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Abstract: An environmentally friendly hydrogel based on gelatin has been investigated as a gel poly-
mer electrolyte in a symmetric carbon-based supercapacitor. To guarantee the complete sustainability
of the devices, biomaterials from renewable resources (such as chitosan, casein and carboxymethyl
cellulose) and activated carbon (from coconut shells) have been used as a binder and filler within the
electrode, respectively. The electrochemical properties of the devices have been compared by using
cyclic voltammetry, galvanostatic charge/discharge curves and impedance spectroscopy. Compared
to the liquid electrolyte, the hydrogel supercapacitors show similar energy performance with an
enhancement of stability up to 12,000 cycles (e.g., chitosan as a binder). The most performant device
can deliver ca. 5.2 Wh/kg of energy at a high power density of 1256 W/kg. A correlation between the
electrochemical performances and charge storage mechanisms (involving faradaic and non-faradaic
processes) at the interface electrode/hydrogel has been discussed.

Keywords: water processable; sustainable binder; gelatin; hydrogel electrolyte; carbon-based super-
capacitor; pseudocapacitive material; charge storage mechanisms; cycle stability

1. Introduction

The technological advances in consumer electronics and the rapid diffusion of related
products in our daily lives increase energy demands [1]. Electrochemical energy storage,
including batteries and supercapacitors, is the most practical and flexible strategy for
portable power devices for a plethora of applications and the industry is focused on
developing more efficient and cost-effective products [2–4]. The state-of-the-art Lithium-
Ion Batteries deliver a high specific energy density of 250–270 Wh kg−1 and a relatively
low specific power density (<350 W kg−1) [5]. In contrast, commercial supercapacitors
show a high power density of up to 10 kW kg−1, but they have a low specific energy
density (<10 Wh kg−1) [6]. However, these energy sources contribute to the increment of
electronic waste that poses environmental concerns due to heavy metals and brominated
flame retardants in plastics [7] and the challenging recovery of valuable metals [8]. Thus, the
design and development of new electrochemical storage systems must consider abundant
and safe materials and sustainable production processes. Electrochemical capacitors or
supercapacitors (SCs) have suitable features in terms of performance (high power density
and long cycle life), versatility (shape, size and lightness) and environmental friendliness
to deliver power for modern and sustainable electronics [9–11]. In particular, carbon-based
SCs offer the opportunity to be fabricated from natural-derived materials or industrial by-
products. Great efforts by the research community have been devoted to the components
of supercapacitor electrodes in order (i) to produce activated porous carbon from plant
biomass [12,13] and (ii) to replace the fluorinated materials (poly(vinylidene difluoride
(PVDF) and polytetrafluoroethylene (PTFE)) generally used as binders with biopolymers
processable in water [14,15].

The choice of electrolyte is the key to achieve high and stable supercapacitor per-
formances. Based on different solvents, the electrolyte can be aqueous, organic or ionic
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liquid. Because of their high voltage window (2.6 to 2.9 V), devices based on organic
electrolytes are currently in the lead at commercial market [16], but they suffer from be-
ing flammable, volatile and toxic. Ionic liquids show even wide voltage windows up to
4.0 V but exhibit unsatisfactory conductivity and high viscosity, which results in poor rate
performances, especially at low temperatures [17]. Furthermore, organic and ionic liquids
are moisture-sensitive electrolytes, thus requiring complex and ultradry manufacturing
procedures for the fabrication of SCs. The application of aqueous electrolytes represents
the more sustainable and low-cost strategy [18], but as any liquid electrolyte, it can easily
leak and volatilize during packaging. Recently, gel electrolytes have attracted increasing
attention towards the realization of solid-state SCs. Gel polymer electrolytes (GPEs) allow
for multiple roles of the electrolyte, separator and binder in a SC to be fulfilled and are
generally composed of a polymer as a matrix and an electrolyte salt to provide mobile
ions [19].

Hydrogel based on synthetic polymer derived from petro-materials, such as poly(vinyl
alcohol) (PVA) and poly(ethylene oxide) (PEO), has been widely investigated for energy
storage applications due to their large intrinsic ionic conductivity value compared to the
solid electrolyte [20]. Among these polymers, PVA has been the most examined because
of its low cost, good electrochemical stability, good mechanical properties and non-toxic
nature [21,22]. More recently, to reduce the dependence on fossil fuels and to improve the
sustainability of the final devices, natural biopolymer-based gel obtained from renewable
resources (e.g., gelatin, cellulose, guar gum, agarose, chitosan, DNA, etc.) is drawing
much attention because of its large availability, low cost, biodegradability and lower
environmental footprint [23–27].

In the present study, carbon-based supercapacitors were fabricated by incorporating
sustainable binders (such as chitosan, carboxymethyl cellulose (CMC) and casein) and
activated carbon (AC) within the electrode. Here, the AC material comes from the carboni-
sation process of the coconut shells. Moreover, the water-processable hydrogel electrolyte
is based on a gelatin-glycerol blend doped with 2 M of NaCl. It is worth noting that
gelatin is a biodegradable polymer obtained from the hydrolysis of the fibrous insoluble
collagen present in bones and skin which is, currently, an abundant waste product of meat
processing [28].

The fabricated devices have been fully characterized in terms of electrochemical
performance and the advantages of using gel electrolytes with respect to liquid ones have
been highlighted. A clear correlation between the cycle stability, charge storage mechanisms
and dielectric properties at the interface electrode/hydrogel has been investigated in detail.

2. Materials and Methods
2.1. Materials Preparation

Supercapacitor test structures were fabricated onto polyethylene terephthalate (PET)
foils (Melinex ST 504, DuPont Teijin Films, Chester, VA, USA, thickness 125 µm) covered
with copper (Cu) tape (Kohree, City of Industry, CA, USA, thickness 40 µm). Henkel
Electrodag PF407C graphite ink was deposited on the PET/Cu substrates by blade coating
(Proceq ZAA 2300, Zehntner GmbH Testing Instruments, Sissach, Switzerland), and it
was thermally annealed at 90 ◦C for 30 min, resulting in films 50 µm thick. The active
material of the electrode was prepared by dissolving activated carbon (Kuraray YP 80F,
Tokyo, Japan, with characteristic Vmicro < 2 nm = 0.652 cm3/g and specific surface area
(SSA) = 2093 m2 g−1) obtained from coconut shells and binder in ultrapure water (Milli-Q)
according to the composition 95:5 wt.%. The investigated binders were CMC (Thermo
Fisher, carboxymethyl cellulose sodium salt, Waltham, MA, USA), chitosan (Sigma-Aldrich,
chitosan from shrimp shells, Saint Louis, MO, USA) and casein (TCI, casein sodium from
milk). Among these biomaterials, chitosan needed an acidic solution to be dissolved;
therefore, acetic acid was added to the formulation. The AC/binder mixture was stirred
until a homogeneous carbonaceous slurry was obtained. Then, the slurry was deposited on
the PET-Cu-Graphite stack by blade coating and dried at room temperature. At this stage,
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all the electrodes were weighed to obtain the AC mass loading which values were found
to range from 6 and 6.8 mg/cm2. In total, 20 samples were prepared for each binder. The
electrodes were sorted according to the ma mass and similar-mass electrodes were paired
up for the supercapacitor devices.

The electrolyte in the form of hydrogel was prepared by incorporating 2 g of gelatin
(Sigma-Aldrich, gelatin from porcine skin) into 15 mL of an aqueous 2 M NaCl solution
to achieve the highest gel electrolyte conductivity [29]. Successively, 1.5 mL of glycerol
was added to the solution while stirring at 65 ◦C until complete dissolution of the gelatin
powder. Glycerol acts as a plasticizer with the aim to reduce intermolecular forces in
the gelatin network, thus increasing the mobility of polymeric chains and improving
film flexibility [30]. To fabricate hydrogel at different molar concentrations of salt, an
aqueous solution of 0 M and 2 M NaCl was used, respectively. The supercapacitor was
completed by facing another electrode to form a sandwich structure. The electrode area A
was 2.5 × 4 cm2.

2.2. Electrochemical Characterization

The electrochemical characterizations such as cyclovoltammetry (CV), galvanostatic
charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS) of the super-
capacitors were measured on a commercial platform (Arkeo—Cicci Research) at room
temperature. The devices were measured in a two-electrode geometry with an average area
of about 10 cm2. The EIS measurements were performed in the frequency range between
100 mHz and 10 kHz with an ac-signal amplitude of 50 mV at open-circuit voltage.

The gravimetric capacitance CS (F/g) of the symmetric SC has been computed by
integrating the area under the CV curves according to the following equation [31]

CS =
1

ma·ν·(Vb −Va)
·
∫ Vb

Va
i(V)dV (1)

where ma is the mass of the electrode, υ is the scan rate, i(V) is the charging/discharging
current and Vb −Va is the potential window. From the GCD profiles, the equivalent series
resistance (ESR) can be estimated by

ESR =
IRdrop

2·ID
(2)

where IRdrop is the voltage drop between the first two points of the discharge plot and
ID is the discharge current. Energy E (Wh/kg) and the power P (W/kg) densities of the
supercapacitors were computed by taking into account the equations

E =
1
2
·CS·(∆V)2 =

1
2
·CS·

(
Vmax −Vmin − IRdrop

)2

3.6
(3)

and
P =

E
tdisc
·3600 (4)

where Vmax is the maximum voltage applied to the device, Vmin is 0.1 V and tdisc in seconds
is the corresponding discharge period, respectively.

3. Results

To evaluate the influence on the dielectric properties and cycle stability of environ-
mentally friendly carbon-based supercapacitors with sustainable gel polymer electrolyte,
test structures have been fabricated. Figure 1a shows the cross section of the device
formed by a symmetric sandwich assembled following the sequence of the layers: PET/Cu-
Tape/Graphite ink/Active material/Gel polymer electrolyte. The corresponding chemical
structures for the sustainable binders and biopolymer electrolyte are reported in Figure S1a.
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The top views of the half structure, before and after the deposition of the transparent
hydrogel, are displayed in Figure 1b,c, respectively. All the electrodes display relatively
homogeneous and dense surfaces without significant holes or cracks, except for the casein
where a micro-cracks are evident [32]. The blend between gelatin and water–glycerol
molecule acts as an intrinsic protonic conductor with an ionic conductivity value σ ranging
between 0.4 and 0.7 mS/cm [3,33]. The addition of the NaCl salt to the pristine gelatin
blend increases the σ value. From the impedance spectra, the bulk ionic conductivity can
be estimated by σ = L/(AZreal), where Zreal is the real part of impedance when the phase
angle goes to zero, L is the thickness of the gel layer and A is the area of the device [3].
Figure S1b reports the impedance spectra measured for the hydrogels as a function of NaCl
content. Here, the measurement has been performed on a thin layer of hydrogel with a
thickness of L = 0.2 cm and area of 5 cm2 contacted with two copper foils.
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Figure 1. (a) Cross section of the symmetric carbon-based supercapacitors fabricated with sustainable
materials; (b,c) photographs of the top view of the half structure of the device before and after the
deposition of the transparent hydrogel, respectively; (d) ionic conductivity at 300 K as a function of
the NaCl concentration within the hydrogel; (e) schematic diagram of a hydrogel polymer electrolyte
(gelatin/NaCl/H2O) between two carbon electrodes. The cross section of the cell structure used to
perform the conductivity measurements within the electrolyte is shown in the inset.

The cell structure is shown in the inset of Figure 1d. As can be noted, the addition
of the NaCl salt leads to an enhancement of the bulk conductivity reaching a value of
about 50 mS/cm at 2 M. This value is in good agreement with what has been found in the
literature for gel polymer electrolytes [33,34]. Since the gelatin-based electrolyte exhibits
a temperature dependence of the σ value, all the measurements have been performed at
300 K [3,35].

Choudhury et al. reported that, by further increasing the amount of salt within the
hydrogel (e.g., 3 M of NaCl), a slight increment in the σ value has been observed [33].
However, a large amount of hydrated anion and cation (Cl−-H2O and Na+-H2O) nega-
tively affects the capacitance retention and the cycle stability of the supercapacitor during



Polymers 2022, 14, 4445 5 of 19

the charging and discharging test [16]. A schematic representation of the accumulation
and diffusion processes of the hydrated ions within the hydrogel during the operating
conditions is depicted in Figure 1e. Therefore, in the present study to guarantee stable
SC performance (e.g., high dielectric properties and long cycle life), a hydrogel based on
gelatin with 2 M NaCl has been taken into account. It is worth noting that above this
concentration, the mechanical properties of the gel deteriorate significantly and the gelation
process of the GPE occurs with difficulty.

The cyclovoltammetry curves of symmetric carbon-based supercapacitors fabricated
with different binders (such as chitosan, casein and CMC) and by using a hydrogel as
electrolyte are shown in Figure 2a,c,e. To avoid any chemical reactions due to the water
decomposition within the GPE, the operation voltage of the SCs has been limited to a
range of ±1 V [36]. The experimental data related to the CV curves for different binders,
measured in the higher scan rate region (υ ≥ 100 mV/s), are shown in Figure S2a–c. As can
be observed from Figure 2a,c,e, the investigated devices exhibit a fairly rectangular shape
of the voltammetric curves at a lower scan rate region (υ ≤ 50 mV/s).

The clear absence of redox peaks indicates the formation of a double-layer capacitance
at the interface between the electrode and hydrogel [37]. Here, the slightly slanted trend
in the CV curves suggests the presence of a non-negligible ohmic contribution caused by
finite conduction through the electrolyte. Moreover, the deviation from the rectangular
shape for the structure having the CMC as a binder reveals a greater resistive contribution
from the carbon electrode. This could lead to an increase in the equivalent series resistance
for this sample [38].

By taking into account Equation (1), CS can be calculated from the CV curves.
Figure 2b,d,f display a comparison of the CS values as a function of the voltage scan
rates, which ranged between 10 mV/s and 500 mV/s, between the gel polymer and the
reference aqueous electrolytes with NaCl as salt. For both electrolytes, the computed
capacitance values decrease with the increase of υ. At a low scan rate (υ ≤ 50 mV/s), the
ions have sufficient time to diffuse into the pores of activated carbon at the interface elec-
trode/electrolyte, leading to their accumulation. This phenomenon leads to a formation of
a double-layer charged at the electrodes characterized by a capacitance. As can be observed
in Figure 2b, the highest value of the CS, which is 68.2 F/g at 10 mV/s, is obtained for
SC based on hydrogel with chitosan as a binder. By increasing the scan rate, the CS value
decreases down to 11.9 F/g at 500 mV/s, corresponding to a reduction of 82.6%.

It is worth noting that devices fabricated with commercial activated carbon materials
have a specific capacitance of about 100–150 F/g (depending on the electrolyte used) [39].
Lupo et al. report values of CS ranged between 32 and 52 F/g for similar devices fabricated
with chitosan as a binder and by using the same reference aqueous electrolyte [40]. By
considering the casein and the CMC as binders, the reported values in the literature of
CS ranged between 20 and 25 F/g with a percentage weight fraction (wt.%) for the AC of
90% [15,41]. These values are lower than those displayed in Figure 2d,f in the lower scan
rate region. The difference can be related to the dissimilar values of the composition fraction
and mass loading of the active material within the electrode. In the present study, the
value of the wt.% of AC is 95%, whereas the mass loading values ranged between 6.0 and
6.8 mg/cm2. Moreover, supercapacitors based on casein and CMC (with hydrogel) show a
value of capacitance, as a function of the scan rate, higher than those observed for the same
device based on aqueous electrolyte. In particular, the electrode with the casein reports
a value of 45.4 F/g, whereas the use of CMC as a binder gives a lower value of 39.8 F/g
at 10 mV/s. Again, as the scan rate increases, a reduction in the dielectric properties has
been observed. To quantify the drop of the capacitance as a function of the voltage scan
rate, observed for all the devices investigated, the quantity L = 1− (C500/C10) has been
computed. Here, C10 and C500 correspond to the CS values at 10 mV/s and 500 mV/s,
respectively. Figure S3 shows the percentage loss L of the capacitance CS as a function of
the binder types for both electrolytes.
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As can be seen, the SCs based on hydrogel show a more significant reduction of CS
value of about 80% with respect to the reference system based on liquid electrolyte. This
finding can be related to the lower mobility of the ions within the hydrogel resulting in
a slow charge transfer and, therefore, minor ion adsorption at the electrolyte/electrode
interface [16]. The difference observed for the dielectric properties (CS values) at lower
(slow dynamics) and higher (fast dynamics) scan rate ranges suggests υ-dependent phe-
nomena in the devices. In the supercapacitors, the charges are stored at the interface active
material/electrolyte through faradaic (electron-transfer via redox reactions) processes or
by the accumulation of ions at an electrical double-layer (non-faradaic processes) or by a
combination of both [42]. In this latter case, the hybrid characteristics unravel the presence
of a pseudocapacitive behaviour at the interface between the hydrogel and the porous
carbon-based electrode. In order to distinguish between these mechanisms, the current
response i(V) of the electrochemical devices can be modelled as the sum of the surface-
controlled and diffusion-controlled components as i(V) = icapacitive + idi f f usive, where i(V)
is the current under fixed voltage [43].

Here, surface limited contribution icapacitive is related as ∝ υ, whereas the diffusion-
limited contribution idi f f usive is proportional to ∝ υ0.5. Therefore, the i(V) can be written as

i(V) = k1ν + k2υ0.5 (5)

where k1 and k2 are constants. In order to estimate these two contributions to the overall
capacitance value, Trasatti and Dunn provide a method to calculate the total charge stored
by the pseudocapacitive material under study [43,44]. The total voltammetric charge qS(υ)
could be expressed as a function of scan rate through the following equation [43]

qS(υ) = q∞ + kυ−0.5 (6)

where kυ−0.5 represents charge storage related to semi-infinite diffusion, k is a constant
and q∞ is the charge stored at a high scanning rate ( υ→ ∞ ). The charges stored in the
double-layer, qdl (very similar to q∞), can be estimated from the intercept at υ-axis of qs vs.
υ−0.5 (see Figure 3a).

Additionally, the total voltammetric charge, qS, can be extracted from the plot of 1/qS
as a function of υ0.5 (see Figure 3b). In this framework, the pseudocapacitance charge, qps,
can be computed from the difference between qS and qdl [45]. The quantities C∗S, CS,dl and
CS,ps correspond to the maximum total specific capacitance at υ→ 0 , the double-layer
capacitance and pseudocapacitance, respectively. These values can be obtained by dividing
the charge by the potential window of CV (i.e., 2.0 V in this work).

Figure 3c shows the contributions of pseudocapacitance (diffusion-limited) and double-
layer capacitance (surface-limited) to the overall capacitance C∗S for different binder types
with hydrogel as electrolyte. As expected, when υ→ 0 the total charge is stored both
with faradaic and double-layer charge storage mechanisms that occur concurrently at the
electrode/hydrogel surfaces. However, only the chitosan reports a higher value of the
double-layer contribution (more than 55%) to the total capacitance with respect to the other
binders suggesting a substantially pure capacitance behaviour. Conversely, the electrodes
based on casein and CMC show a merely pseudocapacitive behaviour, with more than 80%
of C∗S originating from the fast faradaic reactions. The use of the hydrogel as an electrolyte
modifies the contribution of the double-layer capacitance with respect to the SCs fabricated
with the aqueous electrolyte [32], as evidenced in Figure 3c and Figure S4. It seems that the
GPE promotes the pseudocapacitive behaviour assisted by charge transfer. Here, the GPE
is based on a blend of gelatin and water–glycerol molecules and contains a large number of
polar functional groups, which can be influenced by an electric field polarization. Moreover,
gelatin is a protonic conductor and also contains a large number of divalent ions (i.e., Ca2+,
Cu2+ and Fe2+) that can diffuse and participate in the storage mechanism. These ions can
act as a dopant with electrode materials (activated carbon and binder) and give origin
to pseudocapacitive behaviour. Additionally, the salt anions (Cl−-H2O) interact with the
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hydrophilic -OH, -COOH and -NH2 groups in the structure of gelatin within the hydrogel,
thereby increasing solubility and the cation transport properties [34]. As expected, the
observed pseudocapacitance influences also the galvanostatic charge–discharge profiles.
The GCD curves measured at different current densities for the fabricated SCs are displayed
in Figure 4.
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Figure 4. Galvanostatic charge and discharge curves at various current densities for the super-
capacitors based on (a) chitosan, (b) casein and (c) CMC with 2 M NaCl gel polymer electrolyte,
respectively.

Here, for SCs with a dominant capacitive contribution of the double-layer (such as
a chitosan electrode), linear charging and discharging curves have been observed. On
the other hand, devices fabricated with casein and CMC report non-linear GCD curves
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manifested as a curvature at the beginning of the discharge profile. This behaviour can be
related to the faradaic current that comes from the charge redistribution processes at the
electrode surface [46].

The pseudocapacitive behaviour at the electrode/hydrogel interfaces modifies the
coulombic efficiency of the devices. This quantity η can be calculated as the ratio between
discharging and charging times when the charge–discharge current densities are equal. In
Figure 5a, the η values computed from the GCD profiles at different current density values
are shown. As can be observed, the efficiency is lower than 100% indicating that the contri-
bution to the overall capacitance CS from the pseudocapacitance is not negligible [46,47].
Here, η values for the CMC and the chitosan ranged between 85 and 95%. These values
are in good agreement with what is found in the literature for the same binders [32]. Con-
versely, the electrode based on casein shows a lower value of η of about 50%. This means
that the presence of non-linear curves, related to the pseudocapacitance, is caused by an
asymmetric behaviour within the device during the charging and discharging tests. Here,
the capacitance value is no longer a constant during the GCD under bias current. This
finding leads to a reduction in the discharge time, compared to the charging time, which
negatively affects the real capability of the device to store energy efficiently [48].

The equivalent series resistance values of the devices can be estimated from the voltage
drop observed in the GCD profiles by taking into account Equation (2). In Figure 5b, the
ESR values extracted as a function of the current densities for all the supercapacitors
investigated are shown. Electrodes based on chitosan and casein, which are characterized
by a near-rectangular shape of the CV loop, reveal lower values of the series resistance
ranging between 0.75 Ω and 1 Ω. These values are lower than one order of magnitude than
those reported in the literature for similar binders [40,41]. These promising values of ESR
are related to the low resistance of the electrode, due to a large amount of activated carbon
within and by using a GPE with a conductivity of about 50 mS/cm.

Conversely, the device based on CMC shows an average value of the series resis-
tance of about 2.7 Ω similar to the ESR value estimated for SC based on an aqueous
electrolyte [32]. In this latter case, the greater ohmic contribution can be associated with
the non-homogeneous dispersion of the conductive filler (AC) and the binder within the
electrode [49]. This result confirms the behaviour of the CV loop reported in Figure 2e.
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constant regimes [19,20,29,50].
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In Figure 5c, the Ragone plot, representing the specific power as a function of specific
energy, for the devices under test is shown. The values of E and P have been calculated
by using Equations (3) and (4), respectively. All the SCs investigated report values in
good agreement with what is found in the literature for carbon-based SCs [50,51]. For
comparison, in Figure S5, the Ragone plot for SCs based on the reference aqueous electrolyte
is shown. As can be seen, the devices having the GPE as electrolyte show slight lower
values of specific power and energy densities compared to the same SCs fabricated with
an aqueous electrolyte. For both the electrolytes, the electrodes based on chitosan are the
most performant devices. In particular, the SCs based on hydrogel can deliver an average
value of energy and power densities of 5.2 Wh/kg and 1256 W/kg, respectively. Here, for
all the binders investigated, the operating time τ = E/P ranges between 0.36 s and 36 s
depending on the discharging current, as expected by the SC applications.

In the literature, several authors report gel polymer electrolytes based on biodegrad-
able synthetic polymer (e.g., PVA and PEO) [21,22,48] and biopolymer obtained from
renewable resources (such as agar, guar gum, gelatin and starch) for supercapacitor applica-
tions [21,23,33,52,53]. However, for a reasonable comparison of the energy performance in
the Ragone plot, the reference data are selected with the same potential window (0–1 V) and
the same electrode material properties (e.g., activated carbon) used for the SCs fabricated.
Although environmentally friendly materials have been investigated in the last decade for
energy applications (e.g., Li-ion battery and supercapacitor), only a few studies are present
in the literature for devices fabricated with sustainable functional materials obtained from
renewable resources [40,51].

To best of our knowledge, only chitosan has been studied as a binder for fully eco-
friendly supercapacitors with liquid electrolyte [32,51]. Conversely, few preliminary results
have been found in the literature with the use of GPE [29]. For the other materials (e.g., CMC
and casein), the literature reports devices where the electrolyte is not sustainable. Therefore,
to make a comparison with the literature data for the energy performance, different devices
based on GPE obtained from natural and synthetic biomaterial have been considered.

As can be seen in Figure 5c, the chitosan-based device show an energy performance
higher than those observed for the PVA based-electrolyte with H3PO4 and KOH as salts,
respectively [21,22]. Choudhury et al. reported a gelatin-based electrolyte with 3 M NaCl
with a value of E ≈ 9.7 Wh/kg slight higher than that has been reported for our devices
in Figure 5b [33]. This difference can be related to the different amounts of salt that leads
to an enhancement of the ionic conductivity within the blend. However, the increase in
the NaCl concentration causes a faster degradation of the GPE resulting in lower cycle
stability. Moreover, the use of glutaraldehyde as a crosslinking agent for collagen-based
biomaterials (e.g., gelatin) increases the mechanical stability of the hydrogel but reduces its
sustainability being environmentally toxic. In addition, the use of the Li salt to a GPE based
on guar gum permits the fabrication of SCs with a value of specific energy density higher
than 10 Wh/kg [52]. However, LiClO4 is very reactive and harmful to the environment and
human health.

Figure 6a shows the endurance of the devices under cycle voltammetry measurements
performed at 300 mV/s and in the voltage range between 0 and 1 V. It is worth noting that
the capacitance values measured for the SCs investigated are in good agreement with what
has been reported in Figure 2. As evidenced, the device with a dominant contribution of
the double-layer capacitance shows a stable behaviour of the dielectric properties up to
12,000 working cycles (e.g., chitosan as a binder). On the other hand, the casein and the
CMC-based supercapacitors, where the contribution of the faradaic reaction at the interface
is most significant, exhibit lower cycle stability estimated at 8832 and 6751, respectively.
These cycle number values are estimated by considering a reduction of 25% from its initial
capacitance value. Moreover, all the devices with hydrogel show an enhancement of the
dielectric properties ranging between 10 and 30% during the cycling test. This trend has
been already observed for the casein and the CMC as binder immersed in an aqueous
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electrolyte [32]. This finding is a further evidence that faradaic reactions at the electrode
interface are supported when the GPE is used.
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Figure 6. (a) Cycles stability of the SC-based gel polymer electrolyte 2 M of NaCl performed with
CV cycles at 300 mV/s in the voltage range between 0 and 1 V; (b) comparison of the endurance
test for the devices based on the hydrogel and the reference liquid electrolyte as a function of the
binder types.

Figure 6b displays the comparison to the cycling test for the devices based on the
hydrogel and the reference liquid electrolyte as a function of the binder types. As can be
noted, the use of the GPE permits to increase the cycle stability of the devices exceeding the
1000 cycles reported for the reference devices based on liquid electrolyte having similar
electrode properties. In Figure S6, the cycles stability properties for the SCs reported in
the literature based on eco-friendly GPE are shown. For comparison, only the reference
SCs based on PVA/KOH shows value of the cycle stability in the range of 10,000 working
cycles. The other devices based on PVA/H3PO4 and guar gum/LiClO4 hydrogels have
a lower endurance (≤5000 cycles). Additionally, the hydrogel based on 3 M of NaCl
displays lower stability down to 1200 cycles. It should be noted that in the literature,
supercapacitors based on biopolymer hydrogel electrolytes with different electrode fillers
(such as graphene, MnO2 and carbon nanotubes), conducting salts (e.g., Na2SO4, Li2SO4
and LiCl) and aqueous electrolyte (e.g, H2SO4 and KOH) have values of stability lower
than 10,000 cycles [16,34]. Although electrolytes and salts that contain sulphur atoms are
expected to be benign for the environment, after combustion, they emit SO2 that contributes
to acid rain. Therefore, they cannot be considered entirely eco-friendly [54].

To investigate the correlation between the dielectric properties and the charge storage
mechanisms within the supercapacitors for both the electrolytes, electrochemical impedance
spectra measurements have been performed. This non-destructive technique has been
extensively used in the literature for electrochemistry and energy applications from genera-
tion to storage energy [42,55–57].

Figure 7 reports the Nyquist plots representing the imaginary part, -Zimag, as a function
of the real part, Zreal, of the complex impedance for the binders and electrolytes taken into
account. As expected for the supercapacitors, all the spectra have a long tail at lower
frequencies which is a typical shape observed for the charge storage mechanisms of the
capacitive and pseudocapacitive materials and their associated interfacial phenomena [42].
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In the literature, several studies report electrochemical impedance spectroscopy
models that describe the interface kinetics between the porous electrodes and the elec-
trolytes [42,56,58,59].

Devices characterized with a pure capacitive behaviour (only charge accumulation
without any transfer) show a simple vertical line that can be modelled as a series combina-
tion of resistive and capacitive elements. Here, the delay angle of the imaginary part of the
impedance approaches the theoretical value of 90◦. A small difference to the ideal case can
be attributed to the porosity of the carbon-based electrode [42,60].

Conversely, when faradaic reactions occur at the surface, a second slope of the imag-
inary part of the impedance in the low-frequency region has been reported [56,58]. For
all the devices fabricated, the resulting value of the frequency shift decreases in a range
between 30◦ and 44.5◦, confirming the presence of a major pseudocapacitive contribution
arising from the diffusion [27]. This behaviour can be related to the presence of a large
number of polar functional groups within the gelatin that can be influenced by the electric
field polarization [61]. Moreover, the pseudocapacitance behaviour observed at the elec-
trode interface is also influenced by the binders that contain atoms (such as Na in casein
and CMC) and functional groups (e.g., carboxyl, hydroxyl and amino) that interact with the
activated carbon at the interface with the gel electrolyte [32]. Therefore, the appearance of a
semicircle in the spectra can be ascribed to these interactions [42,59]. In this framework, the
diffusion-limited/capacitive response can be easily described and modelled by a Randles
equivalent circuit model [28].

As evidenced by the ESR values extracted at 1 kHz from the impedance spectra in
Figure 7, the use of the GPE in place of the liquid electrolyte produces an increase in
the ohmic contribution for the chitosan and the CMC binders. Here, the devices show
experimental spectra shifted towards a higher resistance range (1–4 Ω). This means that
a diffusion layer near the electrode interface is present with a non-negligible resistance
value [62].

It is worth noting that only for the casein, the SC with hydrogel shows lower ohmic
contribution with respect to the same device with reference liquid electrolyte. This finding
is in good agreement with what has been reported in Figure 2d and confirms the better
dielectric properties observed for the GPE sample. Moreover, the device based on CMC
shows a clear semicircle loop with a diameter of about 1 Ω, lower than that observed
for the liquid electrolyte (1.9 Ω), suggesting an increase in the exchange current from the
charge-transfer processes at the electrode/hydrogel interface [63].

In Figure 8a, a comparison in terms of the lifespan (cyclic number), energy and
dielectric performances of the investigated supercapacitor by varying the binder types and
for both the electrolytes is reported. Aqueous electrolytes are superior, compared the other
ones, in terms of their ionic conductivity, interfacial wettability, safety and environmentally
benign nature [16]. The experimental data indicate that hydrogel enhances the stability of
the final device increasing the endurance up to 12,000 cycles (e.g., for chitosan as binder
with GPE). Although the internal resistance increases with the gel-like electrolyte the
dielectric properties, in terms of specific capacitance and energy performances, still remain.
Here, the chitosan used as a binder shows better properties compared to the other binders
with hydrogel as an electrolyte.
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4. Conclusions

Hydrogel based on gelatin and doped with 2 M of NaCl has been used as a gel poly-
mer electrolyte in symmetric carbon-based supercapacitors with sustainable electrodes.
Biodegradable materials obtained from renewable resources such as chitosan, casein and
carboxymethyl cellulose have been employed as binders within the electrode in combi-
nation with activated carbon extracted from the coconut shell. In order to evaluate the
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influence of the hydrogel on the device performance, reference supercapacitors have been
fabricated with the aqueous electrolyte with 1 M of NaCl for all the binders investigated.

The most performant supercapacitors with gel-like electrolytes are characterized
by a gravimetric capacitance value ranging between 80 and 100 F/g, a series resistance
contribution lower than 1 Ω and good coulombic efficiency. However, a marked capacitance
loss as a function of the voltage scan rate has been observed for all the binders taken into
account. By using the partition method, pseudocapacitance behaviour has been found at
the electrode/electrolyte interface. As evidenced, different charge storage mechanisms take
place within the SCs where the surface and diffusion-limited processes are concurrent at
the electrode interface.

Compared to the devices with reference aqueous electrolytes, supercapacitors based
on hydrogel show a major contribution of the diffusion component to the dielectric re-
sponse. The diffusion component also influences the impedance spectra where a long tail
at a low-frequency region in the Nyquist plots has been observed. Here, chitosan-based
devices show a capacitive-like dielectric response similar to an electrochemical double-
layer capacitor. Conversely, for the CMC and casein-carbon-based electrodes, the diffusion
contribution to the overall capacitance is dominant.

In terms of cyclability, the hydrogel enhances the cycle life of the supercapacitor
showing an endurance higher than 12,000 cycles (without attenuation) for the chitosan-
based electrode. A similar trend has been found for both the casein and CMC binders
showing cycle stabilities up to 7000 and 9000, respectively. The best-performing device can
deliver ca. 5.2 Wh/kg of energy at a high power density of 1256 W/kg.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym14204445/s1, Figure S1: (a) Cross-section of the symmetric
carbon-based supercapacitors with the corresponding chemical structures of the sustainable materials
used as binder and polymer electrolyte. (b) Nyquist plots for the pristine and the doped hydrogels as
a function of the NaCl content; Figure S2: Cyclic voltammetry curves of symmetric carbon-based
supercapacitors investigated in gel polymer electrolyte 2 M NaCl for (a) chitosan, (b) casein and
(c) CMC as electrode binder. The voltage scan rate is ranged between 100 and 500 mV/s; Figure
S3: Capacitance percentage loss as a function of the binder types for aqueous and gel polymer
electrolytes; Figure S4: Contribution of pseudocapacitance (diffusion-limited) and double layer
capacitance (surface-limited) to the overall capacitance C∗S for all the binders investigated with
aqueous electrolyte; Figure S5: Ragone plot of gravimetric power density versus gravimetric energy
density for the investigated electrode with aqueous electrolyte; Figure S6: Cycles stability for the SCs
reported in the literature based on gel-polymer electrolyte.
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