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Abstract: A solution casting method has been utilisedto fabricate plasticisednatural gelatin (NG)-
based polymer electrolyte films. The NG electrolyte with 50 wt.% glycerol and 13 wt.% sodium
nitrate (NaNO3) attained the highest ionic conductivity of 1.67 × 10−4 S cm−1. Numerous techniques
were used to characterisethe NG films to assess their electrochemical performance. The data obtained
from impedance spectroscopy for the plasticisedsystem, such as bulk resistance (Rb), arerelatively
low. Thiscomprehensive study has been focused on dielectric characteristics and electric modulus
parameters. The plasticisedsystem has shown eligibility for practice in energy storage devices with
electrochemical strength up to 2.85 V. The TNM data based on ion transference number (tion) and
electron transference number (te) determine the identity of the main charge carrier, ion. The redox
peaks in the cyclic voltammograms have not been observed as evidence of charge accumulation other
than the Faradaic process at the electrode–electrolyte interface. The GCD plot reveals a triangle shape
and records arelatively low drop voltage. The high average efficiency of 90% with low ESR has been
achieved over 500 cycles, indicating compatibility between electrolyte and electrode. The average
power density and energy density of the plasticisedare 700 W/kg and 8 Wh/kg, respectively.

Keywords: natural polymer; energy storage device; NaNO3 salt; glycerol plasticizer; EIS; LSV and
TNM; CV and GCD

1. Introduction

Electrolytes facilitate the ionic mobility between electrodes and are thus regarded as the
core electrochemical devices. However, due to tsome disadvantages of liquid electrolytes,
such as electrolyte leakage, high flammability and chemical instability, they are replaced
by polymers [1]. On the other hand, solid polymer electrolytes (SPEs) are better in certain
ways, including outstanding electrochemical stability, adaptability, high specific energy,
and simplicity of fabrication into thin films [2]. Owing to all these properties, SPEs can be
used in a range of solid-state electrochemical devices, such as supercapacitors, batteries,
fuel cells, and chemical sensors [3]. However, low electrical conductivitymust be optimised,
which is a major problem with SPEs [4]. There are frequently crystalline and amorphous
phases present in polymer electrolytes’ chemical structures [5]. Based on what is known,
ionic transport is exclusively available in the amorphous part of SPEs [6]. Currently,
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it has been demonstrated that the use of biopolymer-based electrolytes is essential for
future applications in electrochemical devices such as EDLCs and batteries [6–10]. Gelatin,
a proteinrich in proline and hydroxyproline amino acids, can be obtained by hydrolysis
collagen [11]. It also originates from the bones and skins of animals. Bovine and porcine
have previously been used extensively as foaming agents, emulsifiers, biodegradable
packaging materials, and colloids [11,12]. Furthermore, the formation of a flexible and
practically colorless film allows this biochemical substance to be frequently employed in
food sector packaging. Pigskin and other sources of mammalian gelatin are costly because
of the rising demand and intense manufacturing competition. Therefore, researchers have
found gelatin as an appropriate substitute [13].

Amide and hydroxyl groups are normally abundant in the gelatin structure [14]. The
presence of lone pair electrons at the heteroelements, as shownin Figure 1, is responsible
for ionic conduction. The film made from gelatine doped with ionic salts, such as lithium
perchlorate, lithium chloride [15], and europium triflate [16], has comparatively good
transparency, adhesiveness, plasticity, and electrical current conductivity. The world has
seen a progressive development of flexible energy devices, including supercapacitors,
batteries, and DSSC in reference to a proper electrolyte [17–19].
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Figure 1. Chemical structure of Gelatin [14].

Electrolytes play an important part in the construction of energy devices. Several
strategies have been developed to increase the conductivity of the electrolyte, particularly
polymer blending, salt addition, and plasticiser used. In research conducted by Chai and
Isa [20], it was revealed that adding glycerol into CMC solution couldimproveionic conduc-
tivity and mechanical strength. Figure 2 shows that glycerol possesses many OHmoieties
in its backbone chain, enabling ion transport in polymer electrolytes after salt addition.
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The electrical double-layer capacitor (EDLC) is a reasonably simple supercapacitor de-
vice (SCD) which uses carbon electrodes since this element comesin different allotropes and
possesses a large surface area, high electrical conductivity and porosity [21]. The charged
ions are prominently adsorbed and desorbed onto the large surface area of carbon [22].
As it is known that the key factors in assessing EDLCs consist of specific capacitance
(Cspe), equivalent series resistance (Resr), energy (E) and power density (p),the technol-
ogy of EDLCs can find applications in electronics, communication devices, and hybrid
vehicles [23]. Designing efficient EDLCs with materials that haverelatively high electro-
chemical capacitance remains a great challenge. Activated carbon (AC) is regarded as the
optimum active component for the electrodes in EDLCs due to its large specific surface
area (2500 m2/g), excellent conductivity, and affordable price [16]. Carbon black (CB) is
the most often utilized carbon type in electrode manufacturing. The CB is a reinforcing
filler used to improve dimensional stability and conductivity. One ongoing concern with
CB is its smallersurface area than AC, approximately 25 to 1500 m2/g [24]. Condensed
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matter physics has several fascinating areas of study, including the enhancement of di-
electric relaxation and ion conduction mechanisms in solids. Investigation of dielectric
relaxation in SPEs primarily focuses on acquiring information regarding the nature of
cation–polymer interactions. The dielectric constant value indicates a polymer material’s
capacity to liquefy salts [25,26].

In view of all previous studies conducted on SPEs, incorporating natural beef gelatin
(NBG) and sodium salts has not been dealt with yet. The key purpose of the current work is
to employ a novel, inexpensive, biodegradable SPE based on NBG:NaNO3 doped with var-
ious amounts of plasticiseras the electrolyte. Furthermore, the impact of plasticiseramount
on a SPE’s electrical and structural features has been studied.

2. Experimental Methodology
2.1. Electrolyte Preparation

A solution casting process was used to prepareseveralunplasticisedandplasticisedNBG
systems. To prepare five distinct unplasticized NBG solutions, 1g of NBG was dissolved in
60 mL of 1 wt.% acetic acid. This was followed by preparing five further solutions separately
by dissolving a predetermined amount of NaNO3 (13 wt.%) in those NBG solutions.

The final series of NBG:NaNO3 solutions were subsequently plasticisedwith varying
amounts of glycerol while continuously stirring until clear homogeneous solutions were
obtained at room temperature. In order to enable the solvent to evaporate entirely at room
temperature, each solution was individually poured onto a series of clean Petri dishes (8 cm
in diameter) and enclosed with filter paper. The samples in each Petri dishes were coded as
follows: BGNN0, BGNN1, BGNN2, BGNN3, BGNN4 and BGNN5 with glycerol content
of 0, 10, 20, 30, 40 and 50 wt.%, respectively. Table 1 shows the NBG:NaNO3:glycerol film
composition for each created film.

Table 1. Composition of unplasticisedandplasticisedNBG:NaNO3:glycerol films.

Sample Code NBG (g) NaNO3 (wt.%) Glycerol (wt.%)

BGNN0 1 13 0
BGNN1 1 13 10
BGNN2 1 13 20
BGNN3 1 13 30
BGNN4 1 13 40
BGNN5 1 13 50

2.2. Electrochemical Impedance Spectroscopy (EIS)

The NBG films weretested using impedance data at a frequency rangeof 50 Hz–MHz
using the LCR meter (HIOKI 3531Z HITESTTER, Japan) connected to a computer. The real
and imaginary components of impedance spectra were found by sandwiching the NBG
film among two stainless steel blocking electrodes.

The electrochemical study of NBG films (i.e., BGNN5) was performed in an attempt to
specify the decomposition voltage (electrochemical stability) using LSV (Digi-IVY DY2300
potentiostat, Neware, Shenzhen, China) at room temperature. The operation potential
ranges from 0 to 2.5 V, with a sweep rate of 10 mV s−1.

For the BGNN5 sample, the transference number (TNM) was determined using the
DC polarizationmethod at a constant voltage of 0.2 V at room temperature. In the same way
astheimpedance measurement procedure, the NBG film was placed between two stainless
steel electrodes. The record of the current–time profile was obtained from the V&A device
(Shenzhen, Neware, China, DP3003 digital DC power).
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2.3. EDLC Fabrication

The electrode construction for EDLCs was initiated by implementing the dry mix
procedure. It comprised a 0.25g carbon black (CB) and 3.25 g activated carbon (AC) in
a planetary ball miller, followed by dispersing in a solution of N-methyl pyrrolidone (NMP)
(15 mL) and polyvinylidene fluoride (PVdF) (0.5 g). This mixture was stirred for a few
hours until the appearance of a black solution.

Afterwards, the black solution was used to cover a current collector (i.e., Al-foil) using
a doctor blade. In an oven, the collector was maintained at 60 ◦C to ensure the coating and
drying of the film over the electrode (geometric area 2.01 cm2 and thickness of ~0.02 cm).
Prior to use, the collector was kept in a desiccator containing silica gel.

The general cell configuration is shown below:
AC electrode|conducting SPE|AC electrode in the EDLC.
The CR2032 coin, as an electrochemical cell, was packed with the above components.

As a preliminary test for evaluating the EDLC, cyclic voltammetry was recorded.

2.4. CV Measurements

For the BGNN5 sample, cyclic voltammetry (CV) was conducted between potentials
of 0 and 0.9V at various sweep rates.

3. Results and Discussion
3.1. Impedance Spectroscopy Study

The impedance spectra were analyzedto investigate the ionic conductivity of polymer
electrolytes. Equation (1) elucidates the established relation between ionic conductivity
and the number and mobility of charge carriers [27,28].

σ = ∑
i

niqiµi (1)

where ni, qi and µi are mobile ion number, the charge on the mobile carrier, and the mobility
of charge carrier, respectively. Equation (2) is helpful to calculate the DC ionic conductivity
(σdc) of NBG electrolyte films.

σdc =
l

Rb A
(2)

where l, Rb, and A represent film thickness, bulk resistance and surface area of electrolyte
film, respectively. In Figure 3, the impedance spectra for all samples are exhibited. The
impedance spectra can be recognisedfrom two features; a high-frequency semicircle and
a low-frequency spike (straight line). The reason forthe appearance of spike response is the
free charge accumulation at the interfaces between the solid electrolyte and the electrode
surface. This causes the formation of an electric double-layer capacitor [22]. The polymer
electrolytes have bulk conductivity, which isresponsible for the semicircle response [23].
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Figure 3. EIS plot for (a) BGNN0, (b) BGNN1, (c) BGNN2, (d) BGNN3, (e) BGNN4 and (f) BGNN5.

In Figure 3b–e, the presence of the low-frequency spike and the diameter reduction
inthe high-frequency semicircle can be attributed to blocking ion transport at stainless-
steel electrodes, i.e., hindering double-layer capacitance at the blocking electrodes [24].
Furthermore, with 20–40% plasticiseraddition, the ascending semicircle gradually shrinksat
the high-frequency region. This occurs due to a drop in the NBG electrolyte films’ bulk
resistance (Rb) and, in turn, an increase in ionic conductivity [25]. It is apparent from
Figure 3f that the semicircular portion has vanished. An explanation for this is the existence
of glycerol as a plasticiserfacilitating ion migration through increased flexibility. The precise
value of Rb can be determined from the data analysis by taking the straight line’s intercept
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on the real axis of the impedance plot. In Table 2, the σdc is quantified for all NBG electrolyte
films. The addition of plasticiserimproved the ionic conductivity from 10−10 to 10−4 S/cm.

Table 2. Values of DC conductivity for all NBG electrolytes.

System DC Conductivity (S/cm)

BGNN0 3.34 × 10−10

BGNN1 8.92 × 10−8

BGNN2 1.81 × 10−6

BGNN3 1.34 × 10−5

BGNN4 7.43 × 10−5

BGNN5 1.67 × 10−4

Through the inhibition of ionic crystal growth, the plasticisercan also contribute to
improving ionic conductivity, meaning that it reduces the columbic interaction. Collectively,
salt and plasticiserenhanceionic conductivity increase the ni and µi, respectively [29]. In
this study, the highest σdc measured was 1.67 × 10−4 S cm−1.

3.2. Dielectric Properties

In Figures 4 and 5, the frequency dependence of dielectric constant (E′ or Er) and
dielectric loss (E′′ or Ei), respectively, is represented. Obviously, as the frequency increases,
both E′ and E′′ decrease proportionally to the minimum, followed by a plateau at high
frequencies. The high values of E′ and E′′ at low frequencies can be explained based
on electrode polarization(EP) [30,31], which is the resultant of charge accumulation at
the electrode–electrolyte interface [32]. In the E” spectra, the lack of dielectric relaxation
peaks is a consequence of masking during the segmental relaxation behaviour of the
polymer by σdc of carriers [30,33]. The loss peaks in polymer electrolytes arehidden
because of the masking of dipolepolarizationrelaxation by mobile charged species at high
electrical conductivity [34].
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To comprehensively understand the relaxation process, the dielectric loss tangent
(tanδ) versus frequency is the best choice to focus on, as shown in Figure 6. It is seen that
there is a peak that resulted from the translational ion dynamics, reflecting the conductivity
relaxation of mobile ions [35,36]. The phenomenon within the polymer electrolyte is the
polymer segmental mobility that shortens the relaxation time and increases the charge
transferring. In the relationship of τ = 1/2πf max, τ is the relaxation time for the ionic
carriers [37]. Thus, the higher plasticisercontent in the polymer electrolyte can improve the
flexibility of segmental motion as well as ionic transport. The tanδ plot’s response shape is
built upon Koop’s phenomenological principle [38,39].
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Hence, tanδ increases with frequency until it reaches its maximum value at vary-
ingtemperatures, after which it decreases. This is because the low-frequency pattern raises
the ohmic component of current more significantly than the capacitive one. In contrast,
the high-frequency pattern corresponds to rising the capacitive component in response to
frequency, but the ohmic component of the current remains nearly unchanged with fre-
quency [38,40]. The final feature observed in the tanδ plot is the broad peak, identifying the
non-Debye type of the relaxation process [41]. The plot also shows that when the plasticizer
increases, the tanδ peak maximum shifts to a higher frequency. As the plasticizer increases,
the peak frequencies shift forward, implying that the relaxation time decreases (see Table 3).
As abovementioned, this behaviour leads to the fact that a parallel RC element can express
the system. According to (σdc = L/RbA), R is proportional to conductivity. From this relation
σ = σoexp(Ea/KTE′), where Ea is the activation energy, σdc is increased with an increase in
the plasticizer content and thus the (tanδ)max shifts to the higher frequencies owing to E′

improvement of the electrolyte system by plasticisersE′ value [42]. The broadness of the
tanδ peaks shows the existence of more than one relaxation process, which is non-Debye
type one [41].

Table 3. Variation of relaxation frequency (fmax) with relaxation time (τ).

fmax (Hz) Relaxation Time (s)

122 1.31 × 10−3

1600 9.95 × 10−5

23,204 6.86 × 10−6

102,499 1.55 × 10−6

205,019 7.77 × 10−7

3.3. Electric Modulus Analysis

A complex phenomenon in polymer electrolytes is ion conductivity. Studying a poly-
mer’s dielectriccharacterstics induced by ion response involves using electric modulus
parameters, represented by the reciprocal electric permittivity. In polymer electrolytes, ex-
amination of this modulus can be used to control the EP, which acts to suppress the charge
accumulation near the electrodes [6,43–45]. Equations (3) and (4) illustrate how dielectric
modulus assessment is used to obtain a deep knowledge of the dielectric permittivity of
the systems [6,45].

M′ = ZiCoω (3)

M′′ = ZrCoω (4)

where the actual and the pretend components of electrical modulus are symbolised by M′

and M′′ , respectively [46]. For all NBG samples at room temperature, the values of each
component as a function of frequency are presented in Figures 7 and 8, respectively.At
the stumpy frequency region, a characteristic long tail is caused by the polarizationphe-
nomenon providing a high capacitance related to electrodes and a high E′. At the elevated
frequency region, the values of M′ and M′′ were visible and certain relaxation peaks were
seen as a consequence of bulk modulus formalism effects. This mostly indicates the ionic
conductivity of the NBG electrolyte films [45]. In addition, once the plasticiserwas added
to the polymer electrolyte film (BGNN5), these relaxation peaks were deformed at the
high-frequency regions. This can also be explained by involving numerous ions to enhance
conductivity. Interestingly, the greaterthe amountof glycerol, the greater the mobility of
charge transport ions.From impedance plots, it was found that the BGNN1 sample is too
insulative. The scattering observed in the BGNN1 spectrum in Figures 7 and 8 may be
attributed to the low conductivity behaviour of the sample.
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3.4. AC Conductivity Analysis (σAC)

Figure 9 displays the AC conductivity (σAC) trends for the unplasticisedandplasti-
cisedNBG samples as a function of the applied electric field frequency. To determine σAC
for all these film systems, the following equation is used [47]:

σAC =

[
Z′

Z′2 + Z′′ 2

]
× d

A
(5)
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It is imperative to notice that the electrical conductivity behaviour of the NBG films in
the frequency dependence of the dispersion region obeys Jonscher’spower law as expressed
by [48,49]:

σ(ω) = σDC + Aωn (6)

In this equation, σ(ω) represents the overall conductivity resulting from AC and DC
and σDC denotes the frequency-independent conductivity. Other variables include the
temperature and sample composition dependence of the parameter A and the frequency
exponent n that correlates with the hopping rate to the relaxation time of site groups and
takes the values from 0 to 1 [50]. It is evidentthat the σAC increases with frequency. The
reason is that under the influence of the applied electrical signal, the charge carriers are ex-
cited, increasing their mobility, reducing the relaxation period and raising conductivity [37].
A precise prediction of σDC is by using the frequency of the applied electrical signal as
a measure of σAC [51–53]. For materials with considerable σDC, three distinct regions are
recognisedfrom their σAC spectra [54], as exemplified in Figure 9. The low-frequency data
are driven by the EP, whereas the intermediate region data are driven by σDC. Based on
a previous study, the conductivity spectrum’s divergence from the DC value (the plateau
region) is caused by the impact of EP [53].

3.5. EDLC Study
3.5.1. TNM and LSV Analysis

The usefulness of the present NBG electrolyte system for EDLC applications can
be tested based on the ti value, which must be high enough. Ion transport (tion) and
electron transport (te) are crucial parameters to consider when assessing the conductivity
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of electrolyte materials. The transfer number measurement (TNM) involves ion/electron
transfer, its non-blocking electrode system is designed to allow both ions and electrons to
pass, and its blocking electrode system blocks the ions while enablingelectron transport. The
ideal target in the polymer electrolytes is the greater value of tion than te [55,56]. Figure 10
shows the TNM plot of the BGNN5 system. As can be seen, a current value of 0.5µA is
initially recorded, followed by a sharp decline until 15 s. This current value is relatively
high enough. After 20 s, the current reaches a steady state recorded at 0.1 µA. The sharp
decline in the current can be interpreted as evidence of transporting charge by electron via
stainless steel. In this research, the record of ti for the conducting NBG:NaNO3:glycerol
system is set up to be 0.8. In general, the ions are primarily responsible for charge transport
in the present polymer electrolyte.
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Figure 10. Polarization current vs. time for the BGNN5 system (tion = 0.8 and te = 0.2).

Another important criterion in determining the application of an electrolyte is its
stability against decomposition following the current passage [57–59]. LSV data can provide
information on the electrochemical stability of polymer electrolytes(see Figure 11), and the
cell design is shown in Figure 12 illustrates the determination of the potential window for
the plasticized BGNN5 system.
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Figure 11. Determination of decomposition voltage for the BGNN5 system with the highest conduc-
tivity through the LSV plot.
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Figure 12. Schematic representation for recording TNM and LSV data.

Yusof et al. reported the potential stability of a biopolymer-glycerol system at a
voltage < 1.9 V [60]. In accordance with this value, the present electrolyte can be used as an
electrode separator within energy devices. Above 2.85 V, the polymer electrolyte begins to
decompose, resulting in a dramatic rise in current caused by the electrolyte’s breakdown at
the inert electrode surface. It has been demonstrated that a polymer electrolyte can be used
in energy devices if the operating voltage is close to 1.0 V [61].

3.5.2. Cyclic Voltammetry Study (CV)

The electrolyte’s cyclic voltammetry can be recorded to understand Faradaic and
non-Faradaic processes fully. The charge storage at each interface in anodic and cathodic
regions of the EDLC is accomplished via a non-Faradaic process [62–64]. Figure 13a,b
show the CV profiles obtained for BGNN5 and BGNN4 systems at different scan rates,
respectively. The fundamental characteristic of the CV profile is often its rectangular form
and lack of redox peaks. At 100 mV/s, the CV is expected to have a leaf-shaped profile
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with a broad area. This is because the non-Faradaic process dominates the Faradaic one.
Based on the CV profiles at different scan rates, the specific capacitance (Cs) of the EDLC
can be computedas shown in Equation (7):

Cs =
∫ Vf

Vi

I(V)dV

2mv
(

Vf −Vi

) (7)
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Here, Vi and Vf are the initial and final voltages, respectively; m is the mass of active
material, v is the scan rate and S(V) dV is the region underneath the CV loop. Figure 14
shows the schematic representation of the fabricated EDLC cell.
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Figure 14. Schematic representation of the fabricated EDLC cell.

In Table 4, the cell Cs at various scan rates is listed. With an increase in scan rate,
the Cs values seem to decrease correspondingly. This occurs because the extended charge
diffusion duration cannot track the variations of electric field and high power density
at high scan rates. Furthermore, there are interrelations between the Cs value and tion
resistance, diffusion speed and diffusion length [65,66].

Table 4. Cs at differentscan rates for the BGNN4 system (40 wt.% glycerol) and the BGNN5 system
(50 wt.% glycerol).

Scan Rate (V/s) Cs at 40 wt.% Glycerol Cs at 50 wt.% Glycerol

0.1 5.97 6.95
0.05 7.76 9.30
0.02 9.77 11.90

At 100 mV/s, the Cs value for the BGNN4 and BGNN5 systems is comparatively
low (5.97 and 6.95 F/g, respectively). The high scan rate causes ions in the electrolyte to
move very quickly toward the electrode surface, hindering the development of efficient
double-layer formation and resulting in low Cs. However, at 20 mV/s, the CV responses are
nearly rectangular, recording aCs of 9.77 and 11.90 F/g for theBGNN4 and BGNN5 systems,
respectively. A high Cs can therefore be accomplished at stumpy scan rates as the ions pile
up mainly at the interfacial region, which causes the electrode surface to be appropriately
polarized [67]. According to Pal et al.’s study, an ideal rectangular CV is unachievable
because of both internal resistance and activated carbon porosity [22]. Remarkably, there
is no peak at either the low scan rate (20 mV/s) or the higher one (100 mV/s). To alarge
extent, the results of the present system are unfailing with the energy storage mechanism
of a capacitor. The creation of double-layer charge at the interfacial region is originated
from the electron distribution at the electrode and ion accumulation from the electrolyte.

3.5.3. Galvanostatic Charge Discharge (GCD) Study

In the GCD, the implemented potential range is 0.0–0.9 V. In Figure 15, the charge–
discharge profile of the fabricated EDLC device is shown. The internal resistance in the
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EDLC is evidenced bythe electrolyte Rb and the gap between the electrolyte and the current
collectors. The existence of internal resistance by reducing the potential before charging
and discharging is confirmed. Furthermore, the linear slope of the EDLC indicates its utility
as a requisite energy storage capacitor [68]. There is also a potential decline beforethestartof
the discharge process. As previously mentioned, the factors contributing to this include the
electrolyte Rb and the distance between the electrolyte and the current collectors.
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Figure 15. The GCD side view of the EDLC.

Clearly, it is understood that the virtually linear discharge slope of the charge–discharge
profile proves the capacitive behaviour in the EDLC [27]. From this profile for 500 cycles,
the Cs values of the EDLC can be derived using Equation (7), and the resulting values
are presented in Figure 16. At the 1st cycle, the Cs value is equal to 25 F/g. Interestingly,
the values of Cs obtained from the charge–discharge profile, and the CV differ slightly.
Nevertheless, this slight difference in Cs values is acceptable, indicating the reliability of
these results as an EDLC capacitor cell [60].
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In Figure 17, the RESR inclination of the EDLC for 500 cycles of charging and dis-
charging is shown. Low ESR values imply that the electrolyte|electrode contact in the
EDLC assembly is compatible. This reveals that the ions are conveniently moved from
the electrolyte’s bulk region to the surface of activated carbon, creating a charge space
double-layer with low internal resistance [69].
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Figure 17. ESR of the EDLC for 500 cycles.

During the cycling stability of the system, the coulombic efficiency (η) of the EDLC
assembly has to be determined using the following relation:

η =
td
tc
× 100 (8)

Here, tc and td are the period of charge and discharge processes, respectively. Figure 18
displays the efficiency of the studied EDLC for 500 cycles. Resultsof 74% and 92% are
achieved at the 1st cycle and 110th cycle, respectively. From the 300th cycle onwards,
efficiency plateaus and maintains its value at approximately 90%. According to Lim
et al. [70], electrode–electrolyte contact in the EDLC is feasible if the efficiency exceeds
90.0%. At the initial stage, charging takes longer than discharging [71]. Once the voltage is
supplied, the conduction begins by directing ions toward the electrode surface, resulting in
low efficiency. Before the 5th cycle, efficiency remains almost constant at 95% and fluctuates
between 97 and 99% until the 500th cycle. The duration of charging and discharging
isalmost similar at the high-efficiency value. A good contact in the EDLC assembly and
a reliable double-layer structure contribute to minimizing the charge loss up to 500 cycles.
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Figure 18. Efficiency prototype of the EDLC device over 500 cycles.

Evaluation of the EDLC assembly via calculating the efficiency of the system can be
achieved from both E and p using the followingequations:

E =
CsV2

2
(9)

P =
V2

4m(ESR)
(10)

Figure 19 illustrates the E values of the EDLC assembly calculated over 500 cycles.
At the 1st cycle and 90th cycle, the E resultsare steeply increased from 3.5 to 6.5 Wh/kg,
respectively. From the 100th cycle to the completion of cycling, the E value is consistently
maintained at 8 Wh/kg.
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Figure 19. Energy density (E) trend of the fabricated EDLC over 500 cycles.

It is critical to note that the E and Cs values are in good agreement, as shown in
Figure 19. The results indicate that the energy of charge carriers requiredfor migration
towards the electrode surfaces is evenly distributed throughout the charge–discharge
process [72].

Figure 20 represents the p values of the EDLC assembly calculated over 500 cycles.
Inthe 1st cycle, the p rate is 650 W/kg.Aslightchange until the end of cycling (500 cycles)
can be observed. A harmonized p trend with the ESR plot is obtained. This is due to
the same effect of internal resistance, which diminishes the electrolyte and promotes ion
recombination. At high cycle numbers, the ion recombination can result from the fast
charging and discharging mechanisms, thus reducing the p values [73]. In comparison, the
current system possesses power and energy densities much higher than those published in
the literature for polymer-based electrolytes, namely, natural and synthetic polymers.
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In all types of electrochemical devices, such as lithium-ion batteries, electrochemical
double-layer capacitors, quantum dot-sensitized solar cells, dye-sensitized solar cells, fuel
cells and electrochromic devices, electrolytes are regarded as the core electrochemical
devices [74–76].

4. Conclusions

The NBG:NaNO3:glycerol polymer electrolyte has been prepared byimplementing the
solution casting technique. Reductions in bulk resistance with an increase inplasticiserwere
observed. The boost in dielectric constant value with a rise inplasticiserisevidenceof an
increase in free ions, thus increasing the system’s capacitance. The decline inrelaxation
time with plasticiser reveals the improvement of ion mobility through increased flexi-
bility of the polymer. The relaxation process associated with ions indicates a coupling
among ion/polymer chain motions. Improvement of the ionic conductivity of the polymer
electrolyte can be reached by enhancing ion mobility and salt dissociation. Maximum
conductivity can be obtained, and the relaxation process has been identified as a non-Debye
type one. Three distinguished regions characterise the AC conductivity plot: electrode, DC
contribution and ac power law region.

The electrolyte possesses a large decomposition voltage and a high ionic transference
number. Descriptively, the electrolyte under study is eligible for utilization ata large
scale based on the above results. The almost rectangular shape of CV reveals charge
storage at the electrode–electrolyte interface as the non-Faradaic process. It seems that
byusingaplasticiser, tuning the capacitance of the NBG:NaNO3:glycerol polymer electrolyte
system can be achieved. The GCD plot reveals a triangle shape and recordsarelatively low
drop voltage. The high average efficiency of 90% with low ESR has been achieved over
500 cycles, indicating compatibility between electrolyte and electrode. The average power
density and energy density of the plasticisedare 700 W/kg and 8 Wh/kg, respectively.
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23. Śliwak, A.; Díez, N.; Miniach, E.; Gryglewicz, G. Nitrogen-containing chitosan-based carbon as an electrode material for
high-performance supercapacitors. J. Appl. Electrochem. 2016, 46, 667–677. [CrossRef]

24. Islam, I.; Sultana, S.; Kumer Ray, S.; Parvin Nur, H.; Hossain, M.T.; Md Ajmotgir, W. Electrical and Tensile Properties of Carbon
Black Reinforced Polyvinyl Chloride Conductive Composites. C 2018, 4, 15. [CrossRef]

25. Scrosati, B.; Croce, F.; Persi, L. Impedance Spectroscopy Study of PEO-Based Nanocomposite Polymer Electrolytes. J. Electrochem.
Soc. 2000, 147, 1718. [CrossRef]

26. Aziz, S.B. Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iran. Polym. J. 2013, 22, 877–883.
[CrossRef]

27. Aziz, S.B.; Hamsan, M.H.; Abdullah, R.M.; Kadir, M.F.Z. A promising polymer blend electrolytes based on chitosan: Methyl
cellulose for EDLC application with high specific capacitance and energy density. Molecules 2019, 24, 2503. [CrossRef]

28. Muchakayala, R.; Song, S.; Gao, S.; Wang, X.; Fan, Y. Structure and ion transport in an ethylene carbonate-modified biodegradable
gel polymer electrolyte. Polym. Test. 2017, 58, 116–125. [CrossRef]

29. Wang, J.; Zhao, Z.; Song, S.; Ma, Q.; Liu, R. High performance poly(vinyl alcohol)-based Li-ion conducting gel polymer electrolyte
films for electric double-layer capacitors. Polymers 2018, 10, 1179. [CrossRef]

30. Aziz, S.B.; Abdullah, R.M.; Kadir, M.F.Z.; Ahmed, H.M. Non suitability of silver ion conducting polymer electrolytes based on
chitosan mediated by barium titanate (BaTiO3) for electrochemical device applications. Electrochim. Acta 2019, 296, 494–507.
[CrossRef]

31. Abdulwahid, R.T.; Aziz, S.B.; Kadir, M.F.Z. Insights into ion transport in biodegradable solid polymer blend electrolyte based on
FTIR analysis and circuit design. J. Phys. Chem. Solids 2022, 167, 110774. [CrossRef]

32. Baskaran, R.; Selvasekarapandian, S.; Hirankumar, G.; Bhuvaneswari, M.S. Vibrational, ac impedance and dielectric spectroscopic
studies of poly(vinylacetate)-N,N-dimethylformamide-LiClO4 polymer gel electrolytes. J. Power Sources 2004, 134, 235–240.
[CrossRef]

33. Aziz, S.B.; Abidin, Z.H.Z.; Arof, A.K. Effect of silver nanoparticles on the DC conductivity in chitosansilver triflate polymer
electrolyte. Phys. B Condens. Matter 2010, 405, 4429–4433. [CrossRef]

34. Jayathilaka, P.A.R.D.; Dissanayake, M.A.K.L.; Albinsson, I.; Mellander, B.E. Dielectric relaxation, ionic conductivity and thermal
studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI. Solid State Ionics 2003, 156, 179–195. [CrossRef]

35. Aziz, S.B.; Abdullah, R.M. Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in
polymer blend electrolytes based on [CS:AgNt]x:PEO(x-1) (10 ≤ x ≤ 50). Electrochim. Acta 2018, 285, 30–46. [CrossRef]

36. Aziz, S.B.; Karim, W.O.; Brza, M.A.; Abdulwahid, R.T.; Saeed, S.R.; Al-Zangana, S.; Kadir, M.F.Z. Ion transport study in CS: POZ
based polymer membrane electrolytes using Trukhan model. Int. J. Mol. Sci. 2019, 20, 5265. [CrossRef]

37. Gondaliya, N.; Kanchan, D.K.; Sharma, P.; Joge, P. Structural and Conductivity Studies of Poly(Ethylene Oxide)—Silver Triflate
Polymer Electrolyte System. Mater. Sci. Appl. 2011, 2, 1639–1643. [CrossRef]

38. Koops, C.G. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 1951,
83, 121–124. [CrossRef]

39. Aziz, S.B.; Al-Zangana, S.; Brza, M.A.; Saeed, S.R.; Abdulwahid, R.T.; Kadir, M.F.Z. Study of dielectric properties and ion transport
parameters in Chitosan-Barium Nitrate based solid polymer electrolytes. Int. J. Electrochem. Sci. 2019, 14, 11580–11581. [CrossRef]

40. Louati, B.; Hlel, F.; Guidara, K. Ac electrical properties and dielectric relaxation of the new mixed crystal (Na0.8Ag0.2)2PbP2O7. J.
Alloys Compd. 2009, 486, 299–303. [CrossRef]

41. Idris, N.H.; Senin, H.B.; Arof, A.K. Dielectric spectra of LiTFSI-doped chitosan/PEO blends. Ionics 2007, 13, 213–217. [CrossRef]
42. Baskaran, R.; Selvasekarapandian, S.; Hirankumar, G.; Bhuvaneswari, M.S. Dielectric and conductivity relaxations in PVAc based

polymer electrolytes. Ionics 2004, 10, 129–134. [CrossRef]
43. Aziz, S.B.; Abidin, Z.H.Z.; Arof, A.K. Influence of silver ion reduction on electrical modulus parameters of solid polymer

electrolyte based on chitosansilver triflate electrolyte membrane. Express Polym. Lett. 2010, 4, 300–310. [CrossRef]
44. Aziz, S.B.; BMarif, R.; Brza, M.A.; Hamsan, M.H.; Kadir, M.F.Z. Employing of Trukhan model to estimate ion transport parameters

in PVA based solid polymer electrolyte. Polymers 2019, 11, 1694. [CrossRef]
45. Aziz, S.B.; Karim, W.O.; Qadir, K.W.; Zafar, Q. Proton ion conducting solid polymer electrolytes based on chitosan incorporated

with various amounts of barium titanate (BaTiO3). Int. J. Electrochem. Sci. 2018, 13, 6112–6125. [CrossRef]
46. Hamsan, M.H.; Shukur, M.F.; Aziz, S.B.; Kadir, M.F.Z. Dextran from Leuconostoc mesenteroides-doped ammonium salt-based

green polymer electrolyte. Bull. Mater. Sci. 2019, 42, 1–8. [CrossRef]
47. Aziz, S.B.; Abidin, Z.H.Z. Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: Electrical and

dielectric analysis. J. Appl. Polym. Sci. 2015, 132, 1–10. [CrossRef]
48. Murugaraj, R.; Govindaraj, G.; George, D. AC conductivity and its scaling behavior in lithium and sodium bismuthate glasses.

Mater. Lett. 2003, 57, 1656–1661. [CrossRef]

http://doi.org/10.1038/srep27328
http://doi.org/10.1002/aenm.201300816
http://doi.org/10.1039/C9NA00374F
http://www.ncbi.nlm.nih.gov/pubmed/36132093
http://doi.org/10.1007/s10800-016-0955-z
http://doi.org/10.3390/c4010015
http://doi.org/10.1149/1.1393423
http://doi.org/10.1007/s13726-013-0186-7
http://doi.org/10.3390/molecules24132503
http://doi.org/10.1016/j.polymertesting.2016.12.014
http://doi.org/10.3390/polym10111179
http://doi.org/10.1016/j.electacta.2018.11.081
http://doi.org/10.1016/j.jpcs.2022.110774
http://doi.org/10.1016/j.jpowsour.2004.02.025
http://doi.org/10.1016/j.physb.2010.08.008
http://doi.org/10.1016/S0167-2738(02)00616-1
http://doi.org/10.1016/j.electacta.2018.07.233
http://doi.org/10.3390/ijms20215265
http://doi.org/10.4236/msa.2011.211218
http://doi.org/10.1103/PhysRev.83.121
http://doi.org/10.20964/2019.12.39
http://doi.org/10.1016/j.jallcom.2009.06.148
http://doi.org/10.1007/s11581-007-0093-z
http://doi.org/10.1007/BF02410321
http://doi.org/10.3144/expresspolymlett.2010.38
http://doi.org/10.3390/polym11101694
http://doi.org/10.20964/2018.06.38
http://doi.org/10.1007/s12034-019-1740-5
http://doi.org/10.1002/app.41774
http://doi.org/10.1016/S0167-577X(02)01047-9


Polymers 2022, 14, 5044 22 of 22

49. Aziz, S.B.; Al-Zangana, S.; Woo, H.J.; Kadir, M.F.Z.; Abdullah, O.G. The compatibility of chitosan with divalent salts over
monovalent salts for the preparation of solid polymer electrolytes. Results Phys. 2018, 11, 826–836. [CrossRef]

50. Ramasamy, R.P.; Yang, K.; Rafailovich, M.H. Polypropylene-graphene-a nanocomposite that can be converted into a meta-material
at desired frequencies. RSC Adv. 2014, 4, 44888–44895. [CrossRef]

51. Aziz, S.B.; Abdullah, R.M.; Rasheed, M.A.; Ahmed, H.M. Role of ion dissociation on DC conductivity and silver nanoparticle
formation in PVA:AgNt based polymer electrolytes: Deep insights to ion transport mechanism. Polymers 2017, 9, 338. [CrossRef]

52. Aziz, S.B.; Abdullah, O.G.; Rasheed, M.A.; Ahmed, H.M. Effect of high salt concentration (HSC) on structural, morphological,
and electrical characteristics of chitosan based solid polymer electrolytes. Polymers 2017, 9, 187. [CrossRef] [PubMed]

53. Aziz, S.B.; Abdullah, O.G.; Rasheed, M.A. Structural and electrical characteristics of PVA:NaTf based solid polymer electrolytes:
Role of lattice energy of salts on electrical DC conductivity. J. Mater. Sci. Mater. Electron. 2017, 28, 12873–12884. [CrossRef]

54. Moreno, M.; Quijada, R.; Santa Ana, M.A.; Benavente, E.; Gomez-Romero, P.; González, G. Electrical and mechanical properties of
poly(ethylene oxide)/intercalated clay polymer electrolyte. Electrochim. Acta 2011, 58, 112–118. [CrossRef]

55. Shukur, M.F.; Hamsan, M.H.; Kadir, M.F.Z. Investigation of plasticised ionic conductor based on chitosan and ammonium
bromide for EDLC application. Mater. Today Proc. 2019, 17, 490–498. [CrossRef]

56. Yusuf, S.N.F.; Yusof, S.Z.; Kufian, M.Z.; Teo, L.P. Preparation and electrical characterisation of polymer electrolytes: A review.
Mater. Today Proc. 2019, 17, 446–458. [CrossRef]

57. Aziz, S.B.; Hamsan, M.H.; Kadir, M.F.; Karim, W.O.; Abdullah, R.M. Development of polymer blend electrolyte membranes based
on chitosan: Dextran with high ion transport properties for EDLC application. Int. J. Mol. Sci. 2019, 20, 3369. [CrossRef] [PubMed]

58. Marf, A.S.; Abdullah, R.M.; Aziz, S.B. Structural, morphological, electrical and electrochemical properties of PVA: CS-based
proton-conducting polymer blend electrolytes. Membranes 2020, 10, 1–25. [CrossRef]

59. Hamsan, M.H.; Aziz, S.B.; Shukur, M.F.; Kadir, M.F.Z. Protonic cell performance employing electrolytes based on plasticised
methylcellulose-potato starch-NH4NO3. Ionics 2019, 25, 559–572. [CrossRef]

60. Yusof, Y.M.; Majid, N.A.; Kasmani, R.M.; Illias, H.A.; Kadir, M.F.Z. The Effect of Plasticization on Conductivity and Other
Properties of Starch/Chitosan Blend Biopolymer Electrolyte Incorporated with Ammonium Iodide. Mol. Cryst. Liq. Cryst. 2014,
603, 73–88. [CrossRef]

61. Kadir, M.F.Z.; Arof, A.K. Application of PVA-chitosan blend polymer electrolyte membrane in electrical double layer capacitor.
Mater. Res. Innov. 2011, 15 (Suppl. S2), s217–s220. [CrossRef]

62. Shuhaimi, N.E.A.; Teo, L.P.; Woo, H.J.; Majid, S.R.; Arof, A.K. Electrical double-layer capacitors with plasticised polymer
electrolyte based on methyl cellulose. Polym. Bull. 2012, 69, 807–826. [CrossRef]

63. Aziz, S.B.; Hamsan, M.H.; Brza, M.A.; Kadir, M.F.Z.; Abdulwahid, R.T.; Ghareeb, H.O.; Woo, H.J. Fabrication of energy storage
EDLC device based on CS:PEO polymer blend electrolytes with high Li+ ion transference number. Results Phys. 2019, 15, 102584.
[CrossRef]

64. Aziz, S.; Abdulwahid, R.; Hamsan, M. Proton Conducting Chitosan-Based Polymer Blend Electrolytes with High Electrochemical
Stability. Molecules 2019, 24, 1–15. [CrossRef]

65. Bandaranayake, C.M.; Weerasinghe, W.A.D.S.S.; Vidanapathirana, K.P.; Perera, K.S. A Cyclic Voltammetry study of a gel polymer
electrolyte based redox-capacitor. Sri Lankan J. Phys. 2016, 16, 19. [CrossRef]

66. Singh, A.; Chandra, A. Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors. J.
Appl. Electrochem. 2013, 43, 773–782. [CrossRef]

67. Pandey, G.P.; Kumar, Y.; Hashmi, S.A. Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer
capacitors: A comparative study with lithium and magnesium systems. Solid State Ionics 2011, 190, 93–98. [CrossRef]

68. Serhan, M.; Sprowls, M.; Jackemeyer, D.; Long, M.; Perez, I.D.; Maret, W.; Tao, N.; Forzani, E. Total iron measurement in human
serum with a smartphone. AIChE Annu. Meet. Conf. Proc. 2019, 8, 2800309. [CrossRef]

69. Asmara, S.N.; Kufian, M.Z.; Majid, S.R.; Arof, A.K. Preparation and characterisation of magnesium ion gel polymer electrolytes
for application in electrical double layer capacitors. Electrochim. Acta 2011, 57, 91–97. [CrossRef]

70. Lim, C.S.; Teoh, K.H.; Liew, C.W.; Ramesh, S. Capacitive behavior studies on electrical double layer capacitor using poly (vinyl
alcohol)-lithium perchlorate based polymer electrolyte incorporated with TiO2. Mater. Chem. Phys. 2014, 143, 661–667. [CrossRef]

71. Hamsan, M.H.; Aziz, S.B.; Kadir, M.F.Z.; Brza, M.A.; Karim, W.O. The study of EDLC device fabricated from plasticised
magnesium ion conducting chitosan based polymer electrolyte. Polym. Test. 2020, 90, 106714. [CrossRef]

72. Shukur, M.F.; Ithnin, R.; Kadir, M.F.Z. Electrical characterisation of corn starch-LiOAc electrolytes and application in electrochemi-
cal double layer capacitor. Electrochim. Acta 2014, 136, 204–216. [CrossRef]

73. Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical
supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [CrossRef] [PubMed]

74. Teo, L.P.; Buraidah, M.H.; Arof, A.K. Development on SolidPolymer Electrolytes forElectrochemical Devices. Molecules 2021, 26, 6499.
[CrossRef] [PubMed]

75. Matko, V.; Milanovic, M. Temperature-Compensated Capacitance-Frequency Converter with High Resolution. Sens. Actuators: A
Phys. 2014, 220, 262–269. [CrossRef]
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