), probably because of increased co-interaction between H3BO3 and PFR
with the polymer matrix that resulted in an increase in the rigidity of the macromolecular
chains thus increasing the Tg values.
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The char residue formed during a fire behaves as a protective layer against the trans-
port of heat and combustible gases. The effectiveness of this protection depends on the
quantity and morphology of the char. The SEM images of pyrolyzed composite chars ob-
tained by heating the samples up to 800 ◦C with the heating rate of 10 ◦C/min in nitrogen
atmosphere are shown in Figure 9. As can be seen from Figure 9, the EP-0 char is porous,
having many holes, while the chars of samples containing phosphorus EP-1, EP-2 and EP-3
were more compact and denser. Thus, PFR, a compound derived from DOPO, improved
the morphology of the chars. The chars of EP-4 and EP-5 were also compact and dense
when compared with those of EP-0. A mapping technique was used to investigate the atom
distribution on the char surface. From Figure 10, which presents the EDX mapping of EP-5
char, it can be observed that the phosphorus and boron atoms have been present and are
uniformly distributed on the char residue surface.
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Figure 11 presents the FTIR spectra of EP-5, and EP-5 heated up to 520 ◦C with the
heating rate of 10 ◦C/min in a nitrogen atmosphere. In the FTIR spectrum of thermally
treated EP-5, a decrease in the intensity of characteristic peaks for aliphatic groups at
2968, 2922 and 2868 cm−1 can be observed. A strong absorption band characteristic
for the presence of aromatic systems appeared at 1630 cm−1. The absorption bands at
1440 and 754 cm−1 were attributed to P-C and B-O-B bonds in char residue. As was also
evidenced by EDX mapping of EP-5 char, it can be concluded that at high temperature the
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decomposition of EP-5 took place with the degradation of aliphatic groups of epoxy resin
and an increase in phosphorus and boron content in the char residue.
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3.4. Microscale Combustion Calorimetry (MCC) Tests

Microscale combustion calorimetry (MCC) tests were used to evaluate the flammability
of the samples. MCC is an important method for evaluating the combustion behavior of
polymer materials [45,46]. The main thermal combustion parameters such as char yield
(CY), total heat release, heat release capacity (HRC), the peak of heat release rate (PHRR),
the temperature of the heat release peak, and the time to obtain the heat release peak are
presented in Table 3. Figure 12a,b presents the dependence of the heat release rate (HRR)
with the temperature and time, respectively. As can be seen from Figure 12a, the HRR
of EP-0 strongly increased in the interval 340–500 ◦C. The thermo-oxidative degradation
process occurs in several stages with a heat release in each of them. The greatest amount of
heat is produced in different stages, dependent of the sample composition. EP-0 exhibited
the maximum value of PHRR (383 W/g). A decrease in this parameter appeared by
introducing PFR containing phosphorus. Thus, EP-1, EP-2 and EP-3 containing 2, 3 or 4
wt% phosphorus had PHRR values of 295, 216 and 158 W/g, respectively. Moreover, the
incorporation of H3BO3 substantially decreased the PHRR values. Thus EP-5, containing 2
wt% phosphorus and 2 wt% boron, revealed a PHRR value of 172 W/g (Table 3). It can be
noticed that a decrease in the time to obtain the heat release peak is caused by increasing
the PFR content and the presence of H3BO3.
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Table 3. Data obtained by MCC analysis for epoxy composites.

Sample Char yield
(wt%)

THR 1

(kJ/g)
HRC 2

(J/g*K)
PHRR 3

(W/g)
TPHRR

4

(◦C)
Time 5

(s)

EP-0 6.27 26.5 513 383 387 249
EP-1 7.04 24.2 344 295 341 219
EP-2 7.12 23.2 282 215 337 195
EP-3 5.94 21.9 287 158 354 220
EP-4 18.17 18.9 282 231 410 212
EP-5 20.08 20.4 213 172 365 228

1 Total heat release; 2 Heat release capacity; 3 Heat release peak; 4 Temperature of heat release peak; 5 The time to
attain the heat release peak.
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EP-0 exhibited the highest value of THR (26.5 kJ/g). A decrease in THR values can be
observed in the case of epoxy thermosets containing phosphorus EP-1, EP-2 and EP-3. The
lowest value of THR was obtained for EP-3 containing 4 wt% phosphorus (21.9 kJ/mol).
The incorporation of H3BO3 together with compound PFR, in the case of EP-4 and EP-5,
substantially decreased THR values, the lowest values being obtained for EP-4 containing
1.5 wt% P and 2 wt% boron (THR = 18.9 kJ/g).

The HRC can be calculated from the MCC test and can be used to classify the flamma-
bility of materials, where a low HRC value indicates low flammability of the sample. The
HRC of EP-0 was 513 J/(g·K). A substantial decrease in HRC was obtained by incorporating
PFR. Thus, sample EP-3 containing 4 wt% phosphorus had an HRC value of 287 J/(g·K).
The lowest value of HRC was obtained in the case of EP-5 containing 2 wt% phospho-
rus and 2 wt% boron (HRC = 213 J/(g·K); this value is lower than those of the EP-2 and
EP-3 containing 3 and 4 wt% phosphorus, respectively. It can be concluded that simul-
taneous incorporation of PFR and H3BO3 improved considerably the flame resistance of
epoxy thermosets.

The char yield (CY) resulting from MCC analysis was in the interval 5.94–20.08 wt%.
As it can be seen from Table 3, in the case of EP-1, EP-2 and EP-3, CY values did not increase
by increasing the phosphorus content. A substantial increase in CY values were noticed for
the samples containing both phosphorus and boron elements Thus, the neat EP-0 exhibited
a CY value of 6.27 wt%, while EP-4 and EP-5 had CY values of 18.17 and 20.08 wt%,
respectively. The increase in the residue in the case of EP-4 and EP-5 compared with
the neat epoxy thermoset EP-0 indicates the formation of a lower amount of combustible
gaseous products. Moreover, as was shown in SEM analyses of EP-4 and EP-5 pyrolysis,
the char residues exhibited a compact and dense morphology which explains the much
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lower values for HRC, THR and PHRR determined by MCC tests on compared with those
of the neat epoxy thermoset.

4. Conclusions

New environmentally friendly flame-resistant epoxy composites were prepared by
the incorporation of PFR and H3BO3 into the epoxy resin. Pyrolysis of epoxy composites
containing phosphorus and boron atoms produced a char residue with a compact structure
that could act as a barrier to inhibit gaseous products and to insulate the polymer from
heat and air. The higher char yield of the samples containing H3BO3 was beneficial for
improving the flame retardance. The SEM micrograph of EP-4 and EP-5 char residues
showed the presence of phosphorus and boron atoms distributed relatively uniformly
on the char surface. The MCC analyzer revealed that the introduction of 2 wt% boron
and 2 wt% phosphorus considerably decreased the flammability of epoxy thermoset. For
this sample the THR and HRC greatly decreased, whereas the residue amount increased
considerably. In comparison to pure EP-0, the MCC results displayed that the PHRR, THR
and HRC values were decreased by 55.03, 22.93 and 58.365%, respectively. In conclusion, the
flame resistance of epoxy resin was significantly improved by simultaneous incorporation
of a DOPO derivative and H3BO3. It was demonstrated that these two components did
possess a positive role in the condensed phase. In respect of environmental protection, the
use of PFR and H3BO3 as flame retardants for epoxy resins is promising.
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