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Abstract: In the study of polymer flooding, researchers usually ignore the genetic stress properties of
viscoelastic fluids. In this paper, we investigate the process of viscoelastic fluid flooding the remain‑
ing oil in the dead end. This work uses the fractional‑order Maxwell in the traditional momentum
equation. Furthermore, a semi‑analytic solution of the flow control equation for fractional‑order
viscoelastic fluids is derived, and the oil‑repelling process of viscoelastic fluids is simulated by a
secondary development of OpenFOAM. The results show that velocity fractional‑order derivative
α significantly affects polymer solution characteristics, and increasing the elasticity of the fluid can
significantly improve the oil repelling efficiency. Compared to the Newtonian fluid flow model, the
fractional order derivative a and relaxation time b in the two‑parameter instanton equation can ac‑
curately characterize the degree of elasticity of the fluid. The smaller the a, the more elastic the fluid
is and the higher the oil‑repelling efficiency. The larger the b, the less elastic the fluid is and the
lower the cancellation efficiency. Moreover, the disturbance of the polymer solution to the dead end
is divided into two elastic perturbation areas. The stronger the elasticity of the polymer solution, the
higher the peak value of the area in the dead end and the higher the final oil displacement efficiency.

Keywords: non‑Newtonian fluid; fractional‑orderMaxwellmodel; displacement efficiency; polymer
flooding

1. Introduction
In the structure of the global oil resources reserves, 40% is viscous oil and ultra‑heavy

oil. However, the major viscous oilfields enter the late stage of development in most coun‑
tries. Long‑term water injection makes the remaining oil distribution in the reservoir of
these viscous oilfields very dispersed. Water flooding mining can no longer meet the de‑
mand for enhanced recovery from these waterflooded reservoirs [1–4]. Tertiary oil recov‑
ery provides new ideas to further improve recovery fromwaterflooded reservoirs. Among
them, polymer and composite oil flooding have beenwidely applied in China, which is the
main recovery enhancement technology for viscous oilfields. Actual production results
show that polymer and composite oil flooding technology can increase the recovery rate
of oilfields with high water cuts by 10% on average [5,6]. However, in the face of the huge
and growing demand for oil resources, the 10% increase in recovery rate will not solve
the gap in resource demand. Therefore, how to improve the recovery rate of polymer and
composite flooding technology has become a hot issue in recent years.

Themajor factor for enhanced oil recovery frompolymer flooding is changing the seepage
characterization of water and enhanced volumetric sweep efficiency by using polymer [7–9].
Many researchers have investigated the effect of flow characterization of polymer solution
on the polymer flooding enhanced oil recovery rate. The flow characterization can be di‑
vided into two parts: elasticity and viscosity. Numerous indoor tests have shown that
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the elasticity of the polymer solution contributes more to enhanced oil recovery rate than
viscosity. Wang et al. carried out core displacement experiments of elastic solution and
viscoelastic solution and found that the displacement efficiency obtained by the viscoelas‑
tic fluid is 6% higher than that obtained by elastic fluid, which proves that viscoelasticity
is the main mechanism of enhancing oil recovery [10,11]. In addition, through core and
glass etching experiments, Xie and Hosseini also found that during the process of polymer
flooding, the front end of the polymer solution spread more slowly, and the spread scope
was larger [12,13]. Through the research results of the above scholars, it can be found that
the more elastic the polymer solution is, the more it can flood the remaining oil out of
the dead space in the rock pore network. Many experimental results observing the flow
pattern of polymer solution in micropores have shown that elastic polymers flow in micro‑
pores with irregular disturbances, which is due to elastic turbulence caused by polymers
in solution. Groisman, Poole, Arratia, et al., through experimental research, found that the
viscous fluid containing a small amount of high molecular weight polymer solution pro‑
duces an irregular flow structure similar to turbulence at low Re number [14–17]. Mitchell
and Howe used MRI experiments to demonstrate the effect of polymer‑specific elastic tur‑
bulent flow on enhanced oil recovery [18,19].

The law of viscoelastic polymer flooding is studied in two types of experiment and
numerical simulation. In recent years, the grid model has mainly been used to study the
fluid–fluid repulsion process inmicroporous channels; the advantage of thismethod is that
it can establish a flow condition close to the real formation and the experimental results
are more reliable [20–23]. However, to accurately capture the flowwithin the microporous
channels, techniques such as CT scans, X‑rays, and MRI are required; this makes experi‑
mental studies very expensive and time‑consuming, and it is difficult to obtain a dynamic
view. Numerical simulation studies can overcome this drawback. The most important
thing in numerical simulation is that the intrinsic model can accurately reflect the flow
characteristics of non‑Newtonian fluids. In previous studies, polymer solutions are sim‑
plified to a Newtonian fluid or used the integer‑order non‑Newtonian model to describe
the constitutive relation [24–26]. Although these models can respond to some extent to the
rheological properties of non‑Newtonian fluids. However, it is not possible to accurately
characterize the genetic and stress relaxation properties of complex polymeric fluids such
as flooding fluid.

In recent years, with the development of fractional‑order theory and computational
methods, researchers have combined fractional‑order theory with fluid mechanics to es‑
tablish the fractional‑order constitutive equations of fluids, such as the fractional‑order
Maxwell model, fractional‑order Jeffreys model, and fractional‑order O‑B model [27–30].
Due to the unique physical significance of fractional order, it can accurately describe the
viscoelastic flow characteristics of non‑Newtonian fluids; thus, it is widely used with com‑
plex physical problems, such as the plane surface‑flow [31], flow on coaxial cylinders [32],
and Marangoni [33].

Research on fractional‑order fluids has mainly focused on single‑phase flow, and the
problem of microscale multiphase flow in polymer flooding processes has not been solved.
In this study, we developed a fractional‑order semi‑analytical transient model for calcu‑
lating the velocity and pressure of polymer solution. The model divides the shear stress
during the flow of polymer solution into two stress fields, Newtonian, and fractional‑order
non‑Newtonian. The numerical solution is calculated for the Newtonian stress field, and
the analytical solution for the fractional‑order non‑Newtonian stress field is obtained using
the Laplace variation. We can predict the efficiency of polymer flood oil based on themodel
that performed a secondary development of the interFoam incompressible two‑phase flow
solver in OpenFOAM.
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2. Physical and Mathematical Models
2.1. Physical Model

In this paper, we investigated the dead‑end capillary tube that is a representative
residual oil capillary structure such as in Figure 1. The length of the capillary is 500 microns,
and in themiddle of the capillary, there is a dead‑end capillarywith a depth of 100 microns,
which is filled with residual oil.

Figure 1. Physical model of the dead‑end capillary.

Figure 2 is the numerical mesh model based on the physical model, which contains
240,000 rectangular cells. The left side is the inlet and the right side is the outlet; the rest of
the boundary is the wall. Particularly, the wall adhesion effect is taken into consideration
by defining a contact angle (oil to water: 45◦) at the wall such as Equation (1), which is
aimed to simulate the wall effect of oil in contact with rock [34]:

N̂ = N̂wcosθw + M̂wsinθw (1)

Figure 2. Numerical mesh model of the dead‑end capillary.

2.2. Governing Equation of Fluid
When the above fluids are incompressible, the continuity equation is

∇ · U = 0 (2)
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For the incompatible polynomial systemmomentum equation, which considers grav‑
ity and source terms:

∂ρUU
∂t

+∇ · (ρUU) = −∇p + ρg + Ff +∇ · τ (3)

When the two‑phase fluid interface flow is in equilibrium, Ff = ∆Pf represents the
interfacial tension, which is equal to the pressure difference at the two‑phase fluid interface.
The interfacial tension in this equilibrium condition is treated by the CFS method [35]:

Ff = ∆Pf = τκ∆α

κ = −∇ · n
(4)

According to the treatment of the interfacial tension, thephase volume fraction of the two‑
phase fluid in the calculated region is unknown; therefore, the equation for the phase fraction
is also needed. Applying the method proposed better for the phase volume fraction [36],

∂α

∂t
+∇ · (αU) +∇ · (α(1 − α)c|U| ∆α

|∆α| ) = 0 (5)

where c denotes the controllable compression factor, when there is no compression effect.
The larger the compression effect, the faster and more pronounced the compression effect.

2.3. The Constitutive Equation of Viscoelastic Fluid
The relationship between the shear stress and shear rate is defined as the constitutive

equation of fluid flow. When the fluid is considered a Newtonian fluid, the shear stress
term τ in Equation (3) is τ = 2µ∇U. However, this relationship is not suitable for fluid
that is considered non‑Newtonian. For polymer solutions, the shear stress can be divided
into two parts: the stress tensor of the solvent τw and the solute τp, which is:

τ = αwτw + αpτp (6)

where the aforementioned represent themass fraction of the solvent and solute in the poly‑
mer solution, respectively. τw is considered Newtonian and is considered non‑Newtonian.
In this paper, the fractional‑order Maxwell model is used to describe τp(

1 + λa
1

C
0 Da

t

)
τ = µ

dS
dt

(7)

where C
a Da

t is the fractional‑order differential defined by using Caputo:

C
0 Da

t f (t) =
1

Γ(n − a)

∫ 0

t

f n(ξ)dξ

(t − ξ)a − n + 1
(8)

The gamma Function in Equation (8) is defined as

Γ(z) =
∫ t

∞
exp−t tz−1dt (9)

2.4. Numerical Algorithms
Above governing and constitutive equations of polymer solution, the momentum

equation is:
∂ρUU

∂t
+∇ · (ρUU) = −∇p + ρg + Ff +∇ · τw +∇ · τp (10)

The time‑degenerate nature of fractional‑order integrals leads to numerical discretiza‑
tion that cannot be adopted by a step‑by‑stepmethod for integer‑order solution derivatives.
There are many numerical solution of fractional‑order integral operators C

0 Da
t [37–39]. The
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L1 discrete format is a common difference format for momentum equations containing
time fractional‑order differentiation [39]. Based on a discrete format, researchers have
achieved certain results in the study of the effect of viscoelasticity for non‑Newtonian flu‑
ids on their flow laws. Equation (11) is the fractional‑order Maxwell fluid boundary layer
flow equation that bases on the L1 discrete format derived by J.H Zhao.

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ λα
1

∂α+1u
∂tα+1 + λα

1
∂α

∂tα

(
u

∂u
∂x

)
+ λα

1
∂α

∂tα

(
v

∂u
∂y

)
︸ ︷︷ ︸

fractional−ordertimeandconvectionterms

=
∂2u
∂y2 + λα

1
∂αθ

∂tα
+ θ (11)

After replacing the intrinsic model with the fractional‑order Maxwell model, the momentum
equation is additionally increasedwith a fractional‑order time and convection term. Equation (12)
is the result of discretizing and dimensionless processing of Equation (11)

− (1 + r1)
∆t
∆x

uk−1
i,j uk

i−1,j −
[
(1 + r1)

∆t
∆y

vk−1
i,j + r2

]
uk

i,j−1

+

[
(1 + r1)

(
1 +

∆t
∆x

uk−1
i,j

)
− (1 + r1)

∆t
∆y

vk−1
i,j + 2r2

]
uk

i,j − r2uk
i,j+1 (12)

= r2uk−1
i,j−1 + (1 + r1 − 2r2)uk−1

i,j + r2uk−1
i,j+1 + r1 A1 +

∆t
∆x

r1 A2 +
∆t
∆y

r1 A3

+ ∆tr1 A4 +
∆t
(

θk−1
i,j + θk

i,j

)
2

vk
i,j = vk

i,j−1 + vk−1
i,j−1 − vk−1

i,j +
∆y

2∆x

(
uk−1

i−1,j−1 − uk−1
i,j−1 + uk−1

i−1,j − uk−1
i,j

+uk
i−1,j−1 − uk

i,j−1 + uk
i−1,j − uk

i,j

)
(13)

As shown in Figures 3 and 4, the momentum equation containing fractional‑order
terms requires a large change in the physical field at each temporal and special step com‑
pared to the integer‑order. In terms of a temporal step progression, the fractional‑order
calculation requires extraction of the physical field for all the previous time travels, while
the integer‑order generally requires only the last one or two temporal steps. As the tem‑
poral step advances, the number of physical fields to be computed at the next time will
become larger and larger, greatly increasing the computational overhead. In terms of spe‑
cial step progression, the velocity components U andV, in both the x and y directions affect
the velocity Uwhen calculating the fractional order momentum equation. This coupled so‑
lution of multiple velocity fields will increase the nonlinearity of the matrix, making it not
easy to obtain stable and accurate calculation results in the presence of drastic changes in
physical fields at the interface of two‑phase intersections such as multiphase flow.

Based on the physical problem investigated in this paper, we proposed an approxi‑
matemethod to solve the computational problem of fractional ordermomentum equations
in complex flows. The Reynolds number of the polymer solution in the capillary during
the flooding processing is generally on the order of 10e−3. Several assumptions are made
under the physical model we have developed:
(1) The fluid flow in a certain time interval can be regarded as a completely steady state.

Therefore, under the physical model we developed in Section 2.1, the strain of the fluid
during half the length of the flow through the capillary is assumed to be constant;

(2) Polymers are completely dissolved in water and uniformly distributed in the flow field;
(3) The flow state of the polymer is exactly the same as that of water; i.e., the velocity

distribution of both is exactly the same.
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Figure 3. Fractional‑order versus integer‑order temporal step advance calculation.

Figure 4. Fractional‑order versus integer‑order special step advance calculation.

Therefore, by Laplace transformation, Equation (7) becomes

sαε =
1
E

sατ +
1
η

τ (14)

Rectification to obtain relaxation modulus G(t):

G(s) =
τ

sε
=

sα−1

sα

E + 1
η

(15)

Using Laplace inverse transformation in Equation (14),

G(t) = L1

[
E

∞

∑
k=0

(−1)ks−αk−1

]
= EH1,1

1,2

[
Etα

η

∣∣∣(0,1)
(0,1);(0.1)

∣∣∣] (16)
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where H1,1
1,2 is H‑Fox function, which is defined as:

∞

∑
n=0

(−z)n
p

∏
i=1

Γ(ai + Ain)

n!
q

∏
i=1

Γ(bi + Bin)
= H1,P

P,Q+1

[
z
∣∣∣(1−αp ,Ap)

(0,1);(1−bq ,Bq)

∣∣∣] (17)

Converting Equation (15) into an M‑L function:

H1,1
1,2

[
Etα

η

∣∣∣∣ ∣∣∣(0,1)
(0.1);(0,1)

∣∣∣] = E1,1(−
Etα

η
) (18)

Under the assumptions of this paper, the analytical solution Equation (7) is:

τ(t) =
∫ ∆t

0 µd∇Ue−
Etα

η dt

∇U = 1
∆t
∫ ∆t

0 ∇Udt
(19)

where ∆t is the time of the fluid during half the length of the flow through the capil‑
lary. Based on Jasak’s definition of the FVM discretization operator in OpenFOAM [39],
Equation (10) after semidiscretization is:

APUn+1
P + ∑ ANUn+1

N = −∇P + Sn
P + g · h∇ρn+1

P + σκ∇αn+1
P +∇ · τn

p (20)

The∇ · τp in Equation (19) is treated explicitly according to the analytical solution that
we obtained. Therefore, based on the interpolation format of Rhie‑Chowthe, the surface
velocity Un+1

p that we need to calculate is:

Un+1
P = HbyAn+1

P − 1
AP

(
∇pn+1

rgh,P + g · h∇ρn+1
p − σκ∇αn+1

P −∇ · τP

)
HbyAn+1

P = 1
AP

(
−∑ ANUn+1

N + Sn
P

)
∇prgh = ∇p − g · h∇ρ − ρg

(21)

The pressure correction equation is:

∇ ·
(

1
A
∇pn+1

rgh

)
= ∇ ·

(
HbyAn+1 +

1
A

(
σκ∇αn+1 − g · h∇ρn+1∇ · τp

))
(22)

3. Result and Analysis
Without loss of generality, the involved variable parameters are given as follows: the

fractional‑order α is 0.1, 0.2, 0.3, 0.5; the relaxation time λ is 0.1 s; the polymer solution flow
rate is 2 × 10−5 m/s ; and the fluid parameters are shown in Table 1. Because the polymer
is completely dissolved in water, the density of the polymer and water are equal. Before
being dissolved inwater, the polymer is solid, and its viscosity and volume fraction cannot
be measured. Therefore, the viscosity of the polymer is an approximate viscosity, which
calculates an equation such as:

µp =
µd
(

Mw + Mp
)
− µw Mw

Mp
(23)
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Table 1. Fluid parameters of oil and polymer solution.

Oil Displacement Fluid (µd = 20 mPa·s)
Water Polymer (Mp = 1200 mg/L)

Density (kg/m3) 860 1000   1000
Viscosity (mPa·s) 9 1   4 × 104

Interfacial tenso (mN/m)   5

3.1. Effect of α on Displacement Efficiency
Figure 5 shows the results of flooding the remaining oil at the dead end with a polymer

solution of the different fractional‑order derivative α. The oil‑water interface formed after the
polymer solution with fractional‑order derivative α = 0.5 intrudes into the dead, and has a
low inclination and a rectangular shape. With the gradual decrease of α, the inclination of the
oil‑water interface becomes large and has a trapezoid shape. Figure 6 shows the efficiency
of polymer flooding oil with a different fractional‑order derivative α. The purple part of the
graph shows the efficiency of polymer flooding oil obtained from the simulation when the
polymer solution is considered aNewtonianfluid. The greenpart indicates the contribution of
the fractional‑order velocity field to the efficiency of polymer flooding oil. When a is smaller,
the contribution of the fractional‑order velocity field is larger and the efficiency of polymer
flooding oil obtained is higher; in addition, the growth rate is exponential, which is consistent
with the form of the fractional‑order analytical solution obtained.

Figure 5. The results of simulation for the polymer flooding.

Figure 6. The effect of fractional‑order derivative α on the efficiency of polymer flooding oil.



Polymers 2022, 14, 5381 9 of 12

3.2. Effect of α on Elastic Perturbation in the Dead End
The first normal stress differences can indicate the elastic behavior of the fluid during

the flow, which is one of the main differences between a viscoelastic fluid and a Newto‑
nian fluid. We extracted the first normal stress difference at the oil‑water interface in the
dead end at t = 1 s. As illustrated in Figure 7, there are two elastic perturbation regions,
and the presence of a maximum value in the elastic perturbation region, which is strongly
dependent on the parameter α; i.e., the smaller parameter α is, the bigger peak of the elas‑
tic perturbation region is. Viewing the N1 and polymer flooding oil processes at the dead
end in conjunction, the polymer solution gradually invades into the dead end from the
left side to the right side, and the elastic wave is also transmitted from the left side to the
right side. Figure 8 illustrates the peak variable of the elastic perturbation area 2 during
t = 1 s to t = 30 s. Results indicate that, for each fractional‑order derivative α, the peak
value maximum of the elastic perturbation area 2 is monotonically increasing; thus, the
smaller parameter α is, the larger the increase rate is. This phenomenon indicates that the
higher peak of the perturbation area 1, the larger the initial range of polymer invasion into
the blind end, the more elastic wave energy elastic perturbation area 2 receives, and the
higher efficiency of polymer flooding oil.

Figure 7. The first normal stress difference at the oil‑water interface in the dead end.

Figure 8. The peak variable of the elastic perturbation area 2.
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3.3. Effect of λ on Displacement Efficiency
Relaxation time λ can indicate the ratio of the elastic and viscous portions within

the fluid. According to Section 3.1, we chose a polymer solution with fractional‑order
α = 0.1 as the basis of our study, and investigated the effect on displacement efficiency
by changing the relaxation time λ. Figures 9 and 10 illustrate the effect of λ on the first
normal stress difference at the oil‑water interface in the dead end at t = 1 s, and the effect
of λ on displacement efficiency. It is found that the peak of the elastic perturbation area 1
gradually decreases with increasing λ, indicating that the elasticity of the fluid is the main
factor affecting the first normal stress difference. As λ approaches 1, a phenomenon similar
to that for α= 0.5 occurs, with a lower peak in the elastic perturbation area 1 and a smaller
difference between the peak in the elastic perturbation area 2. This indicates that there is a
no larger transfer of elastic wave energy between the left and right sides of the blind end
with the flow of the polymer solution. Therefore, after the polymer solution invades from
the left side of the blind end, it cannot gradually invade deeper into the blind end through
the change of the normal corresponding force difference between the two sides of the blind
end, resulting in the reduction of displacement efficiency.

Figure 9. The first normal stress at the oil‑water interface for different λ.

Figure 10. The displacement efficiency for different λ.
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4. Conclusions
This paper studies the unsteady process of the viscoelastic fluid flooding oil in the

dead end. The fractional derivative is introduced in Maxwell’s constitutive model. Ana‑
lytic solutions of the fractional order Maxwell model were computed and implanted into
the N‑S equations by showing the forces. The analytical solution of the fractional‑order
Maxwell model is calculated, and a semi‑analytical solution model for viscoelastic fluid
flow is developed by making the viscoelastic stresses explicit. The process of polymer
flooding is simulated by performing a secondary development of the interFoam incom‑
pressible two‑phase flow solver in OpenFOAM. Some useful conclusions are drawn from
the simulation results:
1. The viscoelastic fluid is significantly more effective in displacing the remaining oil in

the dead end than the Newtonian fluid;
2. The perturbed region of viscoelastic fluid within the blind end can be divided into

two, which gradually invade deeper into the dead end through the elastic wave trans‑
mission between the two areas;

3. The smaller the fractional order derivative a, the greater the fluid viscoelasticity and
the higher the oil displacement efficiency;

4. The smaller the fractional order derivative a, the larger the first normal stress differ‑
ence peak in the elastic perturbation region 1, the greater the fluid viscoelasticity, and
the higher the oil displacement efficiency;

5. The relaxation time of the fluid has a significant effect on the viscoelasticity of the
fluid, and when the relaxation time is close to 1 s, the flow characteristics of the fluid
gradually change from viscoelastic to pure viscous fluid.
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