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Abstract: Phenolic-matrix composites possess excellent synergistic effects on mechanical and tribo-
logical properties and can be used in the aerospace, medical, and automobile industries. In this work,
a series of phenol–formaldehyde resin/hexagonal boron nitride nanocomposites (PF/BNs) were in
situ synthesized using an easy method. PF/BN coatings (PF/BNCs) on 316L steels were prepared
through a spin-casting method. The wear behaviors of these PF/BNCs were investigated by dry
sliding with steel balls. The percentage of BN, the thickness of the coating, and the heat treatment
temperature affected the coefficients of friction (COFs) and wear rates of these coatings. After heat
treatment at 100 ◦C, the tribological properties of the PF/BNCs were remarkably improved, which
might be attributed to both the transformation of carbon on the worn surfaces from C-O/C=O into
C=N, carbide, and other chemical bonds and the cross-linking of the prepolymers.

Keywords: phenol–formaldehyde resin/BN composites; wear; coating; heat treatment

1. Introduction

Polymers possess many excellent advantages, such as self-lubricity, high resistance
to wear and corrosion, lightweight, rheological properties, and so on, which can be used
in many applications, including the aerospace, medical, health, and automobile indus-
tries [1,2]. As tribo-materials, polymers also have some shortcomings, such as low strength
and poor thermal stability. Polymer-based composites are usually designed to improve
tribological properties. In particular, phenol–formaldehyde resin possesses many excel-
lent properties, such as good thermal stability, good resistance to wear, high char yield,
and structural integrity, with wide applications in coatings, anti-wear materials, thermal
insulation materials, and aeronautic materials [3–5]. Many papers have reported that
phenolic-matrix composites exhibit excellent synergistic effects on mechanical and tribo-
logical properties. Different reinforcements, such as glass fibers/fabric, carbon fibers [6],
ceramic nanoparticles, graphene, and soft metals, have been used to promote tribological
properties [7,8]. Suitable interfacial bonding, such as surface modification, including acid
etching, plasma bombardment, and chemical grafting, is needed to improve the tribological
properties of phenolic composites [6–8].

Two-dimensional materials are commonly used as reinforcements because of their
weak interlayer structures [1,9,10]. Xiao et al. found that the excellent anti-wear capabil-
ities of polyimides with BN were attributed to their good hardness and self-lubricating
ability. However, the aggregation of BN increases the roughness, and the particles can be
easily pulled out [9]. Combining physical interactions with chemical interactions between
reinforcements and resin can improve the tribological behavior of polymer composites [8].
Many methods, such as the introduction of an interfacial linker and plasma treatment,
provide strong interlock forces and chemical interactions in the interphase [6,11].

In this work, BN nanosheets were exfoliated by an ultrasonic method in a NaOH solu-
tion (named BN-OH), which was transferred to a formaldehyde solution for the fabrication
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of PF/BN composites through an in situ synthesis method. The films were prepared by the
spin-coating technique on a sheet of 316L steel and heat-treated in an argon environment.
The results show that coatings heat-treated at 100 ◦C possess better tribological behav-
ior than those treated at other temperatures. In addition, the friction mechanism of the
composite coatings was also investigated.

2. Experimental Section
2.1. Materials and Preparation

Formaldehyde, h-BN, phenol, NaOH, and ammonium hydroxide were purchased
from Yantai Yuandong fine chemical Co., Ltd., China (see Table S1). All reagents were
analytically pure and used without further treatment.

Firstly, h-BN (5.0 g) was transferred to a NaOH solution (concentration: 5 mol/L;
volume: 100 mL) with agitation for 30 min and then ultrasonicated to obtain the exfoliated
hydroxyl BN powders (BN-OH). Different contents of BN-OH (0.025, 0.05, and 0.1 g) were
added to the mixture of formaldehyde (3 mL) and phenol (2 mL) with vigorous agitation at
80 ◦C. Furthermore, 0.5 g of NH3·H2O was dropped into the solution to provide an alkaline
environment while vigorously stirring for 40 min to obtain the target products (named
PF/BNs0.5%, PF/BNs1.0%, and PF/BNs2.0%, respectively). Next, the reactant was spun onto
polished 316L steel surfaces at a rotation speed of 1200 rpm for 12 s. The coatings were
obtained after being spun three times. The final product was treated in an incubator at
80 ◦C for 30 min. Finally, steel blocks coated with PF/BNs were heat-treated in a tubular
furnace at 100 or 300 ◦C.

2.2. Characterization

HR-TEM (JEM-2100, Japan), AFM (SPA-300HV, Japan), and FE-SEM (SIGMA 500/VP,
ZEISS, Oberkochen, Germany) combined with EDXA (Kevex Sigma, Goleta, CA, USA) were
used to investigate the microstructures and morphologies of the composite and coatings.
XRD (Bruker D8, Billerica, MA, USA), FT-IR (Bruck IFs66v, Billerica, MA, USA), and XPS
(ESCALAB Xi+, England) were used to investigate the microstructures of the PF/BNs and
worn surfaces. A simultaneous thermal analyzer (NETZSCH STA499, Selb, Germany) was
used to investigate the thermal properties of PF/BNs in a N2 atmosphere.

2.3. Tribological Experiments

A CFT-I tribometer was used to investigate the tribological properties of the samples
with a load of 3 N at frequencies of 30, 60, 90, 120, and 150 Hz with a sliding distance of
5 mm for 15 min. AISI 52100 steel balls (Ø: 3 mm) were cleaned using ultrasound before
being used as the stationary upper counterparts.

A D-100 profiler (KLA Tencor, USA) was used to measure the area of the profile of
scratches on the steel block, and the wear track volumes were counted by multiplying the
area of the profile of the scratches by the sliding distance. The wear rates were calculated
according to the following equation:

W = V/(F × L) (1)

The wear rate (mm3 N−1 m−1), wear track volume (mm3), applied load (N), and
sliding distance (m) are expressed as W, V, F, and L, respectively [12].

3. Results and Discussion
3.1. Characterization

Figure 1 exhibits the FE-SEM images of PF, BN-OH, and PF/BNs. The surface of
the phenolic is relatively smooth (see Figure 1a) [13]. Gel permeation chromatography
(Agilent1260HTGPC) and nuclear magnetic resonance spectrometry (JNM-ECZ400S) re-
vealed that the average molecular weight (Mn) is about 514, with the functional groups
Ph, -CH2-O-CH2-, and Ph-CH2-Ph, respectively (see Figure S1a,b). Figure 1b shows the
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BN sheets after ultrasonic treatment; the thickness of the BN sheets is less than 100 nm.
It is obvious that the BN-OH edges are revealed and folded, and a lamellar structure is
observed. Figure 1c,d show that BN-OH nanosheets are inlaid into the phenolic matrix.
The excellent compatibility between PF and BN is possibly attributable to the exfoliation
and hydroxylation of BN sheets.
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The TEM images of PF/BNs show that PF and multi-layer BN sheets are cohesively
composited (see Figure 3), and the thickness of the BN sheets is less than 100 nm. The
floccules in PF might be the grains in PF.
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Figure 4a shows the XRD curves of PF, BN-OH, and PF/BNs. The diffraction peaks
at about 26.7, 41.5, 50.1, and 55.1◦ could be attributed to the (002), (100), (102), and (004)
planes of BN (JCPDS Card # 00034-0421), respectively [14]. The intensity of the (002) peak
decreased after being composited with PF, which could be attributed to the decreased degree
of crystallinity [15]. The broad peaks at about 19.1◦ could be related to the crystallized
carbon chain in the PF polymer [16], which is consistent with the TEM analysis.
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The FT-IR curves of PF and PF/BNs are shown in Figure 4b. The peaks at about 1600
and 1450 cm−1 are assigned to the C=C vibration [17]. The absorption peaks at about 1015
and 1250 cm−1 are assigned to the C-O vibration of aliphatic groups and methylol aromatic
groups, respectively [16]. The peaks at about 3400 cm−1 might be assigned to the -OH
groups of PF and BN-OH [13]. The peaks at about 820 and 1383 cm−1 might be attributed to
the stretching and bending vibrations of B-N [17]. A series of peaks from 2300 to 2990 cm−1

could be assigned to the stretching vibration of C-H in the polymer structure [16,18].
The TGA curves of BN-OH, PF, and PF/BNs are shown in Figure 4c. Both PF and

PF/BNs exhibit substantial weight loss from approximately 135 to 200 ◦C, possibly due to
the cross-linking polymerization of the PF prepolymer and dehydration [19,20]. The second
inflection points of TG curves are at about 380 ◦C, possibly attributed to the carbonization
of phenol–formaldehyde resin [21]. The weight loss of PF/BNs is less than that of pure PF,
proving the existence of BN in composites.

The XPS spectra of the PF/BN samples are shown in Figure 5. The spectra of
B1s and N1s reveal that the peaks at 190.0 and 398.8 eV can be assigned to B-N bonds
(Figure 5b,c) [22]. The binding energy at about 192.5 eV might be attributed to B-O bonds.
For the N 1s spectrum, the peak at 401.3 eV can be attributed to C-N bonds [23]. The
high-resolution C1s curve of PF/BNs in Figure 5d can be deconvoluted into four peaks at
284.2, 285.7, 286.2, and 291.0 eV, corresponding to C-C, C=C, C-O, and π-π chemical bonds,
respectively [24,25]. The O 1s curve of PF/BNs in Figure 5e can be deconvoluted into four
peaks at 530.6, 532.0, 532.7, and 533.1 eV, corresponding to -OH, C=O, C-O, and N-O bonds,
respectively [15]. The above information proves that PF/BNs were successfully prepared,
and BN was hydroxylated.

Figure 6 shows the SEM and AFM analyses of pure PF and PF/BNC coatings. Compar-
ing the images of the PF coating, there are some bright features on the surfaces of PF/BNCs,
which are attributable to BN particles (Figure 6a,b). The thickness of the PF/BNCs is about
30 µm (Figure 6c), and the roughness of the PF/BNCs is about 1.597 nm (see Figure 6d).
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3.2. Tribological Behavior

Figure 7 shows the wear-rate–frequency curves and COF–frequency curves of PF
coatings and PF/BNCs on steel discs sliding against AISI steel balls. The wear rates of
PF coatings are lower than those of the steel discs at frequencies of no more than 120 Hz,
as shown in Figure 7a. The friction coefficient of steel discs decreases after being coated
with PF at all frequencies. At a frequency of 90 Hz, the average COFs of steel discs drop
from 0.52 to 0.45 after PF coating (Figure 7b). The wear rates and COFs of PF/BNCs with
different percentages of BN were also investigated. BN (1.0 wt%) can decrease the wear
rates and COFs at all frequencies. At a frequency of 90 Hz, the wear rates and COFs of the
PF/BN1.0%-coated sample are 0.26 × 10−4 (mm3/N·m) and 0.357, which are much lower
than those of 0.30 × 10−4 (mm3/N·m) and 0.45 for the pure-PF-coated sample, respectively.

Figure 8 shows the SEM images and mapping images of the worn surfaces of steel, PF
coatings, and PF/BN1.0% coatings sliding against steel balls at 90 Hz. The steel discs are
badly worn with deep furrows and many abrasions, which indicate that serious abrasive
wear occurred during sliding. The worn surface of the PF-coated sample displays much
smoother wear than that of pure steel blocks [9]. Furthermore, the PF/BNCs show even
less wear than the PF coatings, which is consistent with the wear rate and COF values (see
Figure 7) [26]. The EDS mappings of the worn surfaces of PF/BNCs (Figure 8f) show that
B, N, O, C, and Fe elements exist on the worn surfaces (Figure 8g–k), from which it can be
deduced that the coating of the tribo-films containing the above elements improves the
tribological properties [15].

To investigate the tribological properties of PF/BNCs with different thicknesses, the
wear rates and COFs of PF/BNs1.0% coated 1 time, 3 times, and 5 times were investigated.
The PF/BNCs coated 3 times possess a lower wear rate and COF than those coated 1
and 5 times. The optical images of the worn surfaces show that the worn surfaces of
the films coated 3 times are much smoother than those of the other samples, which is
inconsistent with the wear rates and COFs (see Figure 9a). The COF changes during sliding
for composite films with different thicknesses are shown in Figure 9b. The curves violently
fluctuate after the process is stable for a few minutes. The optical images of the worn
surfaces show that the direct increase in COF indicates the destruction of the coatings. The
films coated 3 times have a longer period of stable COFs.
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Figure 7. Wear-rate–frequency curves (a) and COF–frequency curves (b) of steel discs before and after
being coated with PF. Wear-rate–frequency curves (c) and COF–frequency curves (d) of PF/BNCs
sliding against steel balls.

On the other hand, the PF/BNs1.0% composite coatings were heat-treated in a tubu-
lar furnace at temperatures of 100 ◦C and 300 ◦C. The tribological properties of the
PF/BN composite films after heat treatment were also investigated at a frequency of
90 Hz for 15 min (Figure 10). The wear rate of the PF/BNCs decreased from 2.59 × 10−4

to 1.58 × 10−4 mm3/N·m after heat treatment at 100 ◦C, which is in line with the cross-
sectional profiles and SEM images of the worn surfaces. At the same time, the COF also
decreased from 0.38 to 0.36 after heat treatment at 100 ◦C. However, after heat treatment
at 300 ◦C, the wear rates and COFs of the films were higher than those at 100 ◦C. So, it
can be deduced that the PF/BNCs heat-treated at 100 ◦C possess better anti-wear and
friction-reducing abilities than other samples.
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3.3. Discussion

Many investigations have been conducted to improve the friction and wear mech-
anisms of phenolic resin and its composites. Zhang et al. found that a PF–graphene
composite coating exhibited enhanced tribological properties under all tested conditions,
which could be attributed to the increased interfacial interaction between graphene and
phenolic resin [20]. It is interesting to find tribological mechanisms from other possible
aspects. To determine the anti-wear and friction-reducing mechanisms of the PF/BNCs,
the XPS spectra (elements C, O, B, N, Fe) of the wear scratches of PF/BNCs before and
after heat treatment at 100 ◦C were investigated (see Figure 11). The high-resolution C1s
spectrum of the worn surfaces of PF/BNCs is divided into the peaks of C-C (283.7 eV),
carbon (284.7 eV), C=C (285.2 eV), C-O (286.4 eV), and C=O (285.7 eV) [27]. On the other
hand, the high-resolution C1s spectrum of the worn surfaces of PF/BNCs heat-treated at
100 ◦C is divided into the peaks of C=N (285.2 eV), carbon (284.8 eV), C-C/C-H (284.1 eV),
carbide (282.8 eV), and other groups (283.4 eV). The above analysis potentially proves that
the C element on the worn surfaces of the coatings after heat treatment is transferred from
C-O/C=O and C-C to C=N, carbide, and other chemical bonds, which is possibly attributed
to the cross-linking of the PF prepolymers (see Figure 11a,f) [12]. Comparing the O1s curves
before and after heat treatment, it is observed that the curves from the worn surfaces after
heat treatment are noisier than before heat treatment, possibly due to the decreased oxygen
contents after heat treatment (see Figure 11b,f). The peaks at about 530.3, 531.0, 531.8,
532.3, and 533.0 eV are attributed to the chemical bonds of Fe-O, C=O, -OH, C-O, and N-O,
respectively [15]. The decreased peak areas of N-O and C-O after heat treatment might be
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because of the cross-linking of prepolymers and the loss of H2O and other micromolecules
at the same time [28,29]. The weak peaks of N1s of the worn surfaces are identified as C-N
and B-N at 401.3 and 398.7 eV, respectively (see Figure 11c). After heat treatment, the B-N
bonds are divided into nitride and cyanides, respectively [30]. The peak of B1s is too weak
to be observed due to its low concentration. The peaks of Fe2p are also very weak, which
might be attributed to the existence of PF/BN tribo-films. Furthermore, weak Fe-O bonds
are found on the worn surface. It can be concluded that tribo-films containing C, O, N,
and Fe are formed on the worn surfaces of the PF/BNCs, which can effectively protect
the steel from damage [12]. Comparing the TGA analyses of PF/BN, it can be concluded
that the cross-linking of the prepolymers occurs during heat treatment, and carbon and
nitrogen are transferred to C=N bonds, carbides, nitride, and cyanides at the same time,
which improves the tribological properties of these coatings.
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at 100 ◦C (f–j).

The mechanical properties were tested to further understand the friction and wear
mechanisms. The hardness and toughness of materials play an important role in the
investigation of the friction and wear mechanisms of coatings [31]. Furthermore, the
indentation hardness (HIT), indentation elastic modulus (EIT), and load–depth curves of
the PF/BNCs were measured using a Nanoindentation apparatus (TTX-NHT2, Swit) with
a diamond indenter (B-U 04, Berkovich) for a maximum load of 0.9 mN and an approach
distance of 2000 nm with an approach speed of 2000 nm/min, respectively. Interestingly,
the PF/BNCs heat-treated at 100 ◦C possess a lower HIT and a higher indentation EIT
than those without heat treatment and those heat-treated at 300 ◦C, respectively (see
Figure 12a–c). The adhesive forces of the PF/BNCs with and without heat treatment were
also investigated using a scratch tester (MFT 4000, China) with a loading force of 30 N, a
speed of 30 N/min, and a sliding distance of 5 mm. The adhesive force of PF/BNCs heat-
treated at 100 ◦C is about 7.8 N, much higher than those of coatings without heat treatment
and those heat-treated at 300 ◦C (see Figure 12d). The corresponding optical images of the
wear scars of the coatings without heat treatment and those heat-treated at 300 ◦C show
that large debris was peeled off at the first point. The samples are more degraded than those
treated at 100 ◦C. The COF–loading-force curves also show that PF/BNCs heat-treated at
100 ◦C have more stable COFs than other samples (see Figure 12e). The above analysis
proves that PF/BNCs heat-treated at 100 ◦C possess an improved EIT with a lower COF
and a higher adhesive force between the coating and steel substrate than the other samples,
which improves the anti-wear and friction-reducing abilities of the PF/BNCs [32].
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curves of the PF/BNCs with and without heat treatment.

The XPS analysis of the PF/BN powders heat-treated at 100 or 300 ◦C reveals that the
percentages of C-O and C=O bonds decrease as the heat treatment temperature increases
to 300 ◦C (see Figure S2a–d). Furthermore, the ammonium salt was transferred to nitride
when increasing the heat treatment temperature to 300 ◦C (see Figure S2e,f) [33]. The B1s
analysis reveals that the B-O bonds become weakened after heat treatment at 300 ◦C (see
Figure S2g,h). From the TGA analysis and XPS analysis, we can deduce that carbon and
nitride were formed during the heat treatment at 300 ◦C, which was also verified by contact
angle measurements (see Figure S3) [6]. The samples with carbon and nitride possess
excellent hardness but have a relatively low EIT (see Figure 12), which might cause them to
easily peel off during sliding because of their brittle properties [34].

There are two explanations for the mechanism of the PF/BNCs. Tribo-films containing
C, O, B, N, and Fe are formed on the worn surfaces of the PF/BNCs. The C element on
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the worn surfaces of the coatings after heat treatment at 100 ◦C is transferred to C=N,
carbide, and other chemical bonds, which can effectively protect the steel from damage.
On the other hand, the cross-linking of the prepolymers improves the elastic modulus and
adhesive forces between the film and substrate, improving the tribological properties of
PF/BNCs (see Figure 13) [6,35].
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4. Conclusions

In this work, PF/BNCs were synthesized using an eco-friendly method. The per-
centage of BN, the thickness of the coating, and the heat treatment temperature affect
the COFs and wear rates of these coatings. After heat treatment at 100 ◦C, the wear
rates and COFs of the PF/BNCs were reduced from 2.59 × 10−4 mm3/N·m and 0.38 to
1.58 × 10−4 mm3/N·m and 0.36, respectively. However, after heat treatment at 300 ◦C, the
wear rates and COFs of the films were higher than those at 100 ◦C. The C element on the
worn surfaces of the coatings after heat treatment at 100 ◦C was transferred to C=N, carbide,
and other chemical bonds, which can effectively protect the steel from damage. Further-
more, the cross-linking of the prepolymers increased the elastic modulus and adhesive
forces between the film and steel, which improved the tribological properties of PF/BNCs.
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curves of phenolic; Figure S2: The XPS analysis of thePF/BN powders with heat treatment at 100 ◦C
and 300 ◦C, respectively; Figure S3: The contact angles of water drops on PF/BN films without
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