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Entanglement Characteristic Time from Complex Moduli via i-Rheo GT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Entanglement time 𝝉𝒆 of DPD model from MSD 

 Figure S1 presents MSD, 𝑔 𝑡 , of the middle monomers in a double-logarithmic 

scale in which 𝑔 𝑡  is normalized by 𝑡0.25. We see that .  for the longest chain 

shows a plateau-like region, corresponding to the one-dimensional Rouse motion. By 

fitting the data with straight lines in the different regimes to the scaling laws, namely, 𝑡 < 𝜏   and 𝑡 > 𝜏  , the intersecting time is estimated to be about 𝜏∗ ≈ 810  as 

indicted in Figure S1. The prefactor 𝛽 = 2 𝜋⁄  is introduced to further calculate the 

model parameters.6 The resulting 𝜏 = 9𝜏∗/𝜋 ≈ 2300  and 𝑁 ≈ 28 . Note that 𝑁  

calculated from MSD is the same with that calculated from the S-coil estimators defined 

in Z1-code7-10. Additionally, for DPD in this work, 𝑁  is about 26.8 ± 2.5 from the 

classical S-coil estimator and from the modified S-coil estimator.  

 

 

Figure S1. Mean-square displacement of the middle monomers for 𝑁 = 129, 161, 

and 321. The vertical coordinate is normalized by the power law of 𝑡 . . The 

intersecting time of the time regimes 𝑡 < 𝜏  and 𝑡 > 𝜏  is indicated as 𝜏∗. 
 



 

𝐭𝐚𝐧𝜹 vs frequency of different chain length for DPD model 

 tan 𝛿  for three extra chain length, namely, 𝑁 = 64 , 80 , and 96 , is given in 

Figure S2. At the frequency ω  around 0.02 as presented in the inset of Figure S2, tan 𝛿 reaches 1 at a slower ω for shorter chains definitely indicating a dependence of 

the entanglement time on the chain length.  

 

Figure S2. tan 𝛿 vs frequency ω for the chain length ranging from 64 to 321. The 

regime of tan 𝛿 around 1 is enlarged in the inset.  
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