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Abstract: The problem of bacterial contamination through surfaces is important for the food industry.
In this regard, there is a growing interest in new coatings based on nanoparticles that can provide a
long-term antibacterial effect. Aluminum oxide nanoparticles are a good candidate for such coatings
due to their availability and good biocompatibility. In this study, a coating containing aluminum
oxide nanoparticles was produced using polytetrafluoroethylene as a polymer matrix—a polymer
that exhibits excellent mechanical and physicochemical properties and it is not toxic. The obtained
coatings based on “liquid Teflon” containing various concentrations of nanoparticles (0.001–0.1 wt%)
prevented the bacterial growth, and they did not exhibit a cytotoxicity on animal cells in vitro. Such
coatings are designed not only to provide an antibacterial surface effect, but also to eliminate micro
damages on surfaces that inevitably occur in the process of food production.

Keywords: aluminum oxide; polytetrafluoroethylene (PTFE); nanoparticles; composite; biocompatibility;
antibacterial coating; cytotoxicity; biocompatibility

1. Introduction

The problem of bacterial contamination is one of the most important for both the
medicine and food industry, since it is posing a threat to human health. One of the
main pathways for the spread of bacterial infections are surfaces on which bacterial cell
adhesion is possible [1]. The classic examples are cutting boards used in the meat processing
industry [2,3]. Defects inevitably occur during operation, making these surfaces vulnerable
for bacterial cell colonization. In this regard, there is a growing interest in the creation of
coatings that, on the one hand, can provide a prolonged antibacterial effect, and on the
other hand, eliminate the damage and make the coating layer with necessary mechanical
properties.

Currently, several approaches are being considered for creating surfaces with antibac-
terial properties. Nanomaterials are proposed as a promising approach [4–6], including
nanosized particles of metals and metal oxides, which have a bacteriostatic and bactericidal
effect along with low resistance in bacteria [7–9]. In general, metal oxide nanoparticles
are popular and cheap to produce materials applied in modern life due to their unique
properties and their high ratio of surface area to volume, which makes them highly reactive.
Currently, the antibacterial action is well-known against a wide range of microorgan-
isms, including antibiotic-resistant bacterial strains, nanomaterials based on metals and
metal oxides. Examples of such nanomaterials are nanoparticles based on: ZnO [10–13],
Fe2O3/Fe3O4 [14,15], TiO2 [16,17], Ag [18,19] and Ag2O [20], MgO [21,22], Cu [23,24] and
CuO [25,26], and few others. It is noteworthy that there are also reports on the antibacte-
rial activity of aluminum oxide nanoparticles, despite the non-reactivity of this material
and its absence in usual biochemical processes of aluminum [27]. It is important to note
that this nanomaterial demonstrates weak cytotoxicity at moderate concentrations with
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respect to normal human and animal cells [28,29]. This property makes aluminum oxide
nanoparticles attractive for biomedical applications, including wound decontamination and
coatings creation for implants [30], as well as for the use in the food industry: for creation
of packaging [31] and antibacterial coatings. However, the use of pure nanoparticles is
difficult and does not provide a long-term antibacterial effect. In this regard, it is proposed
to use nanoparticles in the form of composite materials, as part of polymer matrices with
the necessary physical and chemical properties. Polytetrafluoroethylene (PTFE, fluoroplast)
is one of these materials. PTFE was first synthesized by Dr. Roy J. Plunkett at DuPont®

and it was given the commercial name Teflon®. It is known that this material has excellent
hydrophobic, friction-proof, chemostable and thermostable properties due to the carbon-
fluorine chemical bond [32]. Another important feature of fluoropolymers is their bio
inertness and excellent biocompatibility [33]. Together, all these properties make PTFE an
excellent candidate for the use as a carrier for the composite coatings, which are in demand
both in the food industry [34,35] and in biomedicine [36].

In this work, a coating preparation is demonstrated based on PTFE doped with
aluminum oxide nanoparticles preliminarily synthesized with laser ablation. The resulting
coatings were characterized using a range of methods such as: DLS, CPS, EDS, ATM,
modulation-interference microscopy (MIM), and spectrometry. It was found that the coating
promoted the reactive oxygen species (ROS) formation, promoted oxidative damage to
biomolecules (DNA and proteins) in vitro, and prevented the growth of Escherichia coli.
However, the coating has not significantly affected the growth and development of animal
cells even at high concentrations of nanoparticles in the composition.

2. Materials and Methods
2.1. Synthesis and Characterization of Al2O3 Nanoparticles

Aluminum oxide nanoparticles were synthesized using the method of laser ablation
in the working fluid (deionized water). The target was a high purity aluminum plate A99
(EN AW-1199) containing at least 99.99% aluminum. The plate was immersed in a working
liquid (ddH2O), whose layer above the metal target was about 1 mm. We used a P-Mark TT
100 (Pokkels, Moscow Russia) laser ablation installation based on a pulsed ytterbium fiber
laser (Figure 1). The following laser parameters were used: wavelength, 1064 nm; pulse
duration, 4–200 ns; pulse repetition rate, 20 kHz; average power, up to 20 W; pulse energy,
1 mJ. Irradiation time varied in the range from 5 to 20 min.
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Figure 1. Installation for nanoparticles synthesis by laser ablation: laser-mechanical unit (left) and
stand with galvano-mechanical scanner (right).

The characterization of the obtained nanoparticles was carried out using the Malvern
Zetasizer Ultra (Malvern Panalytical Ltd., Malvern, UK) to determine the hydrodynamic
diameter and zeta potential of the nanoparticles. The features of the parameters record-
ing were described earlier. A disk analytical centrifuge CPS 24000 (CPS Instruments,
Prairieville, LA, USA) was used to estimate the diameter of the nanoparticles [37]. The
morphological features of nanoparticles (shape, topology), as well as the elemental com-
position of nanoparticles, were studied using a Libra 200 FE HR transmission electron
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microscope (Carl Zeiss, Jena, Germany) in combination with a JED-2300 energy dispersive
X-ray spectrometer. To assess the morphological features of the surface of the obtained
composite coatings, a Seiko SII NPX-200 atomic force microscope (Seiko Instruments Inc.,
Tokyo, Japan) was used [38]. The distribution of nanoparticles in PTFE was assessed using
a MIM-321 interference modulation microscope (Amphora laboratories, Moscow, Russia).
Additionally, to confirm the composition of the obtained nanoparticles, the spectrum of
aqueous NPs colloids was recorded using Cintra 4040 (GBC Scientific Equipment, Braeside,
Australia).

2.2. Hydrodynamic Diameter and ζ-Potential of Nanoparticles Measurements

Hydrodynamic size distributions and concentrations of nanoparticles were obtained
by dynamic light scattering (DLS). Malvern Zetasizer Ultra (Malvern Panalytical Ltd.,
Malvern, UK) was used for measurements. Measurements were taken at 12 mm o.d. square
polystyrene cuvettes. To obtain size distribution by intensity, the following constants were
used: water viscosity, 0.8872 mPa·s; refractive index, 1.33, Al2O3 refractive index, 1.77;
absorption, 0.001. Automatic sets from ZS Xplorer software were used during measure-
ments. Z-potential measurements were obtained by Malvern Zetasizer Ultra (Malvern
Pana-lytical Ltd., Malvern, UK), using Folded Capillary Zeta Cell, at the temperature 25 ◦C.
All measurements were made using automatic attenuation and automatic measurement
process (the range of runs for each measurement from 10 to 100) from ZS Xplorer. The
pause between repeats was 60 s. The equilibration time was 120 s.

2.3. Composite Fabrication & Preparation of Coatings from Composite Material

After the synthesis of nanoparticles, the solvent was replaced by centrifugation. The
colloidal solution of nanoparticles was centrifuged using Sigma 3–16KL (Sigma Laborzen-
trifugen GmbH, Osterode am Harz, Germany) centrifuge with a 12158 rotor for 40 min
at 7017×g, then the supernatant was carefully replaced with acetone. The procedure was
carried out at least 3 times. Next, the resulting colloidal solution was mixed with LG-32 LN
fluoroplastic varnish (Plast Polymer-Prom, Saint-Petersburg, Russia) to a final concentra-
tion of nanoparticles of 0.1, 0.001, and 0.0001 wt%. Varnish LG-32 LN is a PTFE dissolved
in a mixture of acetone, butyl acetate, cyclohexanone and toluene in a ratio of 25:40:10:25
mass parts. Drops of a solution of nanoparticles in a varnish with a volume of 500 µL
were placed on round degreased 25 mm glasses. Before the start of the experiments, the
coatings were dried for 48 h in a fume hood. For microbiological and cytotoxic studies,
composite-coated slides were pre-disinfected by soaking in 70% ethanol for 2–3 h.

2.4. Hydrogen Peroxide Concentration Measurement

To estimate the concentration of the formed H2O2, the chemiluminescence method of
the luminol-p-iodophenol-horseradish peroxidase system was used. Chemiluminescence
was recorded using a highly sensitive chemiluminometer Biotox-7A-ultrasound (ANO
“Engineering Center-Ecology”, Russia). The calibration and registration procedures were
carried out according to the protocols described in more detail earlier [39,40]. Composite
material samples containing various concentrations of Al2O3-NPs in the composition
(0.001–0.1 wt%) in the form of films with a size of 10 × 10 mm and a thickness of 200 microns
were placed in polypropylene vials (Beckman, CA, USA). After incubation in 20 mL of
water, 1 mL of a pre-prepared “counting solution” was added to the sample. This solution
contained 1 mm of tris-HCl buffer, pH 8.5, 50 microns of p-iodophenol, 50 microns of
luminol, 10 nM of horseradish peroxidase. In the “Control” group, the experiment was
conducted without a sample. The sensitivity of this method made it possible to determine
H2O2 at a concentration of <1 nM [41].

2.5. Hydroxyl Radicals Concentration Measurement

The concentration of OH radicals formed in aqueous solutions was determined by
reaction with coumarin-3-carboxylic acid (CCA), the product of which is hydroxycoumarin-
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3-carboxylic acid (7-OH-CCA); 7-OH-CCA is a fluorescent probe providing quantitative
determination of OH radicals [42]. Briefly, 0.2 M PBS (pH 7.4) was added to the CCA solu-
tion in water (0.5 mM, pH 3.6). Further, coating samples containing various concentrations
of Al2O3-NPs in the composition (0.001–0.1 wt%) were added to the vials in the form of
films with a size of 10 × 10 mm and a thickness of 200 microns. In the “Control” group,
the experiment was conducted without a sample. Further, the polypropylene vials with
samples and reagents were heated in a thermostat at a temperature of 80.0 ± 0.1 ◦C for 2 h.
Fluorescence of 7-OH-CCA was recorded using JASCO 8300 (JASCO, Japan) at λex = 400 nm
(excitation wavelength), λem = 450 nm (radiation wavelength). Commercial 7-OH-CCA
(Sigma-Aldrich, St. Louis, MO, USA) was used for calibration [43].

2.6. Long-Lived Reactive Protein Species Concentration Measurement

The chemiluminescence method is effective and sensitive for the determination of
free radical reactions. The interaction of radicals is accompanied with the release of
energy in the form of emitted light quanta [44]. In this case, the interaction of radicals
releases the energy emitted in the form of light quanta. Chemiluminometer Biotoks-7A
(ANO “Engineering Center-Ecology”, Russia) was used to study long-lived reactive forms
of proteins by measuring the chemiluminescence of protein solutions with increasing
temperature. The measurements were carried out in the dark at room temperature in 20 mL
plastic polypropylene vials (Beckman, Brea, CA, USA). All samples were stored in the dark
at room temperature for 30 min after exposure. Unheated protein solutions were used as
controls. A more detailed description of the method was presented in the published paper
of Sharapov et al. [45].

2.7. Quantitative Determination of 8-Oxoguanine Using the ELISA Method

To quantify 8-oxoguanine in DNA, a non-competitive enzyme-linked immunosorbent
assay (ELISA) was used using monoclonal antibodies specific for 8-oxoguanine (anti-8-
OG antibodies). DNA samples (350 µg/mL) were denatured by boiling in a water bath
for 5 min and cooled on ice for 3–4 min. Aliquots (42 µL) were applied to the bottom
of the wells of the ELISA plates. The DNA was immobilized using a simple adsorption
procedure with incubation for 3 h at 80 ◦C until the solution became completely dry. Non-
specific adsorption sites were blocked with 300 µL of a solution containing 1% skimmed
milk powder in 0.15 M Tris-HCl buffer, pH 8.7 and 0.15 M NaCl. Next, the plates were
incubated at room temperature overnight (14–18 h). The formation of an antigen-antibody
complex with antibodies against anti-8-OG (at a dilution of 1:2000) was carried out in a
blocking solution (100 µL/well) by incubation for 3 h at 37 ◦C. Then, it was washed twice
(300 µL/well) with 50 mM Tris-HCl buffer (pH 8.7) and 0.15 M NaCl with 0.1% Triton X-100
after 20 min incubation. Next, a complex with a conjugate (anti-mouse immunoglobulin
labeled with horseradish peroxidase (1:1000) was formed by incubation for 1.5 h at 37 ◦C in
a blocking solution (80 µL/well). Then the wells were washed 3 times as described above.
Next, a chromogenic substrate containing 18.2 mM ABTS and hydrogen peroxide (2.6 mM)
in 75 mM citrate buffer, pH 4.2 (100 µL/well) was added to each well [46]. Reactions were
stopped by adding an equal volume of 1.5 mM NaN3 in 0.1 M citrate buffer (pH 4.3) upon
reaching the color. The optical density of the samples was measured on a plate photometer
Titertek Multiscan, (Titretek, Helsinki, Finland) at λ = 405 nm.

2.8. Antibacterial Activity Assay

The antibacterial activity of the obtained PTFE/Al2O3-NPs coatings was evaluated
against gram-negative bacteria Escherichia coli. Sterile samples of coatings in the form of
films with an area of 20 cm2, pre-soaked for several hours in 70% ethanol, were put on a
sterile hoop, on which a liquid nutrient medium LB was then placed with a known initial
number of colony-forming units (CFU) calculated using a counting chamber. The resulting
known amount of CFU was used for further calibration. A wrap-sealed film sample with a
cell suspension in LB broth was placed in an ES-20 shaker incubator (Biosan, Riga, Latvia)
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and cultured at 37 ◦C, ~150 rpm for 24 h. The optical density of the bacterial suspension
was estimated using a UV5Nano Excellence drop spectrometer (Mettler Toledo, Columbus,
OH, USA). The optical density measured at 600 nm reflected the concentration of cells in
the nutrient medium per unit volume [47].

2.9. Protocol of Manipulations with Animals

All manipulations with animals and isolation of fibroblast cells were performed at
the Institute of Cell Biophysics, Russian Academy of Sciences (Pushchino, Russia). Male
mice of the BALB/c line weighing 22–30 g were used in the study. The animals were
purchased from the Pushchino laboratory animal nursery (FIBKh RAS, Pushchino, Russia).
All experiments with laboratory animals were carried out in accordance with the regulatory
legal act of the health laboratory of the Russian Federation No. 199-n “General cases of
applying the rules of good practice, international legal norms for use in an-own conditions”
ETS No. 123 “On the protection of vertebrate animals and scientific research” and, according
to indications, with laboratory animals of the IKB RAS No. 57.30.12.2011. Animals were
adapted to normal conditions, received water and food without restrictions.

2.10. Preparation of Primary Cultures of Mouse Lung Fibroblasts

Isolation and preparation of cell culture of isolated fibroblasts from the lungs of mice
was carried out according to the standard protocol. Euthanasia of a 2–3-month-old mouse
was carried out by cervical dislocation. Then, using scissors and tweezers, the chest was
dissected and the lungs were removed, which were placed in a Petri dish with a sterile
PBS solution. The organs were chopped with sterile scissors into pieces with a volume of
~1 mm3. The shredded organs were incubated for 1 h in 25 mL of DMEM containing 0.2%
(weight/volume) type II collagenase at 37 ◦C. Collagenase was then inhibited with 20% FBS.
Tissue pieces incubated in collagenase solution were resuspended by pipetting and then
passed through an EASTstrainer™ sieve with a mesh size of 70 µm (Greiner bio-one,
Kremsmunster, Austria). Cells were washed with double centrifugation at 350×g for 5 min
in DMEM. The isolated cells were further cultivated in TC T-25 flasks (TPP, Switzerland)
in DMEM:F12 medium (PanEco, Moscow, Russia). The medium was supplemented with
10% FBS, 100 U/mL penicillin, 2 mM L-glutamine, 100 µg/mL streptomycin, also obtained
from PanEco (PanEco, Russia). When ~90% confluency was reached, the cells were removed
from the flask surface with 0.05% Trypsin EDTA solution (PanEco, Moscow, Russia), and
10% FBS was used to inactivate trypsin. Cells were washed with PBS and suspended in
culture medium to obtain a final concentration of 300,000 cells/mL.

2.11. Cytotoxicity Assay

Samples of PTFE/Al2O3-NPs composite coatings were pre-sterilized in 70% ethanol.
Coated Ø25 mm round slides Menzel Glaser (Thermo Fisher Scientific, MA, USA) were
placed in the wells of a 6-well plate (TPP, Trasadingen, Switzerland). Cell suspension was
applied to each coating sample (50 µL each). The cultures were incubated for 45 min in
a CO2 incubator for better cell adhesion. Then, 1 mL of nutrient medium was carefully
added to each well. Cell cultures were incubated in a CO2 incubator S-Bt Smart Biotherm
(Biosan, Riga, Latvia) (37 ◦C, 5% CO2) for 72 h.

Cell viability was assessed using fluorescence microscopy. Mouse fibroblast cells were
incubated for 72 h on the surface of a PTFE/Al2O3-NPs coating of a composite material
containing 0.1 wt% Al2O3-NPs. The initial number of cells in the suspension placed on the
surface of the material was ~50 thousand cells per sample. Hoechst 33342 and propidium
iodide (PI) dyes were used to evaluate cytotoxicity. Fluorescence microscopy with Hoechst
33342 and PI staining is a widely used standard cell viability test (including NP cytotoxicity
assays and drug screening) [48]. Immediately after incubation, the coating sample with
cultured cells was placed in a coverslip chamber (RC-40LP, Warner Instruments, Holliston,
MA, USA), washed thoroughly with PBS, and stained with 5 µg/mL Hoechst 33342 and
for 30 min at 37 ◦C. Then the sample was washed with PBS and stained with 2 µM



Polymers 2022, 14, 4764 6 of 16

PI (ThermoFisher, Waltham, MA, USA) for 1 min. The samples were analyzed using a
DMI4000 B fluorescence microscope (Leica Microsystems, Wetzlar, Germany) equipped
with an SDU-285 digital camera (SpetsTeleTekhnika, Moscow, Russia). Fluorescence spectra
were recorded at excitation/emission wavelengths: 350/470 for Hoechst 33342 filter cube D
(Leica Microsystems, Wetzlar, Germany), 540/590 for PI (filter cube TRITC Leica, Germany).
Light emitting diodes (LED) M375D2m, M490D3 (Thorlabs, Newton, NJ, USA) and white
LED (Cree Inc., Durham, NC, USA) were used as light sources for excitation of Hoechst
33342 and PI fluorescence. All images were taken with the same LED current: 100 mA
for M375D2m (Hoechst 33342), 250 mA for white LED (PI). The exposure time in all
experiments was the same: 500 ms for Hoechst 33342 and 700 ms for PI. The detector gain
was x423 and was the same for all fluorophores and experimental conditions.

Data collection and control of the microscope setup were performed using the Win-
FluorXE software (J. Dempster, Strathclyde Electrophysiology Software, University of
Strathclyde, UK). The data was collected as 12-bit grayscale images. Subsequent analysis
was performed using ImageJ2 (Fiji) software (NIH, Bethesda, MD, USA). For each variant
of the experiment, at least five samples were analyzed. At least 200 cells were analyzed in
each sample.

Regions of interest (ROI) were determined using standard ImageJ “Threshold” and
“Particle Analysis” automated procedures. The parameters for analysis and determination
of ROI were chosen as a result of preliminary experiments. For a 1392 × 1024-pixel image
obtained with a value of ×20, the following parameters were used: “size” = 100–750
and “circularity” = 0.10–1.00. The nuclei had different Hoechst 33342 and PI fluorescence
intensities. In order to ensure that all nuclei are included in the analysis, we ran a series of
Threshold and Particle Analysis procedures on each image. The images were converted to
8-bit prior to determining the ROI. Threshold levels were from 5 to 255 a.u. with a step of
5 a.u., ROIs were saved as binary masks, then all ROIs were combined together with the
removal of duplicates, all procedures were integrated into automated macros.

2.12. Statistic

Experimental data analysis and statistical processing were performed using the
SigmaPlot, Origin, and GraphPad Prism software packages. Data are presented as mean
values with standard errors of the mean. Data from at least three independent experiments
were used for averaging.

3. Results and Discussion

Using the laser ablation method, the aluminum oxide nanoparticles were obtained.
These nanoparticles had an average size of about 50 nm, confirmed with DLS and CPS;
ζ-potential of the order of 50 mV, which indicates the stability of the colloidal solution;
the optical absorption spectrum of the nanoparticles made it possible to establish that
the obtained colloidal solution contained Al2O3; using TEM, it was found that NPs had a
spherical morphology (Figure 2a–d). As a result of energy dispersive X-ray spectroscopy
(EDX) analysis, it was shown that the obtained aluminum oxide nanoparticles had the
required chemical purity and did not contain impurities (Figure 3a–c).

Composite materials were prepared by mixing a colloidal solution of nanoparticles
with a solution of PTFE in a mixture of solvents (PTFE varnish). Since the aqueous colloidal
solution of nanoparticles is immiscible in nonpolar solvents that are part of the PTFE
varnish, the replacement of the solvent was carried out through several centrifugations
and replacement of the supernatant with acetone (see Section 2.3). The dried coatings
were visually smooth and uniform. AFM also confirmed the absence of significant defects
(grooves, cracks, protrusions) in the microstructure of the coating (Figure 4a). The composite
coating was also applied on the surface of PTFE with surface damage. The material was
found to have the ability to fill gaps and had good adhesion to the surface (Figure 4b).
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geneous media. The refractive index of PTFE is 1.4 at a wavelength of 405 nm, while the
refractive index of Al2O3-NPs is 1.77 at a wavelength of 405 nm, which made it possible to
successfully detect the distribution of nanoparticles in the polymer composition. It was
found that Al2O3-NPs are localized in the polymer in the form of clusters that increase in
size with increasing concentration of nanoparticles (Figure 5).

As known, reactive oxygen species are highly reactive compounds that exhibit bi-
ological activity and damage macromolecules (membrane lipids, proteins, and nucleic
acids) [49,50]. In connection with this, the ability of the resulting PTFE/Al2O3-NPs com-
posite coatings to form ROS (H2O2 and OH-radicals). As a result, coatings increase the
rate of formation of the considered ROS only at NPs concentrations of 0.01 and 0.1 wt%
(Figure 6a,b). At the same time, the concentration of hydrogen peroxide in the group with
the maximum content of Al2O3 NPs (0.1 wt%) was approximately three times higher than
when using PTFE without the addition of Al2O3 NPs, and the concentration of hydroxyl
radicals was 1.6 times higher. It is noteworthy that the degree of formation of Al2O3-NPs
ROS is much lower than that of other nanoparticles characterized by higher cytotoxicity,
such as ZnO [12,51,52].
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Figure 5. Images of the surfaces of polymer/Al2O3 -NPs composite coatings with different dopant
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in the lower left corner for each figure is the image above, showing the distribution of the dopant in
the matrix.
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Figure 6. Results of evaluating the effect of PTFE/Al2O3-NPs on the formation of hydrogen peroxide (a)
and hydroxyl radicals (b). *—statistically significant differences compared to the “control” group
(without sample), (p < 0.05). Data are presented as the mean ± standard error of the mean.

Nucleic acids are often the main target for ROS, especially in bacterial cells [53]. The
main product of oxidative DNA damage, 8-oxoguanine, often causes nucleotide mismatches
with adenine [54]. It is well-known that the accumulation of 8-oxoguanine in DNA plays a
role in the cancer development and in the process of aging [55]. On the other hand, it is
known that ROS can cause oxidative damage to protein macromolecules with the formation
of active long-lived forms of proteins that can cause cellular mutations and transformations,
as well as being a source of secondary free radicals that cause subsequent damage to
biomolecules [44,46]. It was found that PTFE coatings functionalized with the addition of
Al2O3-NPs promoted the formation of 8-OG in DNA in vitro, as well as long-lived reactive
forms of proteins. At an Al2O3-NPs concentration of 0.01 wt%, an increase of the rate
of formation of 8-oxoguanine in DNA by 1.5-times was observed; at a concentration of
0.1 wt%, it was ~two-times (Figure 7a). The half-life of the active forms of proteins did not
change after the addition of Al2O3-NPs and was about 4–5 h (Figure 7b). The effect was
observed only for materials containing high concentrations of NPs (0.001 and 0.01 wt%).
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As for many nanoparticles of metals and metal oxides, Al2O3-NPs are characterized by
antibacterial activity. This effect is provided by the mechanical action of these nanoparticles
on the cell wall and the membrane of the bacterial wall, the formation of aluminum ions
that bind to the membrane and intracellular proteins of the bacterial cell, as well as by the
ROS-mediated pathway [27]. It was found that the obtained PTFE/Al2O3-NPs composite
coatings containing 0.001 and 0.01 wt% NPs had a bacteriostatic effect against Gram-
negative E. coli (Figure 8). The table below (see Table 1) presents several other studies, also
illustrating the successful use of Al2O3-NPs as an antibacterial agent, as well as ways to
improve their effectiveness.
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Table 1. Bacteriostatic properties aluminum oxide NPs reported in other studies.

№ Composition Size, nm Concentration Type of Microorganism Biological
Effect Ref.

1 Chitosan-coated
Al2O3-NPs films <50 0.05, 0.1 g/mL S. aureus, P. aeruginosa,

S. epidermidis bacteriostatic [56]

2 Chitosan/SiO2
nanocomposite with Al2O3

- - S. aureus, P. aeruginosa,
C. albicans, A. niger bacteriostatic [57]

3 PLA/Al2O3 30 - P. aeruginosa & E. coli bacteriostatic [58]

4 Al2O3/borosiloxane
composite 45 0.001–0.1 wt% E. coli bacteriostatic [59]

5 Al2O3–Ag composite
nanoparticles 100–200 1–50 wt% E. coli & S. epidermidis bacteriostatic [60]

6 Bulk Al2O3 100–200 MIC: 100 µg B. cereus, B. subtilis, K.
pneumoniae, V. cholerae bacteriostatic [61]

7 Bulk Al2O3 10–60 25–100 µg/mL E. coli, P. aeruginosa,
S. aureus bacteriostatic [62]

8 PANI–Al2O3 NPs
composite - 5, 10 mg/mL B. subtilis & E. coli bacteriostatic [63]

9 Al2O3 coated by chitosan 80 0.025 mg/mL S. aureus bacteriostatic [64]

10 Bulk Al2O3 <50 1–10 g/L B. cereus & P. stutzeri bacteriostatic [65]

Another important property of Al2O3-NPs is low cytotoxicity compared to other
nanomaterials based on metals and metal oxides, which is confirmed in a number of
experimental research studies [28,66,67]. In this study, the analysis of cytotoxicity of the
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obtained PTFE/Al2O3-NPs with a high content of Al2O3-NPs (0.1 wt%) showed that the
coating did not affect the growth and development of mouse fibroblast cells in vitro; it was
revealed in the absence of differences in the count of non-viable cells, as well as the density
of cultures, which were kept at the level of “control” values (Figure 9a,b). The percentage
of PI-positive cells in the “PTFE/Al2O3-NPs 0.1%” group was 1.23 ± 0.25% (Figure 9a).
The density of cells growing on the composite coating also did not differ from the control
group and it was 404 ± 97 cells/mm2. The cells growing on the composite coating did
not form a solid monolayer, they were located diffusely and formed local clusters. It was
also found that on the surface of PTFE without nanoparticles, the number of cells was
higher compared to the PTFE/Al2O3-NPs composite material (Figure 9b). This effect is
possible due to the good adhesive characteristics of PTFE for a number of cells [68,69]
and also due to uneven distribution of cells on the surface. It is known that PTFE is a
non-toxic material used for medical devices covering [70]. Additionally, it has been found
a slight decrease in the average area of the nuclei of cells growing on the surface of the
PTFE/Al2O3-NPs coating (Figure 9c). Currently, the exact mechanisms of changes in the
size and shape of the nuclei, as well as the physiological consequences of these processes,
are poorly understood [71]. On the one hand, this may be due to chromatin condensation
because of the proliferation activity of cells. On the other hand, chromatin compaction may
precede apoptosis in some cells [72]. Thus, the surface of the obtained PTFE/Al2O3-NPs
composite coating containing 0.1 wt% Al2O3-NPs did not interfere with adhesion, growth,
and normal development of primary cell cultures of mouse fibroblasts for 3 days.
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4. Conclusions

A coating based on polytetrafluoroethylene and aluminum oxide nanoparticles was
obtained. This coating had bacteriostatic properties and did not interfere with the adhesion
and growth of eukaryotic cells. Such a coating may be useful for utilization as a filler in
the surface of the coating and give them a long-term antibacterial effect. In particular, such
coatings based on “liquid polytetrafluoroethylene” can find further application in the food
industry.
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