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Abstract: The use of adhesives for fixing low-weight elements is showing increasing interest in the
industry, as it would reduce the weight of the assembly, costs, and production time. Specifically,
the application of pressure-sensitive adhesives (PSAs) to join non-structural naval components to
aluminium substrates has not yet been reported. In the present work, a study of the mechanical
behaviour of different double-sided PSAs applied on bare aluminium alloy substrates is performed.
The influence of surface roughness, surface chemical treatments, and the matrix of the adhesives is
studied through different mechanical tests, such as shear, T-peel, and creep. The application of an
adhesion promoter improved the mechanical behaviour. Low roughness substrates provided better
performance than ground samples. Acrylic foam adhesives were subjected to creep tests, whose
results were fitted to a simple mathematical model, predicting the fracture time as a function of the
applied load.

Keywords: pressure-sensitive adhesive; aluminium; surface roughness; surface chemical treatments;
mechanical properties; creep testing

1. Introduction

The industry currently faces different challenges, such as demands for higher per-
formance, lower energy consumption, and the consolidation of more environmentally
friendly processes. In this context, one strategy to reduce the emission of pollutants to
the ecosystem is the use of lighter and more efficient materials [1–3]. This need justifies
the rise in the use of aluminium alloys as a substitute for steel, due to their advantageous
properties, among them high resistance, low density, resistance to corrosion, resistance to
fatigue, and reduction in costs associated with the weight and fuel savings in transport
industries [4,5]. However, the reduction in emissions is not limited to the use of lighter
materials, but also seeks the use of lighter, simpler, and cheaper joining technologies. One
of the most promising alternatives to welding techniques for some specific applications
is adhesive bonding. This methodology is advantageous for manufacturing in an energy
efficient way since it reduces the weight of the joints and allows the joining of a higher
number of surfaces compared to traditional joining methods [6]. Therefore, there has been
an increase in the demand for adhesives as an alternative material to traditional bonding
processes [1,7–9]. Indeed, the adhesive bonding of aluminium is already widely used in
different industries, such as automotive and aeronautics, because of their high performance,
low cost, easy application, good damping behaviour, and resistance to corrosion [10–12].
There are important potential applications of adhesive joining in other industries, such
as naval and offshore, in which the use of cold joining processes and light materials are
highly demanded.

At present, the adoption of pressure sensitive adhesives (PSAs) is being frequently
used because of their advantages, such as easy and safe application [13]. There are diverse
types of PSAs that differ in the adhesive base, support material, as well as in their applica-
tions. These adhesives consist of flexible support with a permanent tack adhesive layer that
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adheres to most substrates under pressure. In addition, they can be easily removed without
leaving residues on the surface [14]. Other important aspects are that the PSA does not
change its physical state or require the application of solvents or heating before usage [10].

PSAs can be broadly classified into five categories: polyurethane, silicone, thermoplas-
tic elastomer, rubber, and acrylic materials. It is important to note that the resistance of
this type of adhesives not only depends on their nature but also on the degree of crosslink-
ing of the polymer chains [10]. Non-crosslinked polymers are also widely used as PSAs,
the resistance of which is improved by the introduction of fillers whose particles form a
three-dimensional network [15,16]. Likewise, the use of nanotubes as filler particles in the
adhesive matrix provides this three-dimensional network, which improves the mechanical
properties of PSAs [15,16]. Among the groups of PSAs mentioned above, the most em-
ployed in the industrial sector are acrylic-based materials, with numerous families differing
in the polymerization process (emulsion, solution, hot melt, or radiation curing) [17–19].
Within the wide range of available PSAs, recent developments have led to a new category,
the so-called “high performance”. This range of PSAs combines a great capacity for cohe-
sion, resistance, and moldability, even on rough or smooth surfaces, making them stand
out from conventional PSA. To achieve maximum strength, these joints require adequate
external applied pressure to cure properly, as well as the elimination of air bubbles that may
be trapped in the PSA–substrate interface [10]. This type of adhesive also has the benefit of
being able to assemble a large number of surfaces of diverse nature, such as polypropylene,
stainless steel, glass, carbon-fibre reinforced polymer (CFRP), as well as aluminium [20–24].
In a recent study, a high-performance PSA was employed to join samples painted with a
naval epoxy painting scheme [25]. The influence of the surface preparation, curing time,
compression force, and compression time on the shear and tensile mechanical behaviour
was investigated.

The adhesive characteristics are largely determined by studies of tack and mechanical
properties. The most frequent mechanical properties evaluated in research studies are
shear, tensile, and peeling [8,26,27]. The creep behaviour is also of great importance in the
industry since this testing allows determining the optimal range of loads to be supported
by the joints for a prediction of service life [28]. Previous creep studies of PSAs have been
reported in [29–31]. The creep response is described to depend on the applied load and
working temperature; the lifetime decreases as theses variables increase. Thus, Townsend
et al. [29,30] studied the effect of humidity and temperature variables on the creep properties
of acrylic foam PSAs. For their part, Yamaguchi et al. [31] developed a model to predict the
creep behaviour of PSAs, taking into account factors such as viscoelasticity and cavitation
dynamics of these adhesives.

Some studies investigate the fracture characteristics of PSAs, in terms of adhesion
and cohesion, as a function of the energy dissipated by the polymer [32–38]. Achieving
maximum mechanical resistance to these stresses requires the optimization of factors such
as energy and surface roughness. The surface energy can be adjusted by applying excited
gas discharge (corona), plasma, or chemical-based surface treatments [39]. These treat-
ments introduce functional groups at the substrate–PSA interface, in addition to increasing
wettability, thus promoting better adhesion [40,41]. However, despite the aforementioned,
in order to maintain the behaviour of PSA at a high performance, it is necessary to keep
the joined surfaces clean of impurities [42]. On the other hand, a medium–high roughness
of the substrate can cause an incomplete joint, reducing the mechanical properties. This
is related to the amount of air bubbles that can be trapped at the substrate–PSA interface,
since these bubbles can cause cavities in the early stages of bond failure [43,44]. As a result,
the type of failure is highly dependent on the presence of defects at the PSA–substrate
interface. Moreover, the load applied to the joint also determines the failure pattern.

Due to the demands of some industries for weight reduction, as naval and offshore
sectors, the use of adhesives has increased. Some needs of these industries include cold,
light, cheap, and fast joining technologies to bond not structural components, such as
air ducts, silent blocks (resilience blocks to dampen vibrations), ventilation grills, and
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electrical cable supports. Most of the research carried out on aluminium substrates is
limited to the use of structural adhesives, especially those of the epoxy and polyurethane
type [2,26]. Furthermore, PSA adhesive bonding on aluminium substrates has not been
extensively tested. The studies carried out are mainly focused on the optimization of the
joints by means of different surface preparations applying different cleaning agents and
chemical treatments before assembling. Likewise, in these studies, the response of the PSA
aluminium joints was evaluated by modifying some parameters that intervene in the curing
process, such as temperature. The efficiency of these treatments is interpreted through the
response of the joints when they are subjected to shear stress [23,24]. The creep behaviour
at different temperatures of one high-performance acrylic foam PSA applied to aluminium
substrates for glazing applications is also investigated in detail in [29,30].

Considering the overall literature reviewed, it can be stated that there is a clear need for
knowledge regarding the potential use of PSAs in industry. Concisely, their application to
join non-structural components to aluminium substrates is not widely addressed, especially
in shipbuilding applications. In order to cover this gap of knowledge, the present work
investigates the response of PSA adhesives of different natures when they are applied
on aluminium substrates with different roughness and surface chemical treatments. The
mechanical properties of the joints are experimentally analysed by means of shear, T-peel,
and creep tests.

2. Materials and Methods

AA5083-H111 and AA5754-H111 aluminium alloys, whose compositions are detailed
in Table 1, were employed for this investigation. AA5083-H111 aluminium specimens
(10 mm × 100 mm × 2 mm) were used to perform shear and creep tests. On the other
hand, AA5754-H111 aluminium specimens (25 mm × 200 mm × 0.5 mm) were used for
the T-peel test. The specimens of each test were defined according to ISO 13445, ISO 14678,
and ISO 11339 standards, respectively. Silicon carbide sandpaper with different grain sizes
(P40, P80, P320, P600, and P1200) was used to prepare the surface with different roughness,
in which the sandpaper code corresponds to the number of abrasive particles per square
inch. The arithmetic mean roughness (Ra) was measured at least 5 times using an adapted
roughness tester with a surface probe (Perthometer PGK 120, Mahr, Göttingen, Germany).
The bonding area of all samples was cleaned with isopropanol before the assembling
process. Furthermore, the influence of the use of a thin layer of an adhesion promoter based
on a ciclohexane/xylene solution (Fast Cure Promoter, FCP 60153, TESA, Norderstedt,
Germany) was also evaluated after the cleaning procedure.

Table 1. Chemical composition of the aluminium alloys (wt%).

Alloy Mg Mn Fe Si Cr Zn Cu Pb Ti Al

AA5083
H111 4.353 0.508 0.289 0.137 0.089 0.039 0.023 0.002 0.010 Bal.

AA5754
H111 2.783 0.232 0.322 0.154 0.044 0.043 0.037 0.022 0.019 Bal.

Single-lap joints (SLJ) were assembled with a rectangular area of 10 mm × 20 mm
(Figure 1) using three different types of PSAs: a rigid acrylic foam (RF), a flexible acrylic
foam (FF), and a flexible acrylic core (FC). Table 2 shows the thickness and the commercial
name of each PSA. It also includes the density values, measured experimentally. FC
adhesive is known to contain trimethylolpropane triacrylate (TMPTA) with a high degree of
crosslinking. Meanwhile, RF and FF present a high content of methyl methacrylate (MMA).



Polymers 2022, 14, 4783 4 of 19

Polymers 2022, 14, x FOR PEER REVIEW 4 of 21 
 

 

crosslinking. Meanwhile, RF and FF present a high content of methyl methacrylate 
(MMA).  

 
Figure 1. Aluminium joint assembled with the pressure-sensitive adhesive. 

Table 2. Type and thickness of the adhesives. 

Pressure-Sensitive Adhesive Commercial Name Thickness (μm) Density (g/cm3) 
Flexible Acrylic Core (FC) 7054, TESA, Germany 500 1.17 ± 0.08 
Rigid Acrylic Foam (RF) 7044, TESA, Germany 1000 0.72 ± 0.07 

Flexible Acrylic Foam (FF) 92111, TESA, Germany 1100 0.52 ± 0.04 

The joints were subjected to a compression force of 30 N/cm2 for 60 s, using a Shi-
madzu universal test equipment (10 kN of maximum load). Then, the joints were cured at 
room temperature (21 °C) and a controlled relative humidity of 60% for 72 h. After curing, 
the shear test was carried out at a constant speed of 10 mm/min, in accordance with ISO 
13445. Figure 2A shows the experimental setup of the shear tests performed with the Shi-
madzu universal test equipment. The assembly of the joints was divided into two batches, 
with and without the application of adhesion promoter to the aluminium specimens prior 
to assembly. These shear tests allowed the study of the influence of the different surface 
roughness and chemical treatments on the mechanical performance of the three PSAs. In 
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Figure 1. Aluminium joint assembled with the pressure-sensitive adhesive.

Table 2. Type and thickness of the adhesives.

Pressure-Sensitive
Adhesive Commercial Name Thickness (µm) Density (g/cm3)

Flexible Acrylic Core (FC) 7054, TESA, Germany 500 1.17 ± 0.08
Rigid Acrylic Foam (RF) 7044, TESA, Germany 1000 0.72 ± 0.07

Flexible Acrylic Foam (FF) 92111, TESA, Germany 1100 0.52 ± 0.04

The joints were subjected to a compression force of 30 N/cm2 for 60 s, using a Shi-
madzu universal test equipment (10 kN of maximum load). Then, the joints were cured
at room temperature (21 ◦C) and a controlled relative humidity of 60% for 72 h. After
curing, the shear test was carried out at a constant speed of 10 mm/min, in accordance
with ISO 13445. Figure 2A shows the experimental setup of the shear tests performed
with the Shimadzu universal test equipment. The assembly of the joints was divided into
two batches, with and without the application of adhesion promoter to the aluminium
specimens prior to assembly. These shear tests allowed the study of the influence of the
different surface roughness and chemical treatments on the mechanical performance of the
three PSAs. In addition, the T-peel tests (Figure 2B) were performed in accordance with
ISO 11339, employing the best surface conditions measured in the shear tests. All tests were
carried out at least in triplicate to assure reproducibility. The failure mode was measured
after testing according to ISO 10365, using image analysis software (Image-J, version 1.52q,
National Institutes of Health, Bethesda, MD, USA). Ductility (elongation at fracture), and
static toughness (overall area below the stress–strain curve, estimated by the 6th degree full
polynomial that better fitted to each curve) were extracted from the stress–strain curves,
obtained for each adhesive.
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The adhesive with the best properties in terms of shear and T-peel strength was
selected to evaluate its creep resistance on specimens of the same dimensions as those
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used in the shear tests. The creep tests were performed at 23 ◦C and 70% of relative
humidity, following the indications described in the ASTM D-1780 standard, allowing the
measurement of the fracture time as a function of the applied load. The maximum load
used in the creep testing was selected according to the peak strength obtained from the
shear results (20 kg/cm2), with the other load values being a percentage of it. The applied
load values are listed in Table 3 and Figure 3 illustrates the creep test setup.

Table 3. Different loads used in the creep tests.

Percentages of the Maximum
Load Applied (%)

Load Value
(kg/cm2)

50 10
25 5
10 2
5 1

2.5 0.5
1.25 0.25
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3. Results and Discussion
3.1. Roughness

The surface roughness of the different sanded/ground aluminium surfaces was mea-
sured at least five times per condition, in different positions of the bonding area, to assure
that measurements were representative of each ground level. The roughness values re-
ported in the paper correspond to the mean arithmetic roughness parameter (Ra). Table 4
shows the average and standard deviation of the arithmetic mean roughness values (Ra). As
expected, the surface treatments with larger sandpaper grain sizes (P40 and P80) implied
higher surface roughness. Thus, Ra clearly decreases as the number of particles of the
sandpapers increases.

Table 4. Aluminium roughness (average ± standard deviation of Ra values) after different grind-
ing preparations.

Surface Treatment Ra (µm)

P40 4.4 ± 0.7
P80 1.9 ± 0.3

P320 0.6 ± 0.1
P600 0.4 ± 0.2
P1200 0.3 ± 0.1

No Grinding (NG) 0.21 ± 0.02
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3.2. Shear Testing

The typical behaviour of the three PSAs studied when subjected to shear stress is
shown in Figure 4. The stress–strain curves represented in this figure correspond to joints
using aluminium specimens ground with a sandpaper size of P1200 with the adhesion
promoter. In these curves, a different shape is observed for each adhesive matrix (acrylic
foam/acrylic core). Regarding the acrylic foam adhesives (RF and FF), the RF showed
higher elastic modulus (stiffness) than the FF, whereas the FF presented a greater elastic
deformation and strength. In these curves, the slope is slightly decreasing up to the
maximum stress value, meaning that the stiffness slowly diminishes as these adhesives
elongate. In the case of the acrylic core (FC), the curve exhibited a non-linear behaviour at
the elastic zone, its slope gradually increasing up to the maximum strength. The different
nature of the cores seems to be the reason for this stiffness change tendency. Concerning the
strength, measured by the maximum shear stress values, the FF was the adhesive providing
the highest values, whereas the FC was the one presenting the lowest resistance. The
elongation of the adhesives prior to bond failure was also analysed. A higher elongation
is directly related to a higher elasticity of the adhesive and, therefore, a better capacity to
recover its original shape after the load release. According to the maximum ultimate shear
strength (USS) and elongation, the FF adhesive provided the highest strength and ductility.
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3.2.1. Shear Results without Adhesion Promoter

The influence of the grinding surface process on the PSA’s shear resistance was
analysed as follows. Figure 5 reports the peak values (USS) obtained from the samples
without the adhesion promoter. In the three PSAs, no clear relationship between USS
and the grinding level was found in the ground samples. However, the PSAs displayed a
different behaviour when the aluminium substrates were not ground (NG). Thus, the FC NG
samples provided an USS value of 0.79 MPa. The values for the ground FC samples ranged
between 0.84 and 1.12 MPa, with the peak (1.12 MPa) in the P40 condition. Regardless the
surface treatment, FC always provided lower USS than RF and FF. Meanwhile, the joint
shear resistance of both the RF and the FF notably increased when the NG condition was
applied to the aluminium substrates. Concisely, the maximum values of the RF adhesive
subjected to grinding processes ranged between 1.11 and 1.28 MPa, with 1.56 MPa for the
NG condition. Similarly, the FF adhesive values ranged between 1.18 and 1.28 MPa for
the ground samples, presenting the highest USS (2.13 MPa) when the substrates were not
ground (NG). The FF was the PSA that provided the highest USS value among the three
adhesives studied.
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Figure 5. Ultimate shear strength (USS) of the adhesive joints under different surface treatments
without adhesion promoter.

The fracture mode was studied in the samples, characterising the adhesive/cohesive
rupture in terms of the percentage of cohesive failure. Figure 6 plots this percentage for
joints subjected to different surface treatments without adhesion promoter. The percentage
of cohesive failure of the joints assembled with the FF adhesive improved as the roughness
reduced. This behaviour may be related to the decrease in the amount of air bubbles that
were trapped in the interface, and consequently to the increase in the active surface of the
joint. The strength of the joints assembled with the FC adhesive did not follow any clear
trend as the surface roughness varied. The FC displayed the highest cohesive percentages
in ground samples, although it showed the lowest shear resistance (Figure 6). This may
be because the acrylic core adhesive (FC) exhibits higher formability than acrylic foam
adhesives (RF and FF). This difference may lie in the fact that the FC adhesive has greater
malleability than acrylic foam adhesives (RF and FF), presenting a better grip on rough
substrates than on smooth substrates [44]. In addition, the cohesion of the FC joints was
slightly favoured when the substrates had a roughness lower than 1 µm (obtained with
sandpapers of P320, P600, P1200, and NG). The behaviour of this adhesive was similar to
that described by Cui et al. [4], in which the adhesive based on epoxy and polyurethane
did not present a linear trend between grain size sanding and USS.
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Figures 7 and 8 show the ductility and toughness results of joints assembled without
the adhesion promoter, respectively. Both properties did not seem to follow a clear trend
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when changing the grinding process. For both parameters, the FF adhesive showed higher
values than the others, regardless of the grinding condition. The NG condition visibly led
to the best ductility and toughness results for the three PSAs, especially in the case of the FF
adhesive. Thus, the NG samples provided ductility values of 22.0%, 23.8%, and 46.6%, for
the FC, RF, and FF, respectively. Meanwhile, the toughness of NG samples was 1.6 MJ/m3,
4.0 MJ/m3, and 13.3 MJ/m3 for the FC, RF, and FF, respectively.
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Taking into account the overall results reported in this section, it is clear that FC
adhesive present similar mechanical behaviour regardless the surface roughness. This
is related its composition and production method, presenting a higher gelation than RF
and FF adhesives. This property provides to FC a high flexibility and adaptability to
the different roughness conditions tested, reporting similar USS, ductility, and toughness
results. FC adhesive is known to contain trimethylolpropane triacrylate (TMPTA) with a
high degree of crosslinking, providing the gelled texture [45].

Note that RF and FF adhesives do not have gel structures, having therefore less
flexibility and adaptability to rough surfaces. Thus, RF and FF present a lower aluminium–
adhesive contact area as the roughness is higher. This means that both adhesives show
their best response when assembled on NG substrates. This behaviour is related to a high
content of methyl methacrylate (MMA) in their compositions, providing a greater adhesion
to substrates [45]. As the MMA polymer presents a lower crosslinking degree than TMPTA,
the structure of the RF and FF adhesives does not present gel texture, reducing their
adaptability to rough substrates, decreasing therefore the effective area of the union [45].
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This explains why RF and FF (adhesives without gel texture) show their best mechanical
behaviour in NG condition.

In addition, according to the results obtained by other authors [46,47], an increase
in the molecular weight of acrylic PSAs leads to a decrease in resistance. The density
values reported in Table 2 show that FC presents a higher density than RF and FF, which is
related to the higher molecular weight of TMPTA (C15H20O6) when compared to MMA
(C5H8O2). The results obtained in the present study are in good agreement with previ-
ous investigations [46,47], as the highest molecular weight PSA (FC) leads to the lowest
USS values.

The deformability of crosslinked adhesives is also related to the molecular weight;
an increase in molecular weight leads to an increase in PSA deformation. The recovery
capacity increases with the cross-linking of the polymeric chains [48]. The crosslinking
of the polymeric chains increases the flexibility and the elastic limit of the PSAs. As
commented before, TMPTA has a more crosslinking degree and higher molecular weight
than MMA. This is the reason why FC shows higher flexibility (lower slope at elastic
region, observable in Figure 4) than RF and FF. The obtained results are therefore in good
agreement with those reported by [48].

3.2.2. Shear Results with Adhesion Promoter

The shear performance developed by the adhesives when applying the adhesion pro-
moter is presented in Figure 9. As observed, the application of this chemical treatment de-
veloped a higher mechanical performance of the three PSAs in most of the conditions. This
behaviour was more pronounced when assembling aluminium substrates without sanding.
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Generally, the joints manufactured with the FF adhesive displayed higher strength
values compared with the other adhesives, independently of the condition used. For this
adhesive, a significant increase in ultimate shear strength (USS) was observed after the
application of the adhesion promoter, especially for ground substrates. The NG condition
for this adhesive presented a similar behaviour with and without promoter. In the case of
the RF adhesive, the use of the adhesion promoter also increased the USS. The highest result
was observed for the NG condition. Regarding the FC adhesive, an important increase in
USS was obtained with the promoter in all surface conditions, where the peak value was
reached in the NG condition. Figure 10 compares the effect of using adhesion promoter in
the USS values for the three PSAs studied. The figure clearly shows that the USS values
of joints with promoter (P) are significantly higher than without promoter (NP) for the
three PSAs.
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Figure 10. USS values of joints with (P) and without (NP) adhesion promoter for aluminium joints
assembled with (a) FC, (b) RF, and (c) FF.

Table 5 shows the improvement percentage (IP) data of shear resistance after the
application of the adhesion promoter (SRP) with respect to the values obtained without
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the promoter (SRNP). These values were calculated for each adhesive and each grinding
condition according to Equation (1):

IP (%) =
SRP − SRNP

SRNP
∗ 100 (1)

Table 5. Improvement percentage (IP) data of shear joints resistance after the application of adhesion
promoter (SRP) with respect to the values obtained without promoter (SRNP).

Surface Treatment/Adhesive P40 P80 P320 P600 P1200 NG

FC (%) 46.3 56.3 18.9 48.3 18.6 136.1
RF (%) 24.1 25.2 0 0 18.0 13.8
FF (%) 34.4 39.1 29.0 38.2 25.4 0

The results clearly demonstrate that the adhesion promoter enhanced the shear resis-
tance of all adhesives. Note that the statistical error of these values is around 5%; therefore,
the values below this percentage in this table are considered negligible.

Figure 11 reports the cohesive failure percentage values obtained from the analysis
of the fractured surfaces of adhesives with the adhesion promoter. It can be seen that the
application of the promoter in sanded substrates supported a notable enhancement in the
cohesion of the joints manufactured with the FF and the FC adhesives. This improvement
was especially notable in the FC, where the use of the adhesion promoter developed a
practically cohesive fracture (average of 99.55%) and only the P40 condition generated a
percentage below 100%. These values indicate that the adhesive was properly adhered
to the entire substrate area, effectively resisting to the shear forces imposed by the test.
However, the RF adhesive hardly showed significant improvements in the cohesive failure
percentage after the application of the promoter. The cohesion fracture of this adhesive
displayed low percentages, similar to those reached without promoter, indicating that
the adhesion between this PSA and the substrates was not appropriate, leading to poor
mechanical resistance and adhesion fracture. In short, the FF and the FC developed
cohesive fracture percentages close to 100%, with this value being always below 5% for
the RF. The improvements observed for the FF and the FC adhesives were related to the
chemical activation of the surface and the moldability capacity. Despite the application
of the promoter, the RF adhesive did not seem to develop surface chemical activation. Its
low moldability, related to its relatively high stiffness (Figure 4), may be the reason for this
poor cohesion.
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Figure 11. Cohesive failure percentage of the adhesive joints under different surface treatments with
the adhesion promoter.

Figure 12 shows the ductility results of joints assembled with the adhesion promoter.
Similar values were obtained for all grinding conditions. The promoter led to a clear
ductility enhancement, especially for the FF adhesive. For the RF adhesive, the results
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obtained for the joints without the adhesion promoter reached an average of 24.8%, which
increased to 28.2% when the adhesion promoter was applied. For joints assembled with
the FF adhesive, an increase in ductility values from 35.4% to 52.8% was observed when
the adhesion promoter was applied over the sanded substrates. For the FF joints assem-
bled with NG condition, the ductility was similar with and without adhesion promoter
(around 47%). In the case of the FC joints, the application of adhesion promoter did not
improve significantly the ductility values (22–24%).
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Figure 12. Ductility of the adhesive joints under different surface treatments with the adhesion promoter.

The average toughness values for the three adhesive joints assembled using the
adhesion promoter are shown in Figure 13. As observed, the values were not highly
influenced by the surface preparation. Comparing the results of Figures 9 and 13, it is clear
that the use of the adhesion promoter improved the toughness of the three adhesives. On
average, it increased from 3.8 to 4.4 MJ/m3 in the RF, from 1.6 MJ/m3 to 2.1 MJ/m3 in the
FC joints, and from 6.0 MJ/m3 to 12.1 MJ/m3 in the ground FF joints. The most evident
toughness increment was observed in the FF adhesive. For this PSA, the highest toughness
was reported in the NG condition, regardless of the application of the adhesion promoter
(NG condition without promoter provided relatively high toughness values).
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The reported results demonstrate that the shear behaviour of the three PSAs was no-
tably increased when the adhesion promoter was employed. The surface treatment did not
lead to a high variation of mechanical behaviour when the adhesion promoter was applied,
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with the NG condition being generally better than ground surfaces. These outcomes are
interesting for industrial applications, as the adhesion promoter involves an improvement
in mechanical behaviour regardless of the surface roughness. This improvement was due
to the increase in the Van der Waals bonds and electrostatic forces of the joints, as the use
of the adhesion promoter notably improves the mechanical properties (USS, ductility and
toughness) and delays the failure [49]. Additionally, it is also known that the adhesion
promoter increases the surface energy of substrates [39].

Generally, acrylic adhesives have a weight composition of 3–10% pure acrylic acid
and 90–97% alkyl acrylate [50,51]. The polymer crosslinking in the manufacture of PSA
is determined by the chemical reaction between the crosslinking agent and the adhesive.
Crosslinking process increases the yield strength and the resilience capacity of the adhesive,
decreasing the deformation capacity. Likewise, an excessive degree of crosslinking leads
to polymer gelation, which deteriorates the adhesive properties such as stickiness and
ductility [52,53]. The acrylic core adhesive (FC) used in the present study presents a more
gelled texture than foam acrylic adhesives (FF and RF). This may be due to the higher
crosslinking processes of FC, which leads to lower deformability compared to the other
two acrylic foam adhesives (Figure 4). The different structures of these acrylic backing
adhesives seem to be the reason for the different adhesion patterns as the surface roughness
is modified (Figures 5 and 9). Thus, while the adhesion of FC is not affected by roughness,
both FF and RF show a resistance decrease as the roughness increases (Figures 7 and 12).

3.3. T-Peel Test

Taking into account that the NG condition was the easiest surface preparation and
provided the best shear performance, this was the condition employed for the T-peel
tests. Thus, T-peel tests were performed employing not sanded AA5754 H111 aluminium
substrates of 0.5 mm thickness treated with the adhesion promoter. Representative T-
peel stress–strain curves of the three adhesives are included in Figure 14 and the T-peel
resistance (average of the plateau values of the curves) of all PSAs are represented in
Figure 15. Similar to shear stress results, the highest T-peel strength was delivered by the
FF adhesive, followed by the FC and the RF, with average values of 4.51 MPa, 2.76 MPa,
and 2.20 MPa, respectively.
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Table 6 reports the fracture mode expressed as the percentage of cohesive failure of
adhesive joints subjected to T-peel tests. Both the RF and the FF displayed fully adhesive
fractures. This fracture type changed for the FC joints, showing high T-peel cohesion. This
disparity in the failure mode may be associated with the adhesive nature. Acrylic foam
matrix adhesives (RF and FF) can present non-linear viscoelastic properties, assisted by
the presence of bubbles in the foam. When these adhesives were subjected to stress, these
bubbles started to deform, stretching and collapsing, causing a variation in the viscosity of
the adhesive [54,55]. The different cohesion values for the shear and the T-peel tests were
related to the direction of the adhesive matrix strain (note that shear and T-peel tests were
performed at the same deformation rate). For the shear test, the strain direction was quasi-
equatorial, while for the T-peel test the deformation occurred in the axial direction [56].
When the joints were subjected to shear, the movement occurred in a direction that did not
allow the bubbles to grow, leading to a cohesive failure. In the T-peel tests, the strain was
in the axial direction, permitting the bubbles’ growth. This led to a damping behaviour of
the adhesive matrix, resulting in an adhesive failure. In the case of the FC adhesive, both
the shear and the T-peel tests provoked cohesive behaviour, related to the homogenous
matrix free of bubbles.

Table 6. Percentage of cohesive failure of adhesive joints under the T-peel stress with the adhe-
sion promoter.

Cohesive
Failure (%)

RF FC FF

0.0 79.5 0.1

3.4. Creep Test

The previous shear and T-peel tests reported the best mechanical behaviour for the FF
adhesive, assembled over substrates that were not ground and treated with the adhesion
promoter. Thus, the joints manufactured under this condition were selected to develop
creep tests. After curing time, the joints were subjected to different loads. These loads
were selected based on the maximum shear resistance (Section 3.2). The creep behaviour
was characterised by the fracture time and the failure mode. These results are reported
in Table 7. Figure 16 displays a typical creep behaviour curve obtained with a load of
20 kg/cm2 (50% of the maximum shear resistance). An inverse correlation between the
failure time and the applied load was noted, with a significant lifetime increment with low
loads. The adhesive demonstrated slight creep periods when loads of 1 to 10 Kg/cm2 were
applied, indicating a maximum failure time of 115 h for the 1 Kg/cm2 load. To increase the
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creep fracture time, it is necessary to reduce the applied load to values below 0.5 Kg/cm2.
This load value represents 2.5% of the maximum shear load. For the minimum load applied
(0.25 Kg/cm2), the joints did not fracture after 8760 h (1 year).

Table 7. Average failure time and mode for different load values.

Load (kg/cm2) Fracture Time (h) Cohesive Failure (%)

10 0.63 100
5 10.39 10.96
2 23.55 4.91
1 115.40 1.51

0.5 692.00 1.50

0.25 >8760.00
(not fractured) -
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Regarding the fracture analysis, the maximum load supported by the FF adhesive
(20 Kg/cm2) led to a total cohesive fracture. The results demonstrate that, as the load
decreased, the type of fracture became more adhesive. This evolution in the adhesion
properties was related to the critical stress required to initiate the cavitation process. Gen-
erally, cavity growth takes place as the joints are subjected to higher stress values, which
provokes higher creep rates and shorter fracture times. This reduction in fracture time is
due to a faster release of hydrostatic stress after the cavitation process [26,41,56–59]. There-
fore, higher stress around the cavities promoted a reduction in the damping behaviour,
increasing the cohesive fracture.

Based on all data acquired for the FF joints subjected to the static loads, a simple
modelling of the failure time was developed. Figure 17 plots the creep data, representing
the load applied versus failure time in a double logarithmic scale. The linear equation
better fitting by linear regression to these data is depicted in the figure. The high coefficient
of determination value (R2) confirmed the high data fitting. Note that the result was an
exponential equation type, provided by the double logarithmic scales. Using this model,
the failure time of the FF adhesive joints can be estimated as a function of the applied load.
Equation (2) depicts this fitting model.

y = a + b·x (2)

where y is log (applied load), x is the log (fracture time), and a and b are the fitting
parameters, 0.913 Kg/cm2 and −0.405 Kg/(cm2·h), respectively.
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