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Abstract: Processing of the available experimental data on particles settling in shear-thinning
polymer solutions is performed. Conclusions imply that sedimentation should be recursive, since
settling also occurs within the sediment. To capture such an effect, a mathematical model of two
continua has been developed, which corresponds to experimental data. The model is consistent
with basic thermodynamics laws. The rheological component of this model is a correlation formula
for gravitational mobility. This closure is justified by comparison with known experimental data
available for particles settling in vertical vessels. In addition, the closure is validated by comparison
with analytical solutions to the Kynch one-dimensional equation, which governs dynamics of particle
concentration. An explanation is given for the Boycott effect and it is proven that sedimentation is
enhanced in a 2D inclined vessel. In tilted vessels, the flow is essentially two-dimensional and the
one-dimensional Kynch theory is not applicable; vortices play an important role in sedimentation.

Keywords: suspensions; two-velocity continua; shear thinning fluid; recursive sedimentation;
tilted vessel

1. Introduction

Particulate fluids are common in both natural and industrial processes. Fiber-reinforced
polymers, detergents, blood, and drilling muds are some examples where particles are
present in a suspending fluid [1,2]. Sedimentation of suspensions in complex fluids is of
interest in technological operations, such as oil and gas exploration. Many drilling muds
are polymer-based fluids with shear-thinning rheology manifesting itself through a loss of
apparent viscosity with increasing strain-rates. Operational stops occur frequently during
oil-drilling processes. Interruption of drilling mud pumping causes the particles to settle
through the annular space. This may give rise some undesirable phenomena in drilling
operations, such as a stuck pipe. The understanding of suspension dynamics in complex
fluids is also important for applications in particle manipulation in microfluidic devices [3].
The methods and numerical algorithms developed in the present paper contribute to en-
hancing knowledge of the processes and their optimization in the fields of oil exploration
and microfluidic devices.

Laboratory study based on the gamma-ray attenuation technique reveals significant
differences in the behavior of particles settling in Newtonian and non-Newtonian fluids [4].
Particularly, control of the concentration of solids proves that sediment is formed faster in
shear-thinning fluid when compared to a Newtonian fluid of similar apparent viscosity.

In order to develop a theory of settling, it is first necessary to understand the interaction
of a single particle with a carrier fluid and the mutual interaction between two particles.

Clearly, the dynamics of a particles can be strongly affected by the rheology of the
interstitial fluid. In Ref. [5], some problems involving rigid spherical particles in shear-
thinning fluids are considered in the absence of inertia; for settling particles, analytical
formulas are derived and differences in comparison to a Newtonian fluid are demonstrated.
Experiments on sedimentation in non-Newtonian shear thinning fluids were considered in
Ref. [6] in order to validate a certain empirical dependence of the particle settling velocity
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on the volume concentration of particles. It should be noted that, based on one-velocity
continuum models, the existing tools of computational fluid dynamics make it possible to
solve sedimentation problems, taking into account many complex processes. It is worth
mentioning the works [7–9], where the sedimentation of particles in stirred vessels is
analyzed in the case of two-phase turbulent mixing flows, taking into account chemical
reactions, crystallization, and dissolution processes.

In this work, a different approach is used. In order to take into account particle–
fluid and particle–particle interactions, particles are considered as a phase, which can be
described within the continuum mechanics approach. As a result, the entire suspension
becomes a two-velocity continuum, with the fluid and the solid phases enjoying some
rheological constitutive laws. Such a method was validated in the recent paper concerning
the Boycott sedimentation effect, which stated that enhanced sedimentation occurs in a
tilted vessel [10].

In a great number of papers [11], particles and the carrier fluid are also assumed
to be two different phases. Let us highlight the differences and similarities between our
model and other two-phase approaches. First of all, the equations used are consistent
with the laws of thermodynamics. The article by A.S. Baumgarten and K. Kamrin [12] also
refers to the two-phase model, which is consistent with thermodynamics, but the method
and equations are different. To achieve compliance with the laws of thermodynamics in
the case of concentrated suspensions, the ideas that were proposed for the mathematical
description of the superfluidity of liquid helium II in the papers of L. D. Landau and I. M.
Khalatnikov [13,14] are applied.

An important point of the theory is that interaction forces between phases for re-
versible processes without dissipation effects can be uniquely identified while reconciling
the energy conservation equation, both with other conservation laws and the basic thermo-
dynamic principles. As far as dissipative processes are concerned, the interaction forces
are introduced, fitting the general deGroot–Mazur principles of irreversible thermody-
namics [15]. The Landau–Khalatnikov thermodynamic method finds applications in the
description of multi-phase flows [16], particularly in studying fluid-saturated poroelastic
media, both with the use of a two-velocity [17] and a three-velocity continuum [18]. Re-
cently, it was established in Ref. [19] that the same approach can be applied in building
up conservation laws for suspensions with rotating particles. In the present paper, we
extend the Landau–Khalatnikov approach by formulating the diffusion equation for the
mass concentration of particles involving a generalized Fick’s law for the concentration flux
vector in such a way that it depends not only on the concentration gradient and gravitation
vector scaled by a mobility factor, but on the pressure gradient, temperature gradient, and
gradient of modulus of the slip velocity as well.

The principle goal of the present paper is to adjust the method of [10] for the de-
scription of particles settling in a polymer solution. To this end, particles are assumed
to be suspended in a non-Newtonian power-law fluid, in contrast to [10], where such a
fluid is considered to be Newtonian. One more rheological feature of this work is that
the gravitational mobility in Fick’s law is chosen in such a way that the numerical results
on sedimentation are consistent with experiments on particles settling in polymer solu-
tions [4]. In fact, a suitable correlation is proposed for the dependence of mobility on
particle concentration. The proposed arguments are based on the Kynch theory, in which
the sedimentation of a dense suspension is considered as a concentration wave [20]. A zone
with a high concentration of particles is first formed at the bottom of a vessel; then, this
zone propagates upward like a shock wave. Some successful applications of this theory can
be found in [21,22]. The calculations performed in this work show that the sedimentation
of particles in polymer solutions is recursive, since settling is also observed inside the
sediment. Sedimentation in a tilted vessel is considered and it is proven that the Boycott
effect also holds in the polymer solution. A comparison with Newtonian carrier fluid
is performed.
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2. Mathematical Model

Let us consider a joint flow of two continua when an arbitrary volume V contains a
fluid (index f ) and a granular phase (index s). Volume, mass, and pressure of the fluid and
the granular phases are denoted by Vf , m f , p f , and Vs, ms, ps, respectively. It is assumed
that the granular phase is a mixture of dry particles and a carrier fluid such as proppant
and gel, for example. In this case, Vs = VM + Vp and ms = mM + mp. The particles are
“frozen” in the carrier liquid; i.e., the granular phase is characterized by just one speed vs,
one viscosity, and one stress tensor. In what follows, the indexes f and s stand for fluid and
solid phases, respectively.

The quantities

ρ =
m
V

, ρs =
ms

V
, ρ f =

m f

V
, ρp =

mp

V
, φj =

Vj

V
, ρM =

mM
V

, c =
mp

m
. (1)

are assigned to the unit volume. Here, c = ρp/ρ is the particle mass concentration and φj is
the volume fraction of the j-phase with j = f , p, M. It follows from the above definitions
that the partial densities ρj are related to the material densities ρ̄j by the following formulas

ρj = φjρ̄j, ρ̄j ≡
mj

Vj
, φ f + φs = 1, φs = φp + φM, ρ = ρ f + ρp + ρM.

Generally, the phase pressures ps and p f are different. However, as in Ref. [19], it is
assumed that ps = p f = p. Such a hypothesis works well when the surface tension at the
boundaries separating the phases is negligible.

Let vi, Ti, l, k stand for the velocity, the viscous part of the stress tensor, the particle
concentration flux vector, and the interface friction coefficient, respectively.

In what follows, we use the tensor notations. Given two vectors a and b, we define the
scalar product a · b = aibi. The tensor product a⊗ b is a matrix such that (a⊗ b)ij = aibj.
The matrix A∗ stands for the adjoint matrix of A, i. e. (A∗)ij = (A)ji. The i-th component
of the vector div A is defined by the formula (div A)i = ∂Aik/∂xk.

Neglecting the rotation of particles and thermal effects, it follows from [19] that the
mathematical model

∂(ρsvs)

∂t
+ div (ρsvs ⊗ vs) = −

ρs

ρ
∇p−

ρsρ f

2ρ
∇u2 − k u + div Ts + ρsg , (2)

∂(ρ f v f )

∂t
+ div (ρ f v f ⊗ v f ) = −

ρ f

ρ
∇p +

ρsρ f

2ρ
∇u2 + k u + div Tf + ρ f g, (3)

∂(ρc)
∂t

+ div (cj + l) = 0, (4)

ρst + div (ρsvs) = 0, ρ f t + div (ρ f v f ) = 0, (5)

for six unknown functions ρs, ρ f , p, c, vs, v f can be derived. Here, p = p(ρ) is the prescribed
state equation, g is the gravitation vector, and

(∇ p)i =
∂p
∂xi

, j = ρsvs + ρ f v f , ρ = ρs + ρ f , u = vs − v f , div l ≡ ∂li
∂xi

, u2 = u · u.

Rheological assumptions are formulated as follows. Given a velocity field v(x), the
corresponding rate of strain tensor D is defined by the formula

D =
∇v + (∇v)∗

2
, (∇v)ij =

∂vi
∂xj

.



Polymers 2022, 14, 4241 4 of 19

The fluid phase is considered to be a non-Newtonian fluid. This implies that

Tf = 2η f D f , (6)

with the power-law viscosity
η f = η0

f γ̇n−1, (7)

where the power n satisfies the shear thinning condition 0 < n < 1. Here, η0
f is the

consistency and γ̇ is the dimensionless shear strain:

γ̇ =

√
2D f : D f

ω
, D : D = DijDij, (8)

with ω being the reference frequency. The shear stress τ =
√

Tf : Tf /2 satisfies the equality

τ = ωη0
f γ̇n. (9)

Given the volume fraction of the solid phase φs, the rheology of the solid phase is
defined by the Newtonian law

Ts(φs) = 2ηs(φs)Ds. (10)

Here,

ηs(φs) = η0
s

(
1− φs

φ∗s

)−2.5
(11)

is the viscosity given by the Krieger–Douhgerty empirical closure [23], with φ∗s and η0
s

being the maximal reference value of φs and the consistency, respectively.
One more rheological equation is the Fick law [10]:

l = −
(

γ3∇c + γ1∇p + γ4∇ u2
)
+ ρcBg. (12)

Due to the mass conservation laws (5), Equations (2) and (3) reduce to

ρs

(
∂vs

∂t
+ vs · ∇vs

)
= −ρs

ρ
∇p−

ρsρ f

2ρ
∇u2 − k u + div Ts + ρsg , (13)

ρ f

(
∂v f

∂t
+ v f · ∇v f

)
= −

ρ f

ρ
∇p +

ρsρ f

2ρ
∇u2 + k u + div Tf + ρ f g, (14)

where (v · ∇v)i = vj∂vi/∂xj. Such equations are of use in the numerical calculations
performed below.

3. Incompressible Isothermal Flows

Let us formulate a hypothesis of incompressibility. It is assumed that the mud volume
fraction φM is negligible and the densities of materials ρ f , ρp and ρM are constants. Then, it
follows from (1) that

ρs ≈ cρ, ρ f ≈ (1− c)ρ, φs =
c

R0 + c(1− R0)
, φ f =

R0(1− c)
R0 + c(1− R0)

, (15)

where R0 = ρ̄s/ρ̄ f . Observe that the total density ρ and the partial densities ρj are not
constant in contrast to the densities of the materials. By the incompressibility assumption,
one can easily derive the following formulas:

ρs

ρ̄ f
= c[1 + (R0 − 1)φs(c)] ≡ rs(c),

ρ f

ρ̄ f
= 1− φs(c) ≡ r f (c), ρ =

ρs
R0 + c(1− R0)

.
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The functions rs(c) and r f (c) are dimensionless partial densities.
One more consequence of the incompressibility assumption is that the volumetric

mean velocity is divergence-free:

div v = 0, v ≡ φs(c)vs + φ f (c)v f . (16)

Equation (4) is equivalent to

∂c
∂t

+ ṽ · ∇ c + ρ−1(c)div l = 0, ṽ ≡ cvs + (1− c)v f , (17)

where ṽ is the mean mass velocity. Thus, a mathematical model for four unknown functions
p, c, vs v f is derived that obeys the Equations (13) – (17). The parameters ηs, η f , k, γj are
assumed to be known functions of the mass concentration c.

Under the incompressibility hypothesis, pressure is no longer a thermodynamic pa-
rameter and does not satisfy the equation of state. It is now included in the list of unknown
functions, as in the case of Navier–Stokes models of a viscous incompressible fluid. Densi-
ties can be restored from equalities (15).

The diffusion coefficients γj vanish when any phase disappears. As for the friction,
we use the correlation formula

k(c) =
3
4

CD
cρ̄ f |u|

dp
, (18)

proposed in Ref. [24], where dp is the particle diameter and CD is the particle/fluid friction:

CD =

{
24

Rep

(
1 + 0.15Re0.678

p

)
if Rep < 1000,

0.44 if Rep > 1000,
Rep =

dpρ̄ f |u|
η0

f
.

For the case of sedimentation, the particle Reynolds number Rep is very small, Rep << 1,
and one can use the following approximation CD = 24/Rep, k = 18η0

f c/(d2
p).

With g being the gravitation acceleration, the formula g = −gey is valid where
ey = (0, 1)T . The domain Ω0 denotes the vertical cell {0 < x < a1, 0 < y < a2}, with
the y-axis directed upwards. In what follows, flows are considered in the tilted cell Ωα,
with the inclination angle α measured from ey.

Given the reference values a1, V, l0, t0, and p̄, the dimensionless variables are defined
as follows

x′ =
x
a1

, y′ =
y
a1

, v′ =
v
V

, p′ =
p
p

, l′ =
l
l0

, t′ =
t
t0

, (19)

with the assumptions

t0 =
a1

V
, ω =

V
a1

, l0 = ρ̄ f V, p = ρ̄ f ga1.

As a result of passage to dimensionless variables, the following dimensionless param-
eters and functions appear:

Re =
a1Vρ̄ f

η0
f

, k1 =
18η0

f a1

ρ̄ f Vd2
p

, Fr =
ga1

V2 , (20)

λ = Fr · Re =
ρ̄ f a2

1g

η0
f V

, β = k1 · Re = 18
a2

1
d2

p
, (21)

Γ1(c) =
γ1(c) p̄

l0a1
, Γ3 =

γ3

a1l0
, Γ4(c) =

γ4(c)V2

a1l0
, Γ5(c) =

cr(c)B(c)g
V

. (22)
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In the new variables, the rheological equations become γ̇ =
√

2D′f : D′f ,

Tf =
η0

f V

a1
T′f , T′f = 2γ̇n−1D′f , Ts =

η0
f V

a1
T′s , T′s = 2

ηs

η0
s

η0
s

η0
f

D′s. (23)

Omitting the primes, we find that the functions v′f (x′, y′, t′), v′s(x′, y′, t′), c(x′, y′, t′),
and p(x′, y′, t′) satisfy the equations

rsRe
dsvs

dt
= − rsλ

r
∇ p +

ηs0

η0
f

div
(

2ηs

ηs0
Ds

)
− βcu−

rsr f Re
2r
∇u2 − λrs · ey, (24)

r f Re
d f v f

dt
= −

r f λ

r
∇ p + div

(
2γ̇n−1D f

)
+ βcu +

r f rs Re
2r
∇u2 − λr f ey, (25)

div v = 0, v ≡ φs(c)vs + φ f (c)v f . (26)

dc
dt

+
div l

r
= 0, l = −

(
Γ3∇c + Γ1∇p + Γ4∇ u2

)
− Γ5ey, (27)

in the domain

Ωα = {x = X cos α + Y sin α, y = −X sin α + Y cos α}, (28)

where 0 < X < 1, 0 < Y < h = a2/a1. Let us formulate boundary and initial conditions:

∂Ωα : vs = 0, v f = 0, l · n = 0, ∇p · n = 0, (29)

t = 0 : vs = vs0, v f = v f 0, c = c0. (30)

The diffusion coefficients γ1(c) and γ4(c) vanish at c = 0 and c = 1. This is why it is
reasonable to set Γi = Γ0

i c(1− c), where Γ0
i are constants, i = 1, 4.

4. Gravitation Mobility of Particles in a Solution of Polymers

First, we consider settling in a Newtonian fluid where n = 1 and η f = η0
f . For

simplicity, it is assumed that ρ = const and that the gravitation diffusion is dominant; i.e.,
γi = 0 ∀i. In dimension variables, it follows from (4) and (12) that concentration obeys
the equation

∂c
∂t

+ div [c(ṽ− gB(c)ey)] = 0. (31)

On the other hand, some authors [25] apply the equation

∂c
∂t

+ div (cvp) = 0 (32)

while addressing sedimentation. Here, vp = ṽ + vslip is the particle velocity and

vslip = −VSt H(c)ey, VSt =
2(ρ̄p − ρ̄ f )g(dp/2)2

9η0
f

, (33)

where VSt is the Stokes settling velocity in Newtonian fluid and H(c) is the hindered settling
function [25]. Comparing (31) and (32), we find that

B(c) =
VStH(c)

g
= 2(ρ̄p − ρ̄ f )

(
dp

2

)2 H(c)
9η0

f
. (34)
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As shown in Section 6, the Richardson–Zaki closure

Hrz(c) = (1− c)m (35)

for the function H(c) meets the settling in a Newtonian fluid with m = 4.65 [26].
As for shear thinning non-Newtonian fluids, it is proven in Section 6 that the shear

thinning closure
Hsh(c) = a(1− c)k + bcm−1(1− c)− d(1− c)l . (36)

for the function H(c) with the special choice (46) of the constants a, b, d, k, m and l fits the
experiment data in Ref. [4] better than any hindered settling function of the form (35).
In what follows, the functions Brz(c) and Bsh(c) are defined by Equation (34) with the
hindered settling function H(c) given by Equations (35) or (36), respectively.

5. Settling in 2D Tube

Here, we apply the mobility closure Equation (34) with the hindered settling func-
tion (36) to particles settling in polymer solutions governed by the rheology of the shear
thinning fluids. Particularly, we consider sedimentation in inclined vessels on the bases of
the two-velocity model (24)–(27) and establish the Boycott effect.

First, sedimentation in a vertical vessel is considered. Calculations reveal that the
concentration structures are different for the mobilities Brz or Bsh. Figure 1 is obtained with
the use of the mobility Brz and shows that there are two concentration waves smoothed by
the diffusion effect, which propagate in opposite directions. The downward wave starts
from the top of the vessel and leaves no particles behind, whereas the wave going up
describes an increasing zone of sediment. As for the non-Newtonian fluid with the shear
thinning mobility Bsh, there are three waves, as shown in Figure 2. At the initial stage, only
two waves moving towards each other are observed. Then, a third wave appears, going
from bottom to top. This wave indicates that settling is also observed in the sediment. Thus,
sedimentation of particles in polymer solutions is recursive, since settling is also observed
inside the sediment. If all dissipative effects can be neglected, the third concentration wave
appears from the very beginning; see Figure 3.

Figure 1. Calculated profiles of average concentration over the cross section of the 2D tube for
different time instances in a vertical vessel in the case of mobility Brz.
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Figure 2. Calculated profiles of average concentration over the cross section of the 2D tube for
different time instances in a vertical vessel in the case of the shear thinning mobility Bsh. Effect of
two-fold particle sedimentation.

Figure 3. Calculated profiles of the concentration wave at different time instances for the shear
thinning flux Fsh(c) in the case when all the dissipation effects are negligible. The initial and boundary
data are c0 = 0.09, cbot = 1, ctop = 0.

A comparison with experiment data [4] is performed in Section 6 in the case of small
diffusion coefficients. Figures 4 and 5 confirm qualitative agreement when we simulate
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settling in the Newtonian fluid starting from Equations (24)–(27) with n = 1, using the
mobility Brz(c). The main feature of this case is monotonicity in the following sense. Both
the experiment data and our calculations reveal that there is a critical height such that at
each level above this height, the concentration decreases with time, and at each level below
this height, the concentration increases with time.

Figure 4. Experimental data for mean concentration versus time at different heights in the case of a
Newtonian fluid [4].

Figure 5. Calculated values of mean concentration versus time at different vertical locations for the
flux Frz, with m = 1.

Simulation of settling in non-Newtonian shear thinning fluids is based on
Equations (24)–(27), with n = 0.34 and B(c) = Bsh(c). Qualitative agreement is depicted in
Figures 6 and 7. In such a case, the experimental data and our calculations show that the
monotonicity property is preserved only for sufficiently high or sufficiently low vertical
locations. There are intermediate locations in which concentration first increases with time
and then decreases.
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Figure 6. Experimental values of average concentration versus time at different height levels in a
polymer solution [4].

Figure 7. Calculated values of the average concentration versus time at different vertical locations for
the shear thinning flux Fsh(c).

For both the fluxes Brz and Bsh, calculations reveal that in spite of no-slip boundary
conditions for velocities, horizontal-strata formation in the vertical vessel occurs in the
sediment; see Figures 8 and 9.

All the calculations in the present paper are carried out with the use of the open-source
PDE Solver FreeFEM++ based on the finite element method. To obey the restriction that the
mean volume velocity is divergence-free, the method of artificial compressibility is applied.
At each time step, the concentration field is calculated by the Galerkin-characteristics
method, which is implemented in FreeFEM++ through the “convect” function. Next, the
Navier–Stokes equations are solved to define velocity and pressure. To tackle nonlinearity,
iterations are carried out until convergence. Then, a transition is made to the next time step.
A weak formulation of the problem and a detailed description of the algorithm are given in
Ref. [10]. The ParaView open-source package visualization application is used to visualize
the results.
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Figure 8. Calculated snapshots of concentration in the case of n = 1 for the flux Brz for both the
vertical and tilted vessels. The inclination angle is 30◦.

Figure 9. Calculated snapshots of concentration in the case of n = 0.34 for the flux Bsh for both the
vertical and tilted vessels. The inclination angle is 30◦.
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In experiments with blood, A. Boycott (1920) noticed that erythrocyte particles settled
faster in an inclined test tube than in a vertical one. Since that time, many attempts have
been made to explain this effect in terms of the theory of particle motion in a viscous fluid.
For this purpose, additional hydrodynamic forces were introduced, such as the Archimedes
force, the Magnus force, etc. Forces were even used that obviously depended on time and
on prehistory, such as the Basset–Boussinesq force [27]. In our recent work [10], the Boycott
effect was explained without the use of additional hydrodynamic forces, but only due to
the gravitational component of the concentration flux in Fick’s law. As far as we know, the
issue of particle settling in non-Newtonian fluids has not been considered theoretically and
experimentally in the case of inclined vessels.

Let us consider the issue of particle deposition in a 2D tilted tube within the
model (24)–(27). Note that this model was used in Ref. [10] in a particular case under
the rheological assumptions that B = Brz and n = 1 in (7). Now, we set B = Bsh. As in [4],
calculations are performed for the case n = 0.34. The data Brz and n = 1 correspond to a
Newtonian fluid, whereas the data Bsh and n = 0.34 correspond to a non-Newtonian shear
thinning fluid.

Figures 8 and 9 depict calculated snapshots of concentration in the tilted 2D tube with
the inclination angle α = 30◦. The above clear area extends differently in the Newtonian
and non-Newtonian cases. First, the settling is faster in the Newtonian fluid than in the
non-Newtonian one.

Let us introduce the reduced volume of the clear fluid region

V(t) =
1

a1a2

∫
Ωα

1c(x,y,t)=0 dxdy, (37)

where 1A(x, y) is the characteristic function of the set A. Figure 10 corresponds to the
Newtonian fluid and shows how V(t) depends on time for the vertical and inclined cells.
Enhanced sedimentation is observed due to inclination in agreement with the Boycott
effect [28]. The result of inclination in the case of the non-Newtonian fluid is shown in
Figure 11. This implies that the Boycott effect also takes place in the non-Newtonian shear
thinning fluid.

Figure 10. Reduced volumetric rate V(t) of the clear fluid zone c = 0 versus dimensionless time for
the inclination angles α = 30◦ from the bottom upwards: Newtonian fluid.

Figure 11. Reduced volumetric rate V(t) of the clear fluid zone c = 0 versus dimensionless time for
the inclination angles α = 30◦ from the bottom upwards: non-Newtonian fluid.
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Streamlines of the mean volume velocity v of the non-Newtonian fluid, which define
transport of the concentration c in the vertical cell, are shown in Figure 12 for some time
instant. There are two identical macro-vortices rotating in opposite directions. Due to the
lateral particle migration, the lower boundary of the clear fluid zone c = 0 is horizontal at
any time. In the case of the tilted cell, one of these vortices becomes dominated and it is
in excess of each vertical vortices. Such vortex pattern was observed in experiments by
Kinosita [29] and Hill et al. [30].

Figure 12. Streamlines of the mean volume velocity v for the vertical and inclined cells in the case of
non-Newtonian fluid.

The recent paper [10] is dedicated to the settling of particles in a Newtonian fluid
inside a 2D tube. In this paper, the comparison with experimental data and calculations is
given in great detail. One of the results of this work is an explanation of the Boycott effect
occurring in the tilted vessel.

6. Kinematic Sedimentation Equation

One can process the Moreira [4] experimental data in Figure 6, which show the
dependence of particle concentration on time at different heights of a vertical vessel. As a
result of the graphical work of converting one data set to another, concentration profiles
can be obtained at various time instants. It turns out that the profiles have a smoothed
three-wave structure; one wave goes from top to bottom, and the other two from bottom to
top. It should be recalled here that there is a classical Kynch sedimentation theory based on
a one-dimensional equation for concentration waves [20]. In this approach, only vertical
velocities are taken into account, while transverse velocities are considered negligible.
The theory has many applications, including sedimentation with absorption [22]. The
Kynch equation can be explained in different ways. In fact, it can be derived from the
3D-system (24)–(27). To do this, it suffices to neglect dissipative effects.

Indeed, let us address vertical flows along the variable y, 0 < y < h, in the case of
neutrally buoyant particles. It results from the assumption ρ̄s = ρ̄ f that the mean volume
velocity and the mean mass velocities coincide. Because of the equation div ṽ = 0, the
vertical component ṽ of ṽ satisfies the equation ∂ṽ/∂y = 0. At the same time, ṽ = 0 at the
bottom y = 0. Hence, ṽ = 0 and Equation (31) reduces to the Kynch equation

∂c
∂t

+
∂F(c)

∂y
= 0, with F = −gcB(c), (38)

where gB = −vslip and vslip = −VStH(c). The solutions of the Kynch equation (38) are
determined mainly by the empirical gravitational mobility B(c). A review of the literature
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shows that the theoretical three-wave structure can be obtained with a special choice of
B(c), [31–33].

To describe such a choice, we first consider settling in a Newtonian fluid. Normally,
the slip velocity should be determined experimentally. The Richardson–Zaki correlation

vslip = −VStHrz(c), Hrz(c) = (1− c)m, (39)

meets experiments with m = 4.65 in the case of Newtonian fluid flows with small terminal
Reynolds numbers Ret << 1 [26].

Let us set VSt = 1 for simplicity. This condition is equivalent to switching to another
time scale. Given a vanishing diffusion ε, the settling problem reduces to the following
initial boundary value problem:

∂c
∂t

+
∂F(c)

∂y
= ε

∂2c
∂y2 , F = −cH(c), 0 < y < 1, (40)

with initial and boundary conditions

c|t=0 = c0, l|y=0,y=1 = 0, (41)

where l = εcy − cvslip. For a more general class of functions F(c) than Frz(c), we refer the
reader to [21] for the study of Equation (40).

First, we consider the flux Frz(c) and perform calculations of the concentration profile
versus the vertical variable y, 0 < y < 1, at different time instances. The boundary conditions

c|y=0 = cbot, c|y=1 = ctop (42)

are alternative to (41). The results in Figures 13 and 14 are obtained for the conditions (42).
One can observe two discontinuity waves propagating towards each other. There are
no particles left behind a wave moving from above. The upward wave describes an
increase in the height of the sediment. The data for Figures 13 and 14 differ only in the
bottom value of concentration. However, the corresponding concentration waves have
different structures. When cbot = 0.45, the rising shock-wave starting from the bottom is
followed by a center rarefaction wave; see Figure 13. This is not the case when cbot = 1;
see Figure 14. Concluding the discussion of sedimentation with the function Frz(c), we
note that experiments on particles settling in Newtonian fluids sometimes lead to a three-
wave structure [31]. This implies that the flux Frz(c) is not a unique choice for settling in
Newtonian fluids.

Figures 4 and 5 show good qualitative agreement of our calculations with available
experiment data for Newtonian fluids [4], provided we use the flux Frz(c) in the boundary
value problem (40), (41). Each curve in these figures corresponds to a time variation of
concentration at a fixed value of the vertical variable. Although a quantitative comparison
with these experiments is not possible due to the 1D assumption of the present simulations,
the results of calculations generally reproduce the experimental trends.

According to the experiment data in the case of a Newtonian fluid (Figure 4), sedimen-
tation in the 30.1 cm-long tube proceeds monotonously in the following sense. The mean
concentration at the level y decreases in time at each point y above the height y ' 6 cm
and it increases in time at each point y below the height y ' 6 cm. The settling loses
this monotonicity property as far as the polymer solutions are concerned; see Figure 6.
Indeed, one can see that there is an intermediate vertical layer h1 < y < h2 such that
the concentration c(y, t) first increases and then decreases in time for the height y from
this layer.
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Figure 13. Calculated profiles of the concentration wave at different time instances for the flux Frz(c)
with m = 4.65. The initial and boundary data are c0 = 0.09, cbot = 1, ctop = 0. The rising discontinuity
wave is followed by a centered rarefaction wave.

Figure 14. Calculated profiles of the concentration wave at different time instances for the flux
Frz(c) with m = 4.65. The initial and boundary data are c0 = 0.09, cbot = 0.45, ctop = 0. The rising
discontinuity wave is not followed by a centered rarefaction wave.
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To address such issues of monotonicity in the case of shear thinning fluids, we argue
as in Ref. [21] and look for the settling velocity correlation in the form

vslip(c) = −VStHsh(c), (43)

Fsh(c) = −VStcHsh(c). (44)

with
Hsh(c) = a(1− c)k + bcm−1(1− c)− d(1− c)l . (45)

It is assumed for simplicity that VSt = 1. Applying the least squares method for
minimization of a discrepancy functional, we find that the values

a = b = 1, d = 0.95, n = 4, m = 10, l = 8 (46)

meet the data in Figure 6 related to the shear thinning fluids [4]. The discrepancy functional
determines how close the data are in Figures 6 and 7. Figure 7 is based on solving the
initial boundary value problem (40), (41) with F = Fsh. Remember that the restriction
VSt = 1 is equivalent to switching to another time scale. Clearly, the data (46) depend on
the time scale.

We performed calculations of concentration profile versus the vertical variable y,
0 < y < 1, at different time instances; see Figure 3. Contrary to the case with the flux
Frz(c), one can observe three discontinuity waves. One wave goes top-down, and the other
two rise up, following one after the other. This implies that one more sedimentation occurs
within the sediment.

It is worth to remark that loss of monotonicity is also observed for the flux Frz.
Figures 15 and 16 show that, for some initial data, there is monotonicity, but for other initial
data, this property disappears. However, the flux Fsh is preferred for simulation of settling in
non-Newtonian fluids, as it is consistent with the effect of two-fold particle sedimentation.

Figure 15. Calculated values of concentration versus time at different vertical locations for the flux
Frz. There is monotonicity with the initial and boundary data c0 = 0.09, cbot = 1, ctop = 0.

The physical meaning of violation of the monotonicity property is as follows. There
is a middle layer of the vessel where, at first, the concentration increases due to the
sediment going from bottom to top. Then, the concentration in this layer decreases due
to a sufficiently pure liquid going from top to bottom. Thus, this effect is the result of the
interaction of waves traveling in opposite directions.

Let us summarize the arguments formulated in favor of the new choice (45) for the
gravitational mobility B(c) = VSt Hsh(c)/g. First of all, our method has a physical back-
ground. For a wide variety of coefficients, the equation (45) guarantees the experimentally
observed three-wave structure of the concentration profile. From top to bottom, there is a
discontinuity wave, followed by a rarefaction wave. From the bottom-up, there are two
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waves of discontinuity. In addition, the choice of (45) is consistent with the violation of the
monotonicity property, which is also observed in experiments. An optimal quantitative
choice of coefficients in Equation (45) is achieved by minimizing the discrepancy functional.
By comparing the data in Figures 6 and 7, this functional determines how experimental
and calculated data are close.

Figure 16. Calculated values of concentration versus time at different vertical locations for the flux
Frz. Loss of monotonicity with the initial and boundary data c0 = 0.19, cbot = 1, ctop = 0.

7. Conclusions

A two-continua mathematical model for description of particles settling in a shear
thinning polymer solution is developed. A correlation formula for the gravitational mo-
bility in Fick’s law is derived and numerical results on sedimentation are consistent with
experiments on settling of particles in polymer solutions. In fact, we justify a suitable
correlation for the dependence of mobility on particle concentration. The main arguments
are based on the Kynch (1952) theory, in which sedimentation of dense suspension is
considered as a concentration wave. A zone with a high concentration of particles is first
formed at the bottom of a vessel; then, this zone propagates upward like a shock wave.
From our calculations, sedimentation of particles in polymer solutions is recursive, since
settling is also observed inside the sediment. Sedimentation in a tilted vessel is addressed
and it is proven that the Boycott effect also holds in a polymer solution. Comparison with
Newtonian carrier fluid is performed.
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Abbreviations

V arbitrary volume of suspension, [m3]

Vf volume of fluid part in arbitrary volume V, [m3]

Vp volume of dry particles in arbitrary volume V, [m3]

VM volume of mud in arbitrary volume V, [m3]

Vs = Vp + VM volume of solid phase in arbitrary volume V, [m3]
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m f mass of fluid in arbitrary volume V, [kg]
mp mass of dry particles in arbitrary volume V, [kg]
mM mass of mud in arbitrary volume V, [kg]
ms = mp + mM mass of solid phase in arbitrary volume V, [kg]
m = m f + mp + mM mass of arbitrary suspension volume V,[kg]
c =

mp
m mass concentration of particles, dimensionless

ρ̄ f fluid density,
[

kg
m3

]
ρ̄p density of dry particles,

[
kg
m3

]
ρ̄M mud density,

[
kg
m3

]
φ f volume fraction of fluid, dimensionless
φp volume fraction of dry particles, dimensionless
φM volume fraction of mud, dimensionless
φs = φp + φM volume fraction of solid phase, dimensionless

ρ f =φ f ρ̄ f partial fluid density,
[

kg
m3

]
ρp = φp ρ̄p partial particle density,

[
kg
m3

]
ρM = φM ρ̄M partial mud density,

[
kg
m3

]
ρs = ρp + ρM partial density of solid phase,

[
kg
m3

]
ρ = ρ f + ρp + ρM total density

[
kg
m3

]
ρ̄s =

ρs
φs

, density of the solid phase,
[

kg
m3

]
R0 =

ρ̄s
ρ̄ f

, ratio of densities, dimensionless

g gravitational acceleration, 980
[

cm
s2

]
p pressure, [Pa]
v f velocity of fluid phase,

[m
s
]

vs velocity of solid phase,
[m

s
]

u = vs − v f difference of velocities,
[m

s
]

v = φ f v f + φsvs mean volume velocity,
[m

s
]

ṽ = (1− c)v f + cvs mean mass velocity,
[m

s
]

Tf viscous part of stress tensor of fluid phase, [Pa]
Ts viscous part of stress tensor of solid phase, [Pa]
D rate of strain tensor, [s−1]

I identity matrix, dimensionless

j total momentum,
[

kg
m2·s

]
l flux of mass concentration of particles,

[
kg

m2·s

]
η f dynamic viscosity of fluid phase, [cp]
ηs dynamic viscosity of solid phase, [cp]
η0

s consistency of solid phase, [cp]
τ shear stress, [cp/s]
γ̇ dimensionless shear strain

k interphase friction,
[

kg
m3·s

]
B gravitation mobility, [s]
VSt Stokes settling velocity,

[m
s
]

H(c) hindered settling function, dimensionless
ds
dt differential operator of material derivative related to velocity vs
d f
dt differential operator of material derivative related to velocity v f
d
dt differential operator of material derivative related to mean mass velocity ṽ
r f = ρ f /ρ̄ f , dimensionless density of fluid phase
rs = ρs/ρ̄ f , dimensionless density of solid phase
l dimensionless length of channel
Re Reynolds number, dimensionless
Fr Froude number, dimensionless
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