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Abstract: Iron Oxide Nanoparticles (IONPs) have received unprecedented interest in various applica-
tions. The main challenges in IONPs are fluid stability due to agglomeration in a saline condition.
This paper aims to investigate the colloidal stability of citric acid (CA), sodium dodecyl sulphate
(SDS) and polyvinyl alcohol (PVA) under various molar ratios and levels of salinity. Firstly, the IONPs
were synthesized using a facile co-precipitation approach. Secondly, the IONPs were coated using a
simple dip-coating method by varying the molar ratio of CA, SDS and PVA. Next, the coated IONPs
were characterized by using an X-ray Diffractometer (XRD), Fourier transform infrared spectroscopy
(FTIR), and a Field Emission Scanning Electron Microscope (FESEM) for the morphological and
crystallographic study of coated IONPs. Finally, the coated IONPs were characterized for their zeta
potential value and hydrodynamic size using a Zetasizer and their turbidity was measured using a
turbidity meter. It was found that at a low salinity level, 0.07 M of CA-IONPs, a high zeta potential
value, a smaller hydrodynamic size, and a high turbidity value of −40.9 mV, 192 nm and 159 NTU
were observed, respectively. At a high salinity level, 1.0 M SDS-IONPs recorded a high zeta potential
value of 23.63 mV, which corresponds to a smaller hydrodynamic size (3955 nm) and high turbidity
result (639 NTU). These findings are beneficial for delivering cutting-edge knowledge, especially in
enhanced oil recovery (EOR) applications.

Keywords: colloidal stability; citric acid; iron oxide nanoparticles; PVA; SDS

1. Introduction

Iron oxide nanoparticles (IONPs) have been extensively used in numerous applications
including pharmaceuticals [1], magnetic resonance imaging (MRI) [2], drug delivery [3],
biomedical application [4] and in the oil and gas industries [5–9]. This is due to their
intrinsic properties such as low cost, low toxicity, small size, high size-to-volume ratio and
the fact that they possess superparmagnetism [10]. In the oil and gas sector, the application
of IONPs has always been linked to the utilization of magnetic resonance to locate oil wells.
However, the application of IONPs in enhanced oil recovery (EOR) has advanced and has
been investigated more widely. Shalbafan et al. (2020) and Safaei et al. (2020) demonstrated
the ability of IONPs to improve oil recovery via the wettability alteration of sandstone and
carbonaceous rock [5,11]. In addition, Khalil and co-workers proved that IONPs can act as
a mobility control agent and assist in the formation of structural disjoining pressure [12].

One of the main challenges in utilizing nanoparticles is the stability of IONPs under
harsh reservoir conditions. The harsh conditions in the reservoir can hinder the mobility
and the ability of the nanoparticles to distribute inside the porous media. The interaction
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between these magnetic nanoparticles tends to induce aggregation [13]. Typical salinity
can range up to >1 M for monovalent and divalent salts and temperatures can reach up to
150 ◦C [14]. In order to minimize the dispersion stability issues of IONPs in the aqueous
medium, a facile approach to surface coat the IONPS with a coating agent was introduced.
The surface coating process was introduced to reduce precipitation and agglomeration
issues by providing sufficient repulsive interactions that could stabilize the magnetic and
the Vvan der Waals attractive forces on the surface of the IONPs [15].

Recently, various types of coating agent have been used to overcome the potential
aggregation and instability problem. These coating agents include citric acid (CA) [13–15],
sodium dodecyl sulphate (SDS) [5,6,16], polyvinyl alcohol (PVA) [7,17], poly(amino acid)s [18]
and polyacrylamide (PAM) [12]. According to Cheraghipour, Javadpour and Medizadeh [19],
CA was utilized to stabilize the IONPs in a suspension due to its hydrophillicity properties
and its ability to provide a site for surface functionalization. SDS, on the other hand, is
an anionic surfactant that can form multilayers together with water on the surfaces of the
IONPs [20]. In addition, hydrophilic PVA has hydroxyl groups attached to the carbon
structure that can further improve the hydrophilic nature of IONPs and their dispersion in
the aqueous phase [21]. It has been well established that these coated IONPs have superior
characteristics compared with bare IONPs. Nevetheless, an investigation of surface-coated
IONPs and the ability of the coating agent to improve colloidal stability in a high saline
environment is still lacking in the literature. Previous literature studies mostly focused on
the aqueous phase. The dispersion of nanoparticles in a saline condition is difficult because
the strong ionic strength of the saline solution offsets the electrostatic interaction between
the nanoparticles. A good colloidal stability is necessary to maintain a high surface area
of the nanoparticles. When the nanoparticles are well dispersed in the solution, sufficient
repulsive interactions between the particles were achieved [19]. Hence, these can prevent
further aggregation and obtain a thermodynamically stable colloidal solution.

This paper compares the colloidal stability of different types of coating agents in
order to elucidate the effects of the molar ratio of coating agents and salinity on the
zeta potential values, hydrodynamic size and turbidity. In addition, a mechanism of the
dispersion stability ofeach coating agent, namely CA, SDS and PVA, was subjected to a
saline environment and this is also illustrated. The coating agents selected in this study were
based on their superior performance in oil recovery via wettability alteration mechanisms
and their stability in aqueous suspension. Therefore, this research aims to select the best
conditions of surface-coated IONPs which provide the highest colloidal stability in a saline
environment. This outcome is very important for the design of optimal coating conditions
and for the further development of such nanoparticles in EOR application.

2. Materials and Methods
2.1. Materials

Iron (III) chloride hexahydrate (FeCl3·6H2O, R&M Chemicals, Baddi, India), iron (II)
chloride tetrahydrate (FeCl2·4H2O, Sigma Aldrich, St. Louis, MO, USA, purity ≥ 99.0%),
ammonium hydroxide (NH4OH, R&M Chemicals, 25 wt%), sodium chloride (NaCl, Fisher,
purity ≥ 99.91%), polyvinyl alcohol (PVA, Sigma Aldrich) with an average molecular weight
(MW) of 89,000 g/mol and a hydrolysis degree of 99%, sodium dodecyl sulphate (SDS,
Sigma Aldrich) and citric acid (CA, Sigma Aldrich) were used throughout the experiment.

2.2. Synthesis of Bare Iron Oxide Nanoparticles

The bare IONPs were synthesized via a facile co-precipitation method [22]. Initially,
12.2 g of FeCl3·6H2O (0.451 M) and 4.487 g of FeCl2·4H2O (4.487 M) were added to a
three-necked flask filled with 400 mL of distilled water. The mixture was heated to 75 ◦C
and mixed at 500 rpm for 30 min to obtain a homogenous solution. The reaction was carried
out under nitrogen gas protection to prevent further oxidation of Fe2+ into Fe3+. When
the mixture turned to a dark-orange colour, ammonium hydroxide was added dropwise
to the solution while stirring for 2 h until the pH reached 10. At this stage, the mixture
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had changed colour to black. The solution was stirred for another 30 min to allow the
reaction to be completed and cooled to room temperature. The black precipitate formed
was separated by magnetic decantation and washed three times with distilled water to
remove any impurities. The precipitate collected was dried in the oven (Universal oven,
Memmert) at 60 ◦C for 12 h. The experimental setup of the synthesis is shown in Figure 1.
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Figure 1. The experimental setup for synthesis of bare iron oxide nanoparticles.

2.3. Surface Modification of Iron Oxide Nanoparticles with CA, SDS and PVA

CA with 0.1 M was dispersed in distilled water and stirred vigorously at 40 ◦C for
one hour. At the same time, 4.6307 g of bare iron oxide (1 M) nanoparticles were dispersed
in 20 mL of distilled water and sonicated using an S80 Elmasonic for 30 min at 600 W.
The combination of CA and iron oxide was mixed at a low speed for 20 h at 30 ◦C to
allow the surface modification process to take place. The homogenous solution was then
centrifuged using a benchtop centrifuge (3–18 K, Sigma) at 1000 rpm for 15 min to separate
the surface-modified iron oxide precipitate from the solution. The process was repeated
three times with a series of washes to remove impurities. The precipitate was collected and
dried in the oven for 12 h at 60 ◦C. The surface modification step was repeated for the SDS
and PVA in a varying molar ratio (0.07 M, 0.5 M, and 1.0 M). The surface-coated iron oxide
nanoparticles for the CA, SDS and PVA will be annotated as CA-IONPs, SDS-IONPs and
PVA-IONPs for the following sections of the article for simplicity.

2.4. Preparation of CA-IONPs, SDS-IONPs and PVA-IONPs in Saline Solution

Saline solution was prepared by dispersing 177.7 ppm of NaCl in distilled water.
0.1 wt% of CA-IONPs was dispersed in the saline solution and sonicated at 25 ◦C for 15 min
using an ultrasonic bath (Grant XUBA 1, Grant). The same procedure was repeated for
SDS-IONPs and PVA-IONPs at 5000 ppm, 17500 ppm, 30000 ppm, 35177 ppm, respectively.

2.5. Characterization of CA-IONPs, SDS-IONPs and PVA-IONPs

The crystallite structure of the bare iron oxide nanoparticle, CA-IONPs, SDS-IONPs
and PVA-IONPs under various molar ratios was studied using an X-ray diffraction system
(ULTIMA IV, Rigaku, Japan) in the range 20◦ to 80◦. The surface morphology of the
synthesized samples was examined by field-emission scanning electron microscopy (FE-
SEM, JSM-7600 F, JEOL) and the chemical binding of the surface modifiers on iron oxide
nanoparticles was analysed using Fourier-transform infrared spectroscopy (FTIR, Spectrum
One, Perkin Elmer) at wavelengths between 400 and 4000 cm−1. Finally, the zeta potential
(Zeta Sizer Nano, Malvern) was used to measure the hydrodynamic size and zeta potential
value of CA-IONPs, SDS-IONPs and PVA-IONPs under various molar ratios and salinity
ranges. The turbidity of the synthesized samples was also measured using a turbidity
meter (2100Q, Hach).
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3. Results

Different types of chemical characterization techniques were conducted to determine
and confirm the properties of the prepared nanoparticles in this work.

3.1. Morphological and Crystallographic Analysis

The crystallographic structure and morphology of the synthesized nanoparticles were
determined by XRD and FE-SEM, respectively. Based on the obtained XRD results in
Figure 2a, the crystal structure of bare IONPs is cubic with a space group Fd-3m (227)
and lattice parameters of a = b = c = 8.3480 Å. The peaks were in line with the stan-
dard XRD patterns of iron oxide (Fe3O4) (ICDD Card No 01-088-4625) with the angles of
2θ = 30.32◦, 35.59◦, 43.27◦, 53.58◦, 57.37◦ and 62.79◦ corresponding to (220), (311), (400),
(422), (511), and (440) crystalline planes of Fe3O4 nanoparticles, respectively [5]. Because
there no additional peaks were formed, it can be confirmed that the nanoparticles were
successfully synthesized [22]. Figure 2b–d showed the peak intensity for CA-IONPs, SDS-
IONPs and PVA-IONPs under various molar ratios, respectively. According to a previous
study by Nadeem et al. (2016), the broadening of XRD peaks after the IONPs were coated
was due to a reduction in the crystallite size and crystallinity of the complexes [23]. How-
ever, in this study it is believed that the broadening of peaks could be due to the concealing
effect of the coating agents from the IONPs. The bare IONPs and other coated IONPs
showed conformable peaks presenting semi-crystalline IONPs in terms of the surface mor-
phology. The semi-crystalline was due to the combination of narrow (crystalline) peaks
and broader (amorphous) peaks of the coating agents CA, PVA and SDS on the surface of
the IONPs.
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Figure 2. XRD peaks of (a) bare IONPs and various molar ratios of (b) CA-IONPs, (c) PVA-IONPs
and (d) SDS-IONPs.

The crystallite size of the bare iron oxide nanoparticle, CA-IONPs, SDS-IONPs and
PVA-IONPs under various molar ratios were obtained from the XRD results by applying
the Scherrer equation:

d =
kλ

Bcosθ
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where d is the crystallite size in the nanometer, K is the Scherrer constant (0.9), λ is the
wavelength of the X-ray source (0.15406), β is the full-width half maximum (FWHM) in
radians and θ is the peak position in radians. Figure 3 shows FESEM images and the
particle size distribution (inset of figure) of synthesized IONPs. Particles with sizes below
100 nm and clusters of variable sizes can be observed for three types of coating agents
under different molar ratios. Under increasing molar ratios, the particles seem bigger
and exhibit a quasi-spherical smooth surface. Figure 3c,f,i display larger agglomerates;
hence, the greatest in particle size at 1.0M of CA-IONPs, SDS-IONPs, and PVA-IONPs.
However, under the lower molar ratio of 0.5M CA-IONPs, SDS-IONPs, and PVA-IONPs,
the samples showed a better dispersion of the particles on the IONPs surface (Figure 3b,e,h).
The irregularities on the surfaces of 1.0 M CA-IONPs, SDS-IONPs, and PVA-IONPs may be
attributed to an excess of the coating agent. These results indicate that the presence and
amount of coating agents played an important role in the morphology of the synthesized
samples. The smallest particle size and least agglomerated can be observed at 0.5 M of
SDS-IONPs and 0.5 M of CA-IONPs at 33.9 nm. The particle size distribution is shown
in the inset right corner of Figure 3a–i. The average crystallite size of the synthesized
nanoparticles and the size measured from FE-SEM images were tabulated in Table 1.
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Figure 3. FE-SEM images of (a) 0.07 M CA-IONPs, (b) 0.07 M PVA-IONPs, (c) 0.07 M SDS IONPs,
(d) 0.5 M CA-IONPs, (e) 0.5 M PVA-IONPs, (f) 0.5 M SDS-IONPs, (g) 1.0 M CA-IONPs, (h) 1.0 M
PVA-IONPs and (i) 1.0 M SDS-IONPs.

Figure 4 shows the comparison in size between the crystallite size, grain size and
particle size. The X-ray peak broadening obtained from XRD was used to evaluate the
crystallite size and lattice strain by Williamson-Hall (W-H) analysis. However, the mean
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particle size of the synthesized nanoparticles was estimated from the FE-SEM results. The
crystallite size was generally not the same and usually smaller compared with the particle
size due to the presence of polycrystalline aggregates [24].

Table 1. List of surface-coated iron oxide nanoparticles with their respective crystallite sizes.

Type of Surface
Coating Molar Ratio (M) Crystallite Size from

XRD (nm)
Size Measured from

FE-SEM (nm)

CA-IONPs 0.07 9.726 34.9
CA-IONPs 0.5 12.399 33.9
CA-IONPs 1.0 10.643 42.7
SDS-IONPs 0.07 9.865 38.5
SDS-IONPs 0.5 8.595 33.9
SDS-IONPs 1.0 13.257 54
PVA -IONPs 0.07 9.635 34.3
PVA -IONPs 0.5 9.603 47.9
PVA -IONPs 1.0 9.969 52.2
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Based on the result in Figure 5a, it is evident that all nanoparticles can be well dispersed
in water and exhibited no signs of severe particle agglomeration. It was also observed
that after a period of 24 h, no sedimentation occurred (Figure 5b). The observations also
agree with the results reported by Khalil and co-workers [12], stating that high colloidal
stability is vital in various oil and gas applications as it can maintain the surface area of
the nanoparticles. Interestingly, a superparamagnetism state allows the particles to avoid
rapid agglomeration in the absence of external magnetic fields due to their zero coercivity
(Hc) [12]. When a single domain magnetism was applied, all of the magnetic spin was in
the same direction [25]. This can be seen in Figure 5c, as all the nanoparticles are easily
separated from the suspension using a permanent external magnet.

3.2. FTIR Analysis

FTIR spectroscopy was used to identify the type of functional groups present on the
surface of the synthesized nanoparticles during the coating process. Figure 6 shows the
FTIR spectrum of CA-IONPs, SDS-IONPs and PVA-IONPs. According to Figure 6, the peak
between 500–800 cm−1 is ascribed to the stretching of Fe-O bonding in the bare IONPs and
coated IONPs [3,5,22,26]. When the bare IONPs were coated with citric acid, two important
features seemed to appear at 1389 cm−1 and 1610 cm−1. These were attributed to the OH



Polymers 2022, 14, 4787 7 of 16

group of the citric acid and asymmetric stretching of C=O vibration from the COOH group
of the citric acid [14,15]. There was a small shift from ~1655 cm−1 to ~1630 cm−1 between
the bare IONPs and CA-IONPs spectra due to the chemisorption of citrate ions onto the
surface of IONPs, as reported in the literature [14,26]. The carboxylate species from the
citric acid adsorbed onto the Fe atoms of the iron oxide surface portrayed a partial single
bond character to the C=O bond [19]. Another narrow band was observed at ~3398 cm−1

for bare IONPs, but after the coating process, this band became broader. This could be due
to the excellent bonding between the carboxylate from the citric acid with the IONPs and
converting the IONPs into a hydrophilic nature [27].
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FTIR was further extended to study the conjugation of PVA with IONPs. The FTIR spec-
trum shows the alcoholic O-H stretching band in the polymers matrix chain at ~3406 cm−1

and ~3726 cm−1 [3,28]. The other bonds at ~1626 cm−1 and ~1390 cm−1 were attributed
to the H-O-H and C-C stretching bands, respectively. The CH2 low band appeared at
~819 cm−1; this could be ascribed to the weak PVA film [29]. All the important character-
istic bands were identified, showing that PVA was successfully coated onto the surface
of IONPs. The FTIR spectrum for IONPs coated with SDS showed a characteristic band
at 2919 cm−1 and 2850 cm−1 due to the stretching vibrations of the C-H group of SDS.
Furthermore, an absorption band was found at ~1215 cm−1, allocated to the stretching
mode of S=O of the SDS. Based on the FTIR analysis, it was verified that IONPs were
covered with the SDS [5].

3.3. Colloidal Stability Analysis of Synthesized Nanoparticles

The hydrodynamic size and zeta potential values of bare IONPs, CA-IONPs, PVA-
IONPs and SDS-IONPs were measured using a Zetasizer and the turbidity was measured
via a turbidity meter. Figures 7–10 showed the results for the hydrodynamic size, zeta
potential, and turbidity under various molar ratios (0.07 M, 0.5 M, 1.0 M) and different
salinities (177.67 ppm, 5000 ppm, 17500 ppm, 30,000 ppm, and 35,177 ppm). In this study,
the molar ratio of the coating agent and salinity were selected as one of the parameters,
which was effective in controlling the zeta value and hydrodynamic size of the synthesized
nanoparticles following the statements made in the related literature [14,19,24,25]. The
interaction between coated IONPs at low and high salt concentration is illustrated in
Scheme 1.
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Zeta Potential Analysis

Figure 7a–c show the zeta potential values at various molar ratios and salinities for
CA-IONPs, PVA-IONPs and SDS-IONPs, respectively. Based on Figure 7, the zeta values
of bare IONPs increased from 15.43 mV to 23.23 mV when the salinity was increased to
5000 ppm. However, at above 5000 ppm, the zeta values started to reduce to 7.25 mV
(around a 23% reduction). At the lower salinity, the pH of the salinity was nearly neutral.
Therefore, the higher intensity of the surface charge may allow the bare IONPs to be more
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stable due to electrostatic repulsion forces [7]. The reduction in zeta value as the salinity
was increased to 35177 ppm was due to the increase in monovalent ions (Na+) from the
NaCl solution that makes the electrostatic interaction less favorable [7]. A higher salinity
level indicates higher ionic strength in the medium [30].
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After coating with CA onto the surface of IONPs, the colloidal stability was improved.
This is based on the high zeta potential values recorded. The zeta potential values of 0.5 M
CA-IONPs at 177.67 ppm, 5000 ppm, 17500 ppm, 30000 ppm and 35177 ppm were −34.4,
−26.5, −19.4, −16.5 and −17.9 mV, respectively. The improved stability of the nanoparticles
is due to the repelling forces among each other [16]. According to Figure 7a, at 177.67 ppm,
0.07 M of CA-IONPs have the highest zeta potential values of −40.9 mV, displaying a good
colloidal stability and high electrostatic repulsive force. This clearly shows that 0.07 M
CA-IONPs are adsorbed on the surface of the IONPs resulting in high negative surface
charges, as reported in the previous literature [14,15]. In addition, the high negative zeta
value further confirmed the presence of negatively charged carboxylate ions on the IONPs
surface (Scheme 1). However, in the higher salinity region, the stability was compromised
as zeta potential values reduced by 68% from −40.9 to −12.9 mV at 0.07 M CA-IONPs.
This result suggests that the positively charged Na+ ions presence in the saline solution are
bounded to the negatively charged CA-IONPs via electrostatic interactions [17] (Scheme 1).
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The zeta potential for PVA-IONPs showed that under the higher molar ratio of PVA,
the zeta value shifted to a more negative value (Figure 7b). The increase in the negative
surface potential at 1.0 M PVA-IONPs can be ascribed to the ionization of the hydroxyl
functional groups in the PVA. The negatively ionized hydroxyl groups in the PVA increase
the zeta potential of 1.0 M PVA-IONPs and improve the electrostatic repulsion between
the particles, providing more stability to the dispersion [7,17]. This result agrees with
Tang et al. (2006) stating that the protective role of the PVA in preventing an agglomeration
of IONPs is evident as the electrostatic repulsion between the polymer chains can hinder
the agglomeration through steric hindrance [31] (Scheme 1). However, at a higher salinity,
the negative zeta value at 1.0 M PVA-IONPs reduced from −8.0 mV to −2.7 mV. At the high
salinity, the amount of positively charged ions also increased, dominating the negatively
charged hydroxyl functional groups in the PVA. This therefore led to insufficient capping
sites of PVA-IONPs resulting in the agglomeration [32].

Based on Figure 7c, 1.0 M SDS-IONPs have the highest zeta potential value across all
salinity ranges. At a low salinity, the highest zeta value for 1.0 M SDS-IONPs was −34 mV,
whereas in the high salinity region, the highest zeta potential value was 23.6 mV, which
indicates a good stability. These results further proved the potential of SDS in improving
thestability of IONPs in agreement with the Derjaguin, Verway, Landau, and Overbeek
(DVLO) theory. This theory stated that the fundamental mechanism for dispersion stability
comprises two types of dispersion forces: 1) electrostatic stabilization and 2) steric stabi-
lization. Electrostatic stabilization can be based on the positively or negatively charged
nanoparticles, formation of electrostatic double layer (EDL) by counter ions from the solu-
tion and electrostatic repulsion between the overlapping EDL (Figure 7) [33]. On the other
hand, steric stabilization is based on the use of a bulky polymer chain or long-chained
molecules on the particle’s surface, to form a steric protective layer that prevents direct
particle contact and to create a steric repulsive force from the polymer chain, thereby in-
creasing the surface charge (Figure 8) [5,16]. In this case, the SDS is an electrostatic stabilizer;
therefore, the higher the amount of SDS coated on the IONPs’ surface, the more negatively
charged the nanoparticles become. As the salinity started to increase, the electrolyte ions
reduced the repulsion forces between the nanoparticles by neutralizing the surface charge
of the particles [5].

3.4. Effect on the Hydrodynamic Size

Figure 9a–c present the hydrodynamic size for CA-IONPs, PVA-IONPs and SDS-
IONPs at various molar ratios and salinities. The increase in the hydrodynamic size can be
correlated with the zeta potential value. As the value of the zeta potential approaches zero
under various salinities, the surface charge of the nanoparticles also decreases in intensity,
which is related to the increase in the ionic strength. The results in Figure 7 show that
some of the zeta potential values are near to zero. Therefore, neutralizing the nanoparticles’
surface charge may contribute to nanoparticle agglomeration, as indicated in Figure 9 as
hydrodynamic size distribution. Compared to the size of the dried nanoparticles (Figure 3),
the average diameter calculated in the solution was larger due to the Brownian motion in
the solution and any slight fluctuation of light intensity during the measurement [16].

In Figure 9a, under salinities of 177.67 ppm and 35177 ppm, the average hydrodynamic
size was 191.9 nm and 2152 nm of 0.07 M CA-IONPs, 138.2 nm and 3488.3 nm of 0.5 M
CA-IONPs, 316 nm and 3259.3 nm of 1.0 M CA-IONPs, respectively. The huge difference
in the hydrodynamic size indicated that salinity greatly induced the formation of larger
agglomerates of nanoparticles attributed to the high ionic strength of the medium [30]. At
35,177 ppm, when increasing the molar ratio from 0.07 M to 1.0 M the hydrodynamic size
also increased from 2152 nm to 3259 nm. Although the size is considerable, the zeta potential
values are also large at 35177 ppm of the NaCl solution. The smallest hydrodynamic size
that could be observed in the lower salinity region was 138.2 nm for 0.5 M CA-IONPs. This
condition corresponds to the high zeta potential value of −34.4 nm. The charge of citrate
ions plays a vital role in the stability of the nanoparticles in water since CAs are soluble
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in water [34]. In a citrate, ion contains three carboxyl groups. The electric charge of these
radical ions will create a repulsive force, hence making the nanoparticles more dispersed in
water [34].

Compared with PVA-IONPs, the hydrodynamic size was larger and formed bigger
agglomerates of up to 8300 nm (Figure 9b). The coating process using PVA produced
larger agglomerates due to the interparticle crosslinking of the long polymer chains as the
crosslinking agents [7]. The biggest hydrodynamic size is at 1.0 M PVA-IONPs, ranging
from 930 nm to 8143 nm. These results are parallel with the low zeta potential value in
Figure 7b, giving rise to van der Waal interparticle attraction and eventual coagulation
and flocculation. The smallest hydrodynamic size was found at 0.07 M PVA-IONPs at
177.67 ppm (930 nm). However, this result does not indicate a high zeta potential value
(1.2 mV). In this research, PVA was used to coat IONPs due to the creation of a steric barrier
of the hydrophilic polymer. This is consistent with Di Marco et al. (2007), stating that if
the polymer thickness of the coated IONPs is large enough, the van der Waals attraction
between the particles is insignificant compared to the Brownian thermal energy. When
the double layer is suppressed by the salt concentration, the access to each single chain of
polymer is limited due to the overlap of the polymer layers. This will lead to a high total
energy barrier and hence to a stronger repulsive force between the particles [30]. However,
this study revealed a different result where, with increasing salinity, the negatively charged
from the hydroxyl group tend to interact with the Na+ from the saline solution and be
neutralized [3]. The high hydrodynamic size of PVA-IONPs and low zeta potential values
under various molar ratios showed that the nanoparticles are prone to agglomeration,
which indicates instability of the synthesized nanoparticles [7,35].

At 35177 ppm, 0.07 M SDS-IONPs has the highest hydrodynamic size of around
4087.7 nm. When there is an insufficient amount of surfactant to keep the particles sepa-
rated, nanoparticle clusters could be formed [36]. Clustering of nanoparticles into large
clusters could increase the hydrodynamic size of the nanoparticles. However, at 1.0 M
SDS-IONP, the hydrodynamic size was smallest in most of the low salinity region (146 nm
at 177.67 ppm, 319 nm at 5000 ppm, 615 nm at 17500 ppm), corresponding to the high
zeta potential value at −34.3 mV, −26.8 mV, −24.9 mV, respectively. The hydrodynamic
size started to increase as the salinity increased. SDS is an anionic surfactant (negatively
charged); therefore, it has a strong affinity to positively charged ions such as Na+. As
the salinity increased, the electrostatic interaction became stronger. At very high salinity
values, the impact of extra electrolytes compressed the EDL around the nanoparticles,
hence causing the hydrodynamic size to be bigger, which justifies the results found in
Figure 9c and in the existing literature [37].

3.5. Effect on the Turbidity

Turbidity was used to measure the cloudiness of the solution. The value of the turbidity
measured in a nephelometric turbidity unit (NTU) corresponds to the concentration of
nanoparticles in the saline solution. The high value of turbidity indicates a good stability
of the dispersion. Figure 10a–c show the turbidity for CA-IONPs, PVA-IONPs and SDS-
IONPs at various molar ratios and salinities. Figure 10a,b showed that at 0.07 M has the
highest turbidity value for the CA-IONP and PVA-IONPs compared to bare IONPs and
SDS-IONPs. The high turbidity value for 0.07 M CA-IONPs (around 160 NTU) corresponds
to the previous results that have a high zeta potential value and low hydrodynamic size;
−40.9 mV and 191 nm, respectively. The high electrostatic repulsion force between the
nanoparticles and the saline solution rendered more stability to the dispersion as the
nanoparticles were less attracted to one another [38,39]. Therefore, less agglomeration
occurs due to a low hydrodynamic size. Although 0.07 M CA-IONPs maintained a high
turbidity value compared to other nanoparticles, they still experienced a reduction in
turbidity value throughout the salinity range. This may be because the salt ions may have
interacted with the synthesized nanoparticles.
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On the other hand, PVA-IONPs showed a decreasing trend in terms of their turbidity
results across the salinity. Although the range of turbidity values (165–435 NTU) was greater
compared to CA-IONPs (54–160 NTU), the zeta potential value and hydrodynamic size
do not support the turbidity findings. This could be due to PVA being water- soluble and
comprising large amounts of hydroxyl groups that will form strong hydrogen bonds with
the water molecules [40]. Therefore, the PVA-IONPs will remain soluble in the presence of
low-salinity water.

Interestingly, for SDS-IONPs, 1.0 M has a higher turbidity value at a salinity of
177.67 ppm and 5000 ppm. Above 5000 ppm, 0.07 M of SDS-IONPs started to have a
better turbidity value. The higher turbidity values at 1.0 M SDS-IONPs were 139 NTU and
63 NTU at 177.67 ppm and 5000 ppm, respectively. High salt concentration may cause
instability in the dispersion as it can decrease the solubility of the surfactant in the aqueous
phase. In general, 1.0 M of SDS-IONP showed a better consistency in terms of maintaining
the high turbidity value across all salinity regions.

4. Conclusions

This paper demonstrates the effect of the molar ratio and salinity of PVA, SDS and
CA on the zeta potential value, hydrodynamic size, and turbidity. Morphological and
crystallographic further confirmed that coating processes were successfully attached to the
surface of the IONPs. It was found that increasing the salt concentration caused instability
to the synthesized PVA-IONPs, SDS-IONPs and CA-IONPs. It was reported that 0.07 M of
CA-IONPs is the most stable at low salinities, resulting in the highest zeta potential value
(−40.9 mV), smallest hydrodynamic size (192 nm) and best turbidity value (160 NTU).
However, at high salt concentrations 1.0 M of SDS-IONPs have better stability as they are
able to maintain a high zeta potential value (−23.63 mV), hydrodynamic radius (3955 nm)
as well as the highest turbidity value (639.33 NTU). This work conclusively shows that CA
and SDS are better candidates for the surface coating of IONPS as they can maintain a good
stability in various salinity environments. In general, the presence of nanoparticles with
excellent colloidal stability is not only able to disperse well in a suspension, but also has
great potential in enhanced oil recovery application.
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