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Abstract: Mechanical amorphization of three chitosan samples with high, medium, and low molecular
weight was studied. It is shown that there are no significant differences between the course of
amorphization process in a planetary ball mill of chitosan with different molecular weights, and the
maximum degree of amorphization was achieved in 600 s of high intensity mechanical action. Specific
energy consumption was 28 kJ/g, being comparable to power consumption for amorphization of
cellulose determined previously (29 kJ/g) and 5–7-fold higher than that for amorphization of starch
(4–6 kJ/g). Different techniques for determining the crystallinity index (CrI) of chitosan (analysis
of the X-ray diffraction (XRD) data, the peak height method, the amorphous standard method,
peak deconvolution, and full-profile Rietveld analysis) were compared. The peak height method is
characterized by a broader working range but provides deviated CrI values. The peak deconvolution
method (with the amorphous Voigt function) makes it possible to calculate the crystallinity index
of chitosan with greater accuracy, but the analysis becomes more difficult with samples subjected
to mechanical processing. In order to refine the structure and calculation of CrI by the Rietveld
method, an attempt to optimize the structure file by the density functional theory (DFT) method
was performed. The averaged profile of amorphous chitosan approximated by an eighth-order
Fourier model improved the correctness of the description of the amorphous contribution for XRD
data processing. The proposed equation may be used as a universal standard model of amorphous
chitosan to determine the crystallinity index both for the amorphous standard method and for peak
deconvolution of XRD patterns for arbitrary chitosan samples.

Keywords: amorphization; chitosan; crystal structure; degree of crystallinity; disordering;
mechanochemistry; molecular weight

1. Introduction

Chitosan is a β-1,4-linked linear polymer of glucosamine extracted from crustacean
shells, insects, and fungi by chitin deacetylation with concentrated alkalis (most frequently)
or treatment with deacetylases (very rarely because of the high cost of enzymes) [1–3].
Chitosan-based materials are used for food packaging [4,5], encapsulation of food supple-
ments [6,7], inhibition of formation of acrylamide and 5-hydroxymethylfurfural during
thermal food processing [8], drug delivery [9], as a component of hemostatic agents and
wound dressings [10,11], and as a material for suture-free surgery [12,13]. When used
directly as a component of functional foods and therapeutic and preventive nutrition,
chitosan can bind fatty and bile acids, phospholipids, and gliadin due to its ability to form
micelles, thus making it possible to treat celiac disease, reduce cholesterol levels, and treat
arthrosis and osteoporosis [8,14–16].
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The properties of chitosan can be significantly altered by subjecting it to physico-
chemical modification such as mechanochemical disordering and amorphization [17–19],
plasma treatment [20,21], and copolymerization [22,23]. Thus, mechanical amorphization
of crystallites increases reactivity during heterogeneous processes, which are used in food,
pharmaceutical, and bioengineering industries [24–26].

Mechanical amorphization is considered to be a highly energy-intensive method
for biopolymer pretreatment; energy is inevitably spent on heating the system, grinding
the material, amorphization of the crystal structure, and the course of mechanochemical
reactions. Studies on energy consumption allow not only to evaluate [27,28] and improve
the energy efficiency of existing technologies, but also to develop new technologies for
processing amorphous-crystalline polymers [29].

However, despite the natural abundance of chitin and the fact that chitosan has
been studied well and is easy to produce, its wide application is largely restrained by
lack of fundamental knowledge about the relationship “composition–structure–property”.
Due to numerous variations in the conditions of alkaline deacetylation of chitin, chitosan
procured from different manufacturers varies in composition and structure (differing in
such parameters as molecular weight, polydispersity, degree of acetylation, and degree
of crystallinity). Therefore, properties of chitosan-based products are rather unstable and
there can be limitations in some specific applications, especially in biomedicine [30]. Poorly
characterized commercial chitosan samples are often used in the food industry; even
information about the content of impurities (proteins, pigments, and inorganic salts) is
usually missing for them.

Whereas spectroscopic, viscometric, and chromatographic analysis methods have been
developed and implemented for determining molecular properties of chitosan (molecular
weight, polydispersity, and degree of acetylation) [31–33], monitoring such supramolecular
properties as properties of the crystal structure (identifying the polymophic modification,
degrees of crystallinity or amorphization) requires using diffraction and calorimetric meth-
ods (X-ray diffraction, neutron, synchrotron diffraction analysis, and differential scanning
calorimetry) [34–43]. X-ray powder diffraction (XRD) followed by analysis of XRD patterns
is used most frequently to study the crystal structure of chitosan because the equipment is
relatively accessible.

The crystallinity index (CrI) is most frequently determined using the peak height
method that is commonly employed in cellulose chemistry. This method was first adapted
to describe chitosan by Henryk Struszczyk in 1987 [44], and received recognition after
the study by Bonaventura Focher [45] had been published in 1990. The method is based
on the formula showing the relationship between the intensity of a crystalline reflection
and intensity of the minimum peak at 2θ = 12–16◦, which conditionally describes the
diffuse halo peak (Iam) (Figure 1a). Intensity of reflection (200) at 19–20◦ (Equation (1)) is
determined for the most frequently used hydrated form of chitosan, while intensity of
either reflection (110) at 15–16◦ or reflection (020) at 21–22◦ (Equation (2)) is determined for
the anhydrous form of chitosan [32].

CrI = (I200 − Iam)/I200, (1)

CrI = (I110 − Iam)/I110 or CrI = (I020 − Iam)/I020. (2)

The applicability of this method decreases substantially when the sample is a mixture
of the anhydrous and hydrated polymorphs [46]. The method based on the ratio between
the area of crystalline peaks and the total area of an XRD pattern (Equations (3)–(5)) has
been proposed for determining the crystallinity index of the samples containing a mixture
of polymorphic modifications more accurately [42,43,46].

CrI = Scrystalline/Stotal, (3)

CrI = Scrystalline/(Scrystalline + Sam), (4)
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CrI = (Stotal − Sam)/Stotal, (5)

where Scrystalline is the area of all the crystalline peaks; Sam is the area of the amorphous halo;
and Stotal is the area of all the crystalline and amorphous peaks in the XRD pattern.
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Figure 1. An example of fitting the XRD pattern of chitosan: using (a) the peak height method as
proposed by Focher; (b) the amorphous standard method; and (c) the peak deconvolution method.
The curves for (b) are shifted for clarity as indicated.

In order to directly determine Sam, an XRD pattern of a deliberately amorphous
sample (Figure 1b) is obtained either mechanically (long-term amorphization in a ball mill)
or chemically (dissolution of chitosan in hydrochloric acid and freeze drying, followed
by neutralization in an atmosphere of ammonia) [46]. Most frequently, however, the
labor-intensive process of preparing and studying the amorphous standard is replaced by
mathematical peak deconvolution (Figure 1c): the XRD profile is deconvoluted into peaks
(deconvolution into three or four peaks is performed for the most accurate description)
using the Lorentzian, Gaussian, Voigt, or pseudo-Voigt approximations [47–49]. The
crystallinity index is calculated as the ratio of the sum of areas of crystalline peaks to
the sum of areas of crystalline peaks and the amorphous components (Equation (4)).
Properly determining the amorphous halo peak is the main methodological difficulty of
this approach [47].

The full-profile Rietveld method is the most labor-intensive but thorough method
for describing the crystal structure and determining the crystallinity index [50–55]. This
method allows one to determine the structural parameters of a compound (or structures
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if the sample contains more than a single phase), derive scattering regions related to
the crystalline and amorphous areas, and avoid measurement errors as it is possible to
accurately describe the diffuse background of X-ray radiation caused by environmental
exposure, apparatus bias, Compton scattering, thermal excitation of atoms and molecules,
as well as structural distortions and defects. The challenge of using this method is that
data about the crystal structure of the compound (unit cell parameters, the space group,
and coordinates of atoms), as well as the accurate position of the reflection responsible for
the amorphous phase, need to be known in advance. The crystallinity index is calculated
from the ratio between the integral intensities of crystalline and amorphous scattering
(Equation (6)) [56].

CrI =
∫

Icr dθ/
∫

Itotal dθ = Fcr/(Fcr + Fam), (6)

where Itotal is the total intensity of the corrected XRD pattern after the parasitic scattering
background is subtracted; Icr is the intensity of crystalline scattering; Fcr is the area of
crystalline scattering; and Fam is the area of amorphous scattering.

Therefore, the purpose of this work was to evaluate the applicability of methods
for fitting the X-ray diffraction data to investigate the mechanical amorphization of three
chitosan samples with different molecular weights, as well as determine specific power
consumption required for complete disorder of the crystal structure.

2. Materials and Methods
2.1. Materials

Chitosans of different molecular weights were used in this study: low molecu-
lar weight (50–190 kDa, Sigma Aldrich, Product # 448869), medium molecular weight
(190–310 kDa, Sigma Aldrich, Product # 448877), and high molecular weight (310–375 kDa,
Sigma Aldrich, Product # 419419).

2.2. Scanning Electron Microscopy (SEM)

The particle morphologies of chitosans of different molecular weights were studied
by scanning electron microscopy (SEM) on a TM-1000 microscope (Hitachi, Tokyo, Japan)
at an accelerating voltage of 15 kV. A gold coating was deposited onto the sample surface
to remove the accumulated charge (ion current, 30 mA; spray time, 30 s). The SEM
micrographs of chitosans of different molecular weights are shown in Figure 2.

2.3. Mechanical Treatment

The samples were subjected to mechanical treatment in an AGO-2 water-cooled plane-
tary ball mill (grinding body acceleration, 200 m/s2; nominal motor power, 1.1 kW). Volume
of the grinding jar was 135 mL. Steel balls (diameter, 5 mm; weight, 200 g) were used as
grinding bodies. The weight of treated material was 10 g; duration of mechanical treatment
was varied from 0 to 1200 s.

2.4. Power Consumption

Energy consumption for mechanical treatment was measured using a high speed
wattmeter (Incotex Electronics Group, Moscow, Russia) connected to a DVP-SA2 industrial
controller (Delta Electronics, Inc., Taipei, Taiwan) using the ModBus protocol.

2.5. X-ray Powder Diffraction (XRD)

The X-ray powder diffraction patterns were recorded on a D8 Advance diffractometer
(Bruker, Karlsruhe, Germany) with monochromatic CuKα radiation in the Bragg–Brentano
reflection geometry at a voltage of 40 kV and current of 40 mA; X-ray radiation wavelength
was 1.5406 Å; step size was 0.0195◦. The contribution of the instrument background was
taken into account by subtracting XRD from the cell (a holder).
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2.6. Density Functional Theory (DFT)

To perform Rietveld analysis, chitosan experimental structure file was obtained from
ref. [38]. Missed hydrogen atoms were added using the Mercury 2021.3.0 software [57].
To avoid possible inconsistencies in crystal structure (e.g., disagreement in calculated and
experimental d-spacing, symmetry, and atom positions, including partial (2/3) occupancies
of water molecules) reported in [58], periodic DFT calculations were performed, resulting
in crystal structure optimization to local energy minima. All DFT calculations were carried
out using VASP 5.4.4. Refs. [59–62] employing the functional of Perdew, Bruke, and
Ernzerhof (PBE) [63], a plane-wave basis set with a kinetic energy cutoff of 550 eV and the
projector augmented wave atomic pseudopotentials [64,65] with D3BJ empirical dispersion
correction [66]. The integrals in the reciprocal space were calculated on a Monkhorst–Pack
mesh of 2 × 1 × 2 k-points [67], more tight convergence criteria for maximum change in
system energy of 10−5 eV were applied. Crystal structure optimization was performed with
fully relaxed (ISIF = 3), volume fixed (ISIF = 4), and fixed (ISIF = 2) unit cells. Taking into
account that water molecule occupancy is 2/3 for three different water positions in the initial
structure, the chitosan structure was also presented as a superposition of three structures
with pairs of water molecules (e.g., positions 1 and 2 with occupancies 1, positions 1 and 3
with occupancies 1, and positions 2 and 3 with occupancies 1). Thus, the structure with
three water molecules and three structures with two water molecules in different positions
were optimized using three different procedures (devoted to possible changes in the unit
cell) and used for Rietveld analysis [68] and as the initial experimental structure.
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3. Results and Discussion
3.1. Mechanical Treatment of Chitosan

For chitosan used in this study, reflections corresponding to crystals in the hydrated
form are detected at 2θ ~ 10◦ (020) and 20◦ (200). The individual (220) reflection is not
observed when recording XRD patterns under these conditions but can be seen as a shoulder
on the side of the (200) reflection (Figure 3).
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Figure 3. X-ray powder diffraction patterns of initial chitosan: (a) high MW; (b) medium MW; and (c)
low MW. The curves are shifted for clarity as indicated.

Treatment of amorphous-crystalline polymers (cellulose, starch, chitin, and chitosan) in
a planetary ball mill has proved to be a good method for producing deliberately amorphous
samples [51,69]. This approach enables reproducible fabrication of samples to adequately
deconvolute the integral area (Stotal) into the components: the crystalline areas (Scrystalline)
and the diffuse amorphous halo (Samorphous). In this study, the amorphous standard was
prepared by mechanical treatment of chitosan in a planetary ball mill for 20 min (Figure 4).

The XRD patterns (Figure 4) show the qualitative changes in the crystal structure taking
place as the amorphous-crystalline chitosan samples are exposed to intense mechanical
treatment. The intensity of reflections of the crystalline phase decreased with longer
treatment duration, while the line corresponding to the amorphous phase was broadened,
and a diffuse amorphous halo appeared. In the XRD patterns of low MW chitosan, the
(020) peak at 2θ = 10◦ disappeared after 2 min of treatment, while the (200) peak was
shifted towards smaller angles. This shift in the position of the maximum of a crystalline
peak is typical of the amorphous phase state of polymers and was previously observed
for mechanically treated cellulose [68]. For chitosan samples with medium and high MW,
similar changes are observed after a longer treatment (~8 min). Additional data showing
mechanical amorphization are presented in the Supplementary Materials (Figure S1).

3.2. Fitting Methods for Chitosan X-ray Powder Diffraction Patterns
3.2.1. The Focher Method, the Amorphous Standard Method, and Peak Deconvolution

Since the chitosan used in this study is represented by the hydrated polymorphic
modification, Equation (1) was employed to calculate the crystallinity index using the
Focher method (Figure 1a). The intensity of the minimum describing the diffuse halo
(Iam) was fixed at 2θ = 14◦. Table 1 summarizes the crystallinity indices for the initial and
mechanically treated chitosan samples with different molecular weights. The crystallinity
indices of the initial high, medium, and low MW chitosan were 80, 77, and 63%, respectively.
The sensitivity of the Focher method allows one to accurately assess the crystallinity of the
samples up to crystallinity index of ~30–35%. Meanwhile, it has been demonstrated that
under the identical conditions of mechanical treatment in a planetary ball mill, the absolute
crystallinity index decreases more significantly for high and medium MW chitosan than
for low MW chitosan.
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Table 1. The crystallinity indices of the initial and mechanically amorphized chitosan with different
molecular weights.

Duration of
Treatment in a
Planetary Ball

Mill, s

CrI, %

High MW Chitosan Medium MW Chitosan Low MW Chitosan

Focher
Method

Amorphous
Standard Method

Focher
Method

Amorphous
Standard Method

Focher
Method

Amorphous
Standard Method

0 80 ± 2 44 ± 2 77 ± 2 37 ± 3 63 ± 2 23 ± 3
120 58 ± 2 20 ± 3 62 ± 2 28 ± 3 61 ± 2 13 ± 3
240 54 ± 2 18 ± 4 57 ± 2 19 ± 3 53 ± 3 12 ± 3
360 53 ± 2 15 ± 2 50 ± 3 10 ± 2 50 ± 3 AM
480 48 ± 2 13 ± 4 41 ± 4 AM 45 ± 3 AM
600 34 ± 3 AM * 40 ± 5 AM 28 ± 6 AM
720 38 ± 2 AM 37 ± 3 AM 36 ± 4 AM
840 36 ± 3 AM 37 ± 3 AM 34 ± 3 AM
960 38 ± 2 AM 37 ± 4 AM 41 ± 3 AM
1080 32 ± 3 AM 39 ± 4 AM 39 ± 4 AM
1200 33 ± 4 AM 35 ± 5 AM 41 ± 5 AM

* AM—the completely amorphous material; the crystallinity indices are below the sensitivity of the method.
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The amorphous standard method usually allows one to obtain more detailed and
accurate information about the crystalline nature of amorphous-crystalline material from
the XRD data. To perform methodologically adequate refinement of the content of the
crystalline fraction of polymers, one should use the samples as non-texturized powders,
subtract the parasitic X-ray background, and perform adjustment of the XRD pattern, in-
cluding subtracting the instrument background from diffraction of the cell (the holder) [56].
Proper fitting of the XRD patterns (with empty holder XRD intensities subtracted) of amor-
phized chitosan samples (Figure 4a–c) showed that the profile of XRD patterns did not
change even after mechanical treatment for 720 s, thus proving that the amorphous state
was attained for each sample (Figure 5).
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The X-ray powder diffraction patterns of amorphous standards of each chitosan
sample after the intensity of XRD of a cell (an empty holder) had been subtracted were
described as the eighth-order Fourier series. The equation is shown below (Equation (7)),
while the respective coefficients are provided in the Supplementary Materials (Table S1).

F(x) = a0 + a1*cos(x*w) + b1*sin(x*w) + a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +
a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) + a6*cos(6*x*w) + b6*sin(6*x*w) +

a7*cos(7*x*w) +b7*sin(7*x*w) + a8*cos(8*x*w) + b8*sin(8*x*w),
(7)

where x is 2θ (in degrees); the calculations of sin(n*x*w) and cos(n*x*w) are based on the
input data (in radians).

The respective amorphous samples were used to calculate the crystallinity index by
the amorphous standard method (Table 1). It is methodologically important to use this
equation for fitting the experimental data after subtracting the background intensity and
normalizing the intensity minima in the profiles of the analyzed sample and the amorphous
standard at 2θ = 14–15◦ and ~31–32◦.

It can be assumed that the similarity of the profiles of amorphous samples of chitosan
with different molecular weights and the close Fourier series coefficients allow one to
obtain the averaged profile of an amorphous sample, which can be further used as a
“universal amorphous standard” for calculating the crystallinity index of an arbitrary
chitosan sample. After subtracting the profile of the cell (the empty holder), the resulting
averaged profile of an amorphous chitosan sample was fitted using the eighth-order
Fourier series; the coefficients are summarized in Table 2. It was demonstrated that the
equation with coefficients for the averaged amorphous standard (Table 2) can be used for
routine studies or when it is impossible to obtain the amorphous standard for the analyzed
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substance, but provides somewhat underestimated CrI values for high MW chitosan and
overestimated CrI values for low MW chitosan.

Table 2. The coefficients of the eighth-order Fourier model for fitting the XRD data of the averaged
amorphous chitosan.

Value Standard Error t-Value

a0 2057.08 1.85 1115.21
a1 −914.44 7.46 −122.50
a2 −1172.64 5.41 −216.62
a3 543.35 2.91 186.80
a4 −365.26 1.83 −199.88
a5 114.82 2.07 56.93
a6 151.68 1.91 79.60
a7 −146.86 1.90 −77.34
a8 −40.94 4.77 −8.58
b1 2316.04 1.87 1236.22
b2 −1023.79 7.43 −137.71
b3 18.32 4.80 3.82
b4 19.11 7.04 2.71
b5 −151.88 1.76 −86.34
b6 47.14 1.95 24.16
b7 104.88 4.17 25.18
b8 −136.97 2.11 −65.00
w 0.1092 1.41 × 10−4 776.5742

R2 = 0.9992; reduced chi-sqr (χ2) = 3674.5296.

Processing the XRD patterns by deconvolution is a complex problem involving decon-
volution into crystalline peaks and properly describing the profile of contribution of the
amorphous phase. Deconvolution of XRD patterns using the Voigt function (Figure 1c),
which is a result of the Gaussian and Lorentzian functions, allows one to describe crystalline
peaks with a high accuracy. Meanwhile, it is impossible to describe the contribution of the
amorphous phase using this function, which inevitably causes an error in determining the
crystallinity index. Thus, the crystallinity index of high MW chitosan determined using
the deconvolution method with coefficient of determination R2 = 0.9878 was 67%. CrI of
the medium and low MW chitosan was 65% with R2 = 0.9929 and 63% with R2 = 0.9976,
respectively. To improve the accuracy of describing the amorphous profile, one can use
function (7) with parameters specified in Table 2 and Table S1. However, analysis of the
XRD data by the deconvolution method is impeded as one proceeds to the mechanically
treated samples.

Hence, the Focher method allows one to estimate the crystallinity index of chitosan
without any additional processing of XRD patterns, up to the crystallinity indices reduced
to ~30%. Long-term mechanical treatment of chitosan with different molecular weights in
a ball mill makes it possible to average the profile of XRD patterns of amorphous samples;
in terms of shapes and positions of the peaks, the profiles correspond to the behavior
of amorphized polymers (e.g., chemically amorphized chitosan [46] and cellulose [51]).
Therefore, the resulting averaged amorphous samples can be used as standards to routinely
determine the crystallinity index.

3.2.2. Full-Profile Rietveld Analysis

Although the Rietveld method and its various modifications have been successfully
used for characterizing CrI of cellulose [53], its applicability for common crystalline-
amorphous samples and robustness are debatable [51]. Moreover, the refinement procedure
requires structure files of high quality, which is still an unsolved task for chitosan. This issue
might be solved by performing various DFT optimizations of an experimental structure
file. The calculated X-ray powder diffraction pattern from a structure file [38], as well as
the DFT-optimized one (in multiple ways, see Materials and Methods), differ significantly
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from the experimental patterns and cannot be recommended for Rietveld analysis (Figure 6,
Figure S2 and Table S2 of Supplementary Materials).
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Figure 6. X-ray powder diffraction patterns of (a) initial XRD; (b) calculated from the structure
reported in [38]; and (c) DFT optimized with fixed unit cell parameters; (d) DFT optimized with fixed
unit cell volume; and (e) fully optimized DFT.

The lack of high quality structural data and problems related to distortion of unit
cell parameters upon DFT optimization of the structure make it impossible to use the
full-profile Rietveld analysis method to estimate CrI of chitosan.

3.3. Power Consumption for Amorphization of Chitosan

The consumed power of a ball mill and total energy consumption for amorphization
of chitosan with different molecular weights were measured using a high speed wattmeter.
The recorded power consumption curves (Figure 6) show that the ball mill attains the
steady-state mode appreciably quickly, which is important when studying amorphization
in a short treatment duration. Power consumption differs twofold for the ball mill with
empty jars and the ball mill with jars loaded with 200 g of steel grinding bodies + 10 g
of chitosan, but power consumption is independent of the type of chitosan being treated
(Figure 7c shows the current power consumption during mechanical amorphization of
medium MW chitosan, but the current power consumption of all the chitosan samples is
provided in Figure S3 in Supplementary Materials).
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(b) the planetary gear with empty jars; (c) jars containing grinding bodies and medium MW chitosan.

A more vivid presentation of the amorphization process can be made by plotting
changes in the crystallinity index (Figure 8) as a function of energy consumption during
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mechanical treatment. The relative amorphization degree (AD) was calculated as the ratio
of changes in the crystallinity index to the initial crystallinity index using Equation (8):

AD = (CrI0 − CrIt)/CrI0, (8)

where AD is the amorphization degree; CrI0 is the initial crystallinity index; and CrIt is the
crystallinity index after mechanical treatment.
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Figure 8. Changes in the crystallinity index of high, medium, and low MW chitosan as a function of
power consumption during mechanical treatment.

One can see that there are no considerable differences between the amorphization of
chitosan with high, medium, and low MW. The maximum amorphization degree (AD of
~50%) is attained within ~600 s; the specific power consumption is ~28 kJ/g. It is five- to
sevenfold higher than power consumption for amorphization of polymorphic modifications
of starch (4–6 kJ/g) [28] and is comparable to power consumption for amorphization of
cellulose [29] whose supramolecular structure is very similar to that of chitosan.

4. Conclusions

This study addressed the amorphization of three chitosan samples with different
molecular weights during mechanical treatment in a planetary ball mill. The methods
for determining the crystallinity index by analyzing the XRD data were compared. The
peak height method is characterized by a larger operating range but causes deviation in
CrI values for the samples consisting of a mixture of polymorphic modifications. The
amorphous standard method and deconvolution using the Voigt function allow one to
calculate the crystallinity index of chitosan more accurately. Taking into account multiple
inconsistencies in the suggested structure file of chitosan, it is not recommended to use it
(as well as periodic DFT optimized structures) for Rietveld analysis.

Long-term mechanical treatment of chitosan with different molecular weight yields
X-ray diffraction patterns with weakly differing profiles, so one can obtain an averaged
amorphous chitosan and use it as the standard to routinely determine the crystallinity
index of arbitrary chitosan samples.

The similarity of the crystalline structure of the analyzed chitosan samples suggests
that specific power consumption values required to attain the limit of amorphization do
not differ significantly and are equal to 28 kJ/g, being comparable to the previously mea-
sured power consumption for amorphization of cellulose (29 kJ/g) and five- to sevenfold
higher than power consumption for amorphization of polymorphic modifications of starch
(4–6 kJ/g).
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14204438/s1, Figure S1: DSC curves of chitosan ((a) high
MW, (b) medium MW, (c) low MW) subjected to mechanical treatment in a planetary ball mill for 0,
720, and 1200 s; Figure S2: Predicted XRD patterns for crystal structures obtained using different initial
geometries and optimization options. The initial structure was obtained from ref. [1] and used as an
input file for different DFT optimization procedures. Water position shows which water positions
are occupied (123 means all three positions are occupied, while 12 means that position 3 is vacant).
Full_Opt is for full unit cell optimization (ISIF = 3), Vol_Fix is for volume (but not cell parameters) of
the fixed unit cell (ISIF = 4), Cell_Fix is for no cell optimization (ISIF = 2). Atom positions were free to
optimize in all calculations via the VASP 5.4.4 package; Figure S3: Current power consumption of the
planetary ball mill: (a) the planetary gear without jars, (b) the planetary gear with empty jars; (c) jars
containing grinding bodies and low MW chitosan; (d) jars containing grinding bodies and medium
MW chitosan; (e) jars containing grinding bodies and high MW chitosan. Curves “d” and “e” are
shifted upward by 0.05 and 0.1 kW, respectively, for clarity as indicated; Table S1: The coefficients of
the eighth-order Fourier model for fitting the XRD of amorphous chitosans; Table S2: The parameters
of the crystal structure obtained using different initial geometries and optimization options. Water
position shows which water positions are occupied (123 means that all three positions are occupied,
while 12 means that position 3 is vacant). Full_Opt is for full unit cell optimization, Vol_Fix is for
volume (but not cell parameters) of the fixed unit cell, Cell_Fix is for no cell optimization. Atom
positions are free to optimize in all calculations. Italics are used for parameters that were fixed in a
certain procedure.
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