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Abstract: Owing to their high electrical conductivity, high surface area, low density, high thermal
stability, and chemical stability, carbon nanofibers have been used in many fields, including energy
storage, electromagnetic shielding, filtering, composites, sensors, and tissue engineering. Considering
the environmental impact of petroleum-based polymers, it is vital to fabricate carbon nanofibers
from environmentally-friendly materials using fast and safe techniques. PVA/PVP nanofibers
were fabricated via centrifugal spinning and the effects of variations in the PVP content on the
morphology and thermal properties of PVA/PVP-blend nanofibers were studied using SEM and DSC
analyses. Moreover, the effects of carbonization conditions, including stabilization time, stabilization
temperature, carbonization time, and carbonization temperature on the morphology and carbon
yield, were investigated. Centrifugally spun PVA/PVP-based carbon nanofiber electrodes with an
average fiber diameter around 300 nm are reported here for the first time. Furthermore, centrifugally
spun PVA/PVP-based B, N, F-doped carbon nanofibers were fabricated by combining centrifugal
spinning and heat treatment. Through B, N, F doping, CNFs demonstrated a high reversible capacity
of more than 150 mAh/g in 200 cycles with stable cycling performance.

Keywords: centrifugal spinning; carbon nanofiber; PVA; PVP

1. Introduction

Rechargeable batteries have attracted great attention as reliable and environmentally
friendly energy storage devices due to the increasing effects of global warming and the
increasing usage of fossil fuels. Rechargeable batteries, which use electrochemical energy to
produce electricity, are used in many diverse fields, including electric vehicles, hybrid cars,
portable electronics, etc. [1]. Lithium-ion batteries (LIBs) have high energy density, high
cycling stability, low weight, and good rate capability and thus they are one of the most
commonly used types of rechargeable batteries [2]. However, due to their high cost and
limited lithium resources, sodium-ion batteries (SIBs) have been introduced as promising
energy storage systems due to the abundance and low cost of sodium resources [3].

In rechargeable batteries, choosing an appropriate anode that can accommodate a
greater number of ions and exhibit high electronic conductivity is very important [4].
Carbon-based materials such as graphite, graphene, carbon nanofibers (CNFs), carbon
nanotubes, carbon nanospheres, carbon nanowires, hard carbons, and soft carbons, have
been used as anodes due to their abundance, low cost, and good conductivity [5]. CNFs
with excellent conductivity are considered one of the most promising anode materials
in rechargeable batteries [6]. CNFs with a one-dimensional (1D) structure are composed
of disordered graphite layers, which provide a large surface-to-volume ratio and a short
distance for the transfer of ions [7]. They have diverse applications and are used in
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many fields, including energy storage technologies, sensors, tissue engineering, drug
delivery, and membranes [8]. CNFs are synthesized via different techniques, such as
chemical vapor deposition, electrospinning, and centrifugal spinning [9]. Among these
methods, electrospinning is the most popular method. However, this method has some
disadvantages such as a low production rate, safety issues, and the consumption of a large
amount of solvents. Carbon nanofibers can also be produced via centrifugal spinning
and this technique has the merits of a high production rate, simplicity, environmental
friendliness, and low cost [10–17].

Polyacrylonitrile (PAN) is prepared via the polymerization of acrylonitrile and it is the
most commonly used petroleum-based polymer in the production of carbon nanofibers
due to its high carbon yield. However, the disadvantages of its high cost and shrinkage
after drying limit its usage [18,19]. Moreover, considering the environmental impact of
petroleum-based polymers, it is vital to fabricate carbon nanofibers from environmentally-
friendly materials using fast and safe techniques [20,21]. Polyvinyl alcohol (PVA) and
polyvinyl pyrrolidone (PVP) are hydrophilic polymers that can be used to produce CNFs.
PVA (C2H4O)n) is a hydrophilic and semi-crystalline polymer composed of vinyl monomer
units that has a repeating hydroxyl group (OH) in its unit [22]. Interconnected hydrogen
bonding makes this polymer cross-linkable. Because of these properties, PVA fibers have
shown good mechanical strength and high chemical resistance. Furthermore, this poly-
mer is non-toxic, biodegradable, and biocompatible [23]. Due to the easy breakage of the
hydroxyl groups of PVA when it is heated, it is a good precursor material for the produc-
tion of carbonaceous material [24]. During carbonization, the OH group, the CO group
(carbonyl group), and non-carbon elements disappear, so the carbon content increases
as the temperature increases steadily [25]. (PVP), (C6H9NO)n is a hydrophilic polymer
composed of linear 1-vinyl-2-pyrrolidinone groups [26]. It is a non-ionic polymer that has
many applications in diverse fields due to its good solubility in water and many organic
solvents, its superior chemical and thermal stability, its non-toxicity, and its affinity for both
hydrophobic and hydrophilic materials [27].

Heteroatom-doped carbon materials have attracted wide interest due to their impres-
sive performance in diverse applications. Heteroatom doping is one of the most efficient
ways to enhance the performance of carbon-based materials. In this process, heteroatoms,
such as nitrogen, fluorine, phosphorous, boron, sulfur, etc., are introduced into carbon
materials. Doping alters the band gap of the carbon matrix, which leads to faster elec-
tron transfers and the destruction of electroneutrality. For these reasons, the physical and
chemical properties of carbon, such as the amount of defects, the interlayer space, the
electrical conductivity, and the number of active sites can be improved, and this leads to
enhancements in electrochemical performance, specific capacity, and energy density [28,29].

Some studies have reported on PVA- and PVP-based carbon nanofibers obtained
via electrospinning. However, no systematic study has been conducted on the effect of
carbonization conditions on the morphology and carbon yield of PVA-based centrifugally
spun carbon nanofibers. In this study, PVA, PVP, and PVA/PVP-blend nanofibers were
produced via centrifugal spinning. Parameter optimization for PVA was performed and
the effect of PVP content on fiber morphology and thermal properties was investigated.
PVA/PVP-blend fibers with 25% PVP were used to obtain carbon nanofibers. Centrifugally
spun PVA/PVP-based CNFs with an average fiber diameter around 300 nm were prepared
and the effect of carbonization conditions on the morphology and carbon yield was investi-
gated for the first time. The obtained carbon nanofibers were used as anodes in sodium
ion batteries. In order to further improve their electrochemical properties, centrifugally
spun PVA/PVP-based B, N, F-doped carbon nanofibers were prepared. We fabricated
centrifugally spun PVA/PVP-based B, N, F-doped carbon nanofibers with an average
fiber diameter of around 300 nm and observed their excellent cycling stability with a high
capacity in Na-ion batteries.
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2. Materials and Methods

Poly (vinyl alcohol) (PVA) with an average Mw of 85,000–124,000 (87%–89% hy-
drolyzed), polyvinylpyrrolidone (PVP) with an average Mw of ~1,300,000, and 1-Butyl-3-
methylimidazolium tetrafluoroborate (≥98%) and ethanol were purchased from Sigma-
Aldrich Gillingham, UK. Ethanol and distilled water were used as solvents.

In this study, 10 wt. %, 13 wt. %, and 15 wt. % PVA solutions were prepared by
dissolving PVA in 10 mL of distilled water under magnetic stirring at 70 ◦C. Furthermore,
a 10 wt. % PVP solution was prepared via the dissolution of 1 g polymer powder in
ethanol/distilled water under constant stirring for 24 h. Additionally, 15 wt. % PVA and
10 wt. % PVP were mixed in ratios of 25/75, 50/50, and 75/25 to prepare PVA/PVP-blend
solutions (Table 1). All solutions are fed into the machine with the aid of a syringe pump
at a speed of 60 mL/h. The speed of the spinneret varied between 2000 to 5000 rpm. The
distance between the collector and the spinneret was 10 cm and the nozzle diameter used
in this process was 0.5 mm.

Table 1. Viscosity, surface tension, and average fiber diameter.

PVA/PVP Viscosity Surface Tension (mN/m) Average Fiber Diameter (nm)

100/0 395 44 690
75/25 361 41 738
50/50 306 33 747
25/50 254 28 1093
0/100 104 27 2286

PVA/PVP-blend nanofibers were carbonized at varying stabilization temperatures,
times, and carbonization temperatures. PVA/PVP-blend fibers were stabilized at 150 ◦C
and 280 ◦C in air and carbonized at 650 ◦C and 800 ◦C in N2. The effect of varying
stabilization times (0, 2, 8, 24 h) on carbon content was also investigated (Table 2).

Table 2. Carbonization conditions for PVA/PVP nanofibers.

Nanofiber Stabilization
Heating Rate for

Stabilization
(◦C/min)

Carbonization
Heating Rate for
Carbonization

(◦C/min)
Carbon Yield, %

PVA/PVP-1
24 h stabilization at

150 ◦C, 6 h
stabilization at 280 ◦C

5 carbonization at
800 ◦C for 2 h 2 6.02

PVA/PVP-2 No stabilization - carbonization at
650 ◦C for 2 h 2 11.61

PVA/PVP-3
24 h stabilization at

150 ◦C, 6 h
stabilization at 280 ◦C

5 Carbonization at
650 ◦C for 2 h 2 19.69

PVA/PVP-4 Stabilization in air at
280 ◦C for 6 h 5 Carbonization at

650 ◦C for 2 h 2 19.00

PVA/PVP-5 Stabilization in air at
150 ◦C for 24 h 5 Carbonization at

650 ◦C for 120 min 2 15.93

PVA/PVP-6
2 h stabilization at

150 ◦C, 2.5 h
stabilization at 280 ◦C

5 Carbonization at
650 ◦C for 2 h 2 5.80

PVA/PVP-7 Stabilization at 280 ◦C
for 2.5 h 5 Carbonization at

800 ◦C for 2 h 2 4.78

PVA/PVP-8

20 ◦C to 50 ◦C, 120 min 1 20 ◦C to 50 ◦C, 1 h 1

27.1650 ◦C to 150 ◦C, 16 h 0.5
50 ◦C to 220 ◦C, 1 h 1
220 ◦C to 250 ◦C, 1 h 0.5

150 ◦C to 220 ◦C, 8 h 0.5 250 ◦C to 800 ◦C, 2 h 1
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In order to produce boron, nitrogen, and fluorine (B, N, F)-doped PVA/PVP-based
carbon nanofibers, 0.5 mL 1-butyl-3-methylimidazolium tetrafluoroborate was dissolved
in 5 mL of distilled water; then, the PVA/PVP-based carbon nanofibers were immersed
in this solution. After drying, PVA/PVP-based carbon nanofibers were put in a furnace
and heated to 700 ◦C with a heating rate of 10 ◦C under a nitrogen atmosphere and held
at 700 ◦C for 10 h. A schematic illustration of the preparation of centrifugally spun B, N,
F-doped CNFs is shown in Figure 1.
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Figure 1. Schematic illustration of the preparation of centrifugally spun B, N, F-doped carbon
nanofibers.

SEM images of the precursor fibers were obtained to investigate the morphologies and
diameters of the fibers. Differential scanning calorimetry (DSC) was used to analyze the
physical transformation behavior of the material under a heating rate of 10 ◦C/min in a
nitrogen atmosphere. XRD and Raman spectroscopy were used to characterize the carbon
nanofiber structure. Electrochemical experiments were performed using two electrode
coin-type (316ss CR2032) half cells. A Whatman glass microfiber filter membrane was used
as a separator and sodium metal plates were used as the counter electrodes. Electrolyte
of the sodium ion battery was composed of 1.0 M of NaClO4 in ethylene carbonate (EC)
and propylene carbonate (PC) with a 1:1 volume. Galvanostatic charge/discharge mea-
surements were performed to investigate the cycling stability of the material. A constant
current was applied to the working electrode between two potential values of 0–2.5 V. The
rate capabilities for all electrodes were evaluated at high current densities ranging from
0.1 A/g to 2 A/g at room temperature.

3. Results
3.1. Optimization for PVA Nanofibers

PVA, PVP, and PVA/PVP-blend nanofibers were synthesized via centrifugal spinning.
During fiber production, the polymer solution is fed into the spinneret via a syringe pump.
When the speed reaches a critical value, the centrifugal force overcomes the surface tension
and then a polymer jet comes out through the nozzles. Centrifugal force stretches the liquid
jet, which leads to nanofiber formation. The morphology of the nanofibers can be affected
by different factors, such as the nozzle diameter, rotation speed, flow rate, temperature,
spinneret-to-collector distance, viscosity, concentration, and the surface tension of the
solution [12,13,30]. Viscosity is one of the most important factors that directly affect fiber
formation and the concentration of the spinning solution. If the viscosity of the solution
is too high, the fibers cannot be produced due to the large gravitation between molecules
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and the lack of sufficient strength to stretch the liquid jet. If the viscosity is too small,
droplets are produced instead of nanofibers during the process [31]. The concentration
and rotational speed are also important parameters in fiber formation and in relation to
the average fiber diameter [13,30]. PVA nanofibers were prepared using three different
concentrations, 10%, 13%, and 15%, and four different rotational speeds, 2000, 3000, 4000,
and 5000 rpm. Figure 2 displays SEM images of PVA nanofibers obtained with varying
concentrations and rotational speeds. The viscosities of PVA nanofibers obtained with 10%,
13%, and 15% concentrations were 104, 239, and 305 Pa·s at 10 rpm (Table 1). Increasing
concentrations led to increased viscosities and larger average fiber diameters for all studied
rotational speeds. The average fiber diameters were 613, 615, and 790 nm for PVA nanofibers
produced using 10%, 13%, and 15% solutions at 4000 rpm, respectively. The rotational
speed plays an important role in fiber formation as well. If the rotational speed is too low,
the centrifugal force cannot overcome the surface tension to produce nanofibers. As seen in
the SEM images, increasing speed led to decreased average fiber diameters for all studied
concentrations. For the 10 wt. % PVA solution, PVA nanofibers had average diameters of
613, 550, and 549 nm, respectively, at 2000, 3000, and 4000 rpm. Bead formation was seen
at 2000, 3000, and 4000 rpm when the concentration was 10% due to insufficient polymer
chain entanglement and no fiber formation was observed when the rotational speed was
increased to 5000 rpm. When the concentration of the solution does not reach a critical
value, the chain entanglements become insufficient, thus leading to the formation of beads
during fiber spinning [10]. PVA nanofibers fabricated using the 13% solution had average
diameters of 615, 573, 570, and 569 nm, respectively, at 2000, 3000, 4000, and 5000 rpm.
When the liquid jet was ejected from the nozzles toward the collectors, the speed of the
liquid jet decreased steadily. When the spinneret rotated at a higher speed, the speed of the
liquid jet became higher and the centrifugal force and air force increased, which led to the
formation of fibers with smaller diameters. Similar results were reported by Atici et al. [13],
Lu et al. [10], and Chen et al. [10]. Moreover, the average fiber diameters were 790, 763,
690, and 571 nm for the PVA nanofibers produced using the 15% solution, respectively, at
2000, 3000, 4000, and 5000 rpm. At 2000 rpm, bead formation was observed at all studied
concentrations. As the rotational speed increased, the average fiber diameter of the PVA
nanofibers decreased and led to the formation of long, smooth nanofibers without beads. Lu
et al. [10] studied the effect of rotational speed and observed that with increasing rotating
speeds from 2000 to 4000 rpm, the average diameter of nanofibers decreased from 663 to
440 nm due to the increasing centrifugal force applied to the solution.
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3.2. PVA/PVP Nanofibers with Different PVP Ratios

Electrospun PVA/PVP-blend nanofibers have been used in many fields, includ-
ing but not limited to biomaterials, drug delivery, scaffolds, dressings, sensors, and
packaging [32–34]. PVP improves the spinnability as well as the applicability of PVA [35].
Moreover, electrospun PVA/PVP-blend nanofibers bring about a sustained release of drugs,
along with good biocompatibility and biodegradability in bio-pharmaceutics [32]. Consid-
ering the drawbacks of electrospinning, it is important to fabricate PVA/PVP nanofibers via
a fast, safe and more environment-friendly technique. PVA/PVP nanofibers were fabricated
here via centrifugal spinning. In order to produce PVA/PVP-blend nanofibers, 15 wt. %
PVA and 10 wt. % PVP solutions were blended together in the ratios of 75/25, 50/50,
and 25/75 PVA and PVP, respectively. Figure 3 shows SEM images of PVA/PVP-blend
nanofibers with different ratios. SEM images of PVA and PVP nanofibers are also shown
for comparison. The average diameters of PVA/PVP nanofibers with the ratios of 75/25,
50/50, and 25/75 were 738, 747, and 1093 nm, respectively. The viscosities were 361, 306,
and 254 Pa·s for PVA/PVP-blend solutions with 75/25, 50/50, and 25/75 ratios of PVA
and PVP, respectively. The average diameters of the nanofibers increased as the amount of
PVP increased in the solution. As shown in Figure 3, the use of a PVA/PVP ratio of 75/25
led to the formation of long fibrous smooth nanofibers without bead formation; however,
when the ratio of the PVA/PVP solution was changed to 50/50 and 25/75, the morphology
of the nanofibers started to change and long fibers were stuck together, which resulted in
increased average fiber diameters.
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Differential scanning calorimetry (DSC) was used to analyze the physical transforma-
tion behavior of the material at a heating rate of 10 ◦C/min in a nitrogen atmosphere. The
glass transition temperature (Tg), and melting temperature (Tm) are important pieces of
information that can be observed during this process [36]. About 2 mg of each sample was
sealed in aluminum pans and heated from 0 ◦C to 250 ◦C to clear any thermal history, then
cooled to 0 ◦C for crystallization. Afterwards, the samples were heated again from 0 ◦C to
350 ◦C to obtain DSC endotherms. Figure 4 shows the thermograms of the PVA and PVP
nanofibers. Figure 4A presents the DSC curve of the PVP nanofibers, which shows a large
endothermic peak at 89 ◦C (Tg), related to the water evaporation of PVP nanofibers [37].
Moreover, some studies have reported glass transition temperatures between 86 ◦C and
178 ◦C for PVP [38]. The peak at 157 ◦C revealed the glass transition temperature (Tg).
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The different values of Tg reported in these studies are related to the diverse molecular
weights of PVP and varying preparation situations [39]. As shown in Figure 4B, the first
endothermic peak observed at 76 ◦C was attributed to the glass transition temperature
(Tg) of PVA nanofibers [40]. The second endothermic peak, observed at about 160 ◦C,
corresponded to the melting point of PVA, which revealed its crystalline characteristics [41].
The large peak observed at 300 ◦C may be attributed to the decomposition of PVA [42–44].
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3.3. Carbonization of PVA/PVP Nanofibers

After centrifugal spinning, PVA/PVP nanofibers were converted to CNFs by applying
thermal treatment that included stabilization and carbonization. Eight different heat
treatments with varying stabilization and carbonization temperatures and times were
studied. Heat treatment results are presented in Table 2. The effect of different heat
treatment conditions, including stabilization at 150 ◦C and 280 ◦C and carbonization
at 600 ◦C and 800 ◦C, with times varying from 2 h to 24 h were investigated. During
carbonization, when PVA is heated at higher temperatures than its melting point, a low
carbon yield will be obtained due to decomposition [45]. Stabilization is carried out to
prevent PVA from melting at high temperatures before carbonization [46]. The stabilization
process was performed under air atmosphere, which means that air could circulate in the
oven to import oxygen into the nanofibers and remove exothermic heat, thus preventing
PVA nanofibers from melting at high temperature [47]. In the stabilization process, water
evaporates from the structure and a polyene-type structure is generated. Furthermore,
the hydroxyl groups present in the molecular chain of PVA dehydrated to C-O and C=O,
while preserving C-C, leading to an increased number of cyclization reactions and an
enhanced carbon yield obtained after carbonization. In the carbonization process, most of
the non-carbon elements assume their gaseous form and are removed from the structure
and only carbon atoms remain [48].

A stabilization step is also necessary in the carbonization process of PVP nanofibers
in order to prevent the thermoplastic polymer from melting and to preserve the fibrous
structure of nanofibers. While diffusing oxygen in the stabilization process, many oxygen-
containing functional groups are produced on the aromatic rings. During this step, PVP
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undergoes cyclization and crosslinking reactions [49]. The oxygen that is present in the air
chemisorbs into the carbon surface and carbon-oxygen groups are formed. Furthermore,
the color of the nanofibers changes to yellow due to increased carbon content [8]. During
stabilization, several chemical reactions, such as crosslinking, oxidation, and dehydrogena-
tion occur, whereas during carbonization only dehydrogenation occurs under a nitrogen
atmosphere. During carbonization, as temperature increases, the linkages of polymer
chains start to break (C-N bonds) and carbon groups (C-C bonds) remain in the structure,
so carbon material is produced [47,50,51].

In the first process (PVA/PVP-1), stabilization was conducted at 150 ◦C for 24 h and
at 280 ◦C for 6 h and then stabilized PVA/PVP nanofibers were carbonized at 800 ◦C.
The carbon yield was 6.02%; however, when the carbonization temperature was 650 ◦C
(PVA/PVP-3), the carbon yield increased to 19.69%, which shows that increasing the
carbonization temperature decreased the yield. When no stabilization process was applied
(PVA/PVP-2), the carbon yield was only 11.61%. As stabilization was performed only at
280 ◦C, followed by carbonization at 650 ◦C (PVA/PVP-4), the carbon yield was 19.00%,
which was close to that of PVA/PVP-3. When nanofibers were stabilized at 150 ◦C for
24 h, followed by carbonization at 650 ◦C (PVA/PVP-5), the carbon yield was 15.93%,
which proved that stabilization at 280 ◦C was effective in improving the carbon yield. As
nanofibers stabilized at 150 ◦C and 280 ◦C for 2 h, followed by carbonization at 650 ◦C
(PVA/PVP-6), the carbon yield was 5.80%, which showed that the duration of 2 h was not
sufficient for stabilization, leading to a low carbon yield. When stabilization was performed
at 280 ◦C for 2.5 h, followed by carbonization at a higher temperature of 800 ◦C (PVA/PVP-
7), the carbon yield decreased to 4.78%. When nanofibers underwent stabilization processes
at 50 ◦C, 150 ◦C, and 220 ◦C, followed by carbonization at 50 ◦C, 220 ◦C, 250 ◦C, and
800 ◦C (PVA/PVP-8), a carbon yield of 27.16 was observed even at high carbonization
temperatures, which proved that stabilization conditions had an effect on carbon yield.
During this process, the carbon yield was the highest compared to all conditions owing to
the use of a sufficient stabilization time. At 50 ◦C, 150 ◦C, and 220 ◦C in air, more C-O bonds
turned into C=O bonds and C-C bonds were preserved, which enhanced more cyclization
reactions in the process of carbonization. Similar results, reported by Chai et al. [52], showed
that when a sufficient stabilization time was used for PVA nanofibers, the structure of the
carbon nanofibers remained unchanged. The use of a multistage temperature program
(50 ◦C, 150 ◦C, and 220 ◦C) was beneficial in preventing the degradation of nanofibers
during the carbonization step and thus PVA/PVP-8 had the highest carbon content.

Figure 5 shows SEM images of PVA/PVP nanofibers carbonized under different con-
ditions. As shown in the SEM images, the morphology of the nanofibers was destroyed
and the fibrous structure changed to carbon particles in the first seven processes, and car-
bonization at high temperatures without a sufficient stabilization time led to the formation
of particles. Similar results were reported by Yuniar et al. [53]. The chains of the pyrolyzed
and fibrous PVA structure turned into to spherical particles when the carbonization tem-
perature was increased to 300 ◦C. Wang et al. [54] and Shao et al. [55] also reported that if
the stabilization process was not sufficient, then the fibrous and porous structures were
destroyed and large weight losses were observed. As shown in the SEM images, in the
8th process, the carbon nanofibers preserved their fibrous structure due to the use of a
sufficient stabilization temperature. Applying different stabilization (50, 150 and 220 ◦C)
and carbonization (50, 220, 250 and 800 ◦C) temperatures was the best way to produce
PVA-based carbon nanofibers with a high carbon yield.
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3.4. Structural and Electrochemical Characterization of Centrifugally Spun B, N, F-Doped
Carbon Nanofibers

Nanofibers have unique properties compared to other nanostructured materials, such
as a large specific surface area, low density, small diameter, high porosity, and an interpene-
trating network, which make them promising materials in energy storage applications [56].
Their large specific surface area provides more active sites and their porous structure de-
creases the volume expansion that occurs during electrochemical reactions, thus improving
utilization and increasing their specific capacity [57].

Figure 6 shows SEM images of centrifugally spun PVA/PVP-derived carbon nanofibers.
The average diameter of the PVA/PVP carbon nanofibers was around 300 nm. During
carbonization, the average diameter of the nanofibers decreased due to the removal of
non-carbon elements from the structure under heat treatment due to their transformation
into their gaseous form. The structure of the nanofibers became denser, so the nanofibers
shrunk in terms of their diameters and lost weight after carbonization [30].
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B, N, F doping has been investigated in a few studies; however, B, N, F doping for
anodes in SIBs has not been studied to date. It has been observed that heteroatom doping
improves electrochemical properties due to the improvement of defects and improved
electronic conductivity [58–60]. B, N, F-doped CNFs were prepared in this study by
combining centrifugal spinning and heat treatment.

Figure 6 presents SEM images of B, N, F-doped CNFs. As shown in the SEM images, B, N,
F-doped CNFs also have a fibrous morphology, which is useful for electron transport [61,62].
TEM images of CNFs and B, N, F-doped CNFs are presented in Figure 7. As shown in these
images, both of them have a long fibrous morphology. The TEM images of B, N, F-doped
CNFs display their porous structure, with the surface of the carbon nanofibers becoming
rougher, with a high number of defects. The presence of more defects on the surface of
fibers obtained through B, N, F doping was also reported by Wang et al. [62].
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The chemical composition of the B, N, F doped CNFs was analyzed by means of EDX
spectroscopy (Figure 8a), which confirmed that boron, nitrogen, and fluorine were present
in the B, N, F-doped CNFs.

XRD patterns of CNFs and B, N, F-doped CNFs are displayed in Figure 8b. There were
two broad diffraction peaks at around ~22◦ and ~45◦, which could be assigned to (002) and
(101), which illustrate the amorphous nature of the carbon structure [62,63]. Furthermore,
based on the XRD pattern of the B, N, F-doped CNF sample, the intensity of the (002) peak
exhibited an increase with the addition of boron, fluorine, and nitrogen elements. The
interlayer spacing, d(002), was determined using the Bragg equation, λ = 2dsin θ, where λ is
the wavelength of the incident X-ray source from Cu (λ = 1.5406 Å) and θ is the diffraction
angle for the peak position [15]. According to the Bragg formula, the graphitic interlayer
spacing (d002) values of CNFs and B, F, N-doped CNFs were around 0.39 nm, which is
larger than that of natural graphite (0.335 nm) and also demonstrates that doping did not
induce major changes in the degree of graphitization [64–66]. Raman spectroscopy was also
used to further characterize B, N, F-doped CNFs. The D band (defective carbon) and the G
band (graphitic carbon) [67] of CNFs and B, F, N-doped CNFs were observed in the Raman
spectra, which appeared around ~1345 and ~1585 cm−1, respectively. The intensity ratio of
ID/IG was used to characterize the degree of structural disorder, as well as the degree of
defective graphitization and the nature of the graphitization of the carbon material [68].
The ID/IG ratios of CNFs and B, N, F-doped CNFs were calculated to be around ~0.9,
indicating a disordered structure, which was compatible with the XRD spectra.

In order to study the incorporation of B, N, and F, XPS analysis was also performed
and the XPS survey spectra are presented in Figure 8d. Based on the XPS survey, the
weight percentages of C, B, N, O, and F were approximately 78%, 2%, 9%, 10%, and 1%,
respectively.

Heteroatom doping changes the physical structure of a material and improves its
electrochemical properties. For example, doping with nitrogen (N) led to an increase in the
numbers of defects and pores in the structure of carbon and increased the active sites for ion
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storage, which enhanced the capacity and electronic conductivity [69,70]. The interaction
and combination of the heteroatoms led to improved physical and chemical properties.
Nitrogen is commonly used for co-doping. In a previous study, N/B, N/O, and N/P-Co
doping and triple doping not only generated further defect sites in carbon but also promoted
its electrochemical activity and enhance its electronic conductivity [71]. Yu et al. [72]
prepared sulfur/nitrogen-co-doped carbon nanofibers (SNCNFs) via electrospinning of
PAN, followed by carbonization. SNCNFs exhibited a reversible capacity of 170.5 mAhg−1,
which was much higher than that of nitrogen-doped carbon nanofibers (90 mAhg−1). Their
electrochemically active –C–S–C– covalent bonds, high specific surface area, and large
number of defects with a stable structure contributed to their excellent performance.
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Figure 8. EDX spectra (a), XRD pattern (b), Raman spectra (c), and XPS survey (d) results of
centrifugally B, N, F-doped CNFs.

Figure 9a,b show the discharge/charge voltage profiles of the initial three cycles for
CNFs and B, N, F-doped CNFs, respectively. In the first cycle, the discharge and charge
capacities were 203 mAh/g and 83 mAh/g, respectively, for CNFs, which led to a low
Coulombic efficiency, around 30%, resulting from SEI formation [15]. During the first cycle,
the discharge and charge capacities of B, N, F-doped CNFs were 370 and 153 mAhg−1,
respectively, giving an initial Coulombic efficiency of around 41%. The inevitable formation
of an SEI layer was responsible for the 59% capacity loss in the first cycle [73,74]. During
the second cycle, the discharge was reduced to 166 mAhg−1, with a charge capacity of
150 mAhg−1, resulting in a rapid increase in the Coulombic efficiency to 90%, further
indicating the good reversibility of the B, F, N-doped CNF electrodes. After 10 cycles, the
Coulombic efficiency increased to 99%. Figure 9c displays the cycling performance of CNFs
and B, N, F-doped CNFs at a current density of 100 mAg−1. It can be seen that the B, N,
F-doped CNFs exhibited a high reversible capacity of around 150 mAhg−1 in 200 cycles.



Polymers 2022, 14, 5541 12 of 16

However, the reversible capacity of CNFs was around 100 mAhg−1 in the first 200 cycles.
A significant increase in reversible capacity with B, N, F doping was also reported for
cathodes in lithium ion batteries [75]. The improvement was ascribed to an enhanced
amount of charge carriers, a high number of defects, and a synergetic effect. B, N, F doping
also increased the number of active sites and enhanced the electronegativity of electrodes
in Zn-air batteries [76].
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Figure 9. First-cycle discharge charge curves (a,b) and cycling (c) performance at 100 mA/g, as
well as the C rate performance (d) of centrifugally spun B, N, F-doped carbon nanofibers at current
densities of 100, 200, 400, and 800 mA/g.

The rate capability of CNFs and B, N, F-doped CNF electrodes was evaluated at
various current densities ranging from 100 to 800 mA g−1, as shown in Figure 9d. The
average specific capacities for CNF electrodes were around 102, 80, 60, and 40 mAh g−1 at
current densities of 100, 200, 400, and 800 mA g−1, respectively. After bearing large current
densities, when the current density returned to 100 mA g−1, the discharge specific capacity
recovered to around 87 mAh g−1. However, the average specific capacities of B, N, F-doped
CNF electrodes were around 165, 150, 114, and 88 mAh g−1 at current densities of 100,
200, 400, and 800 mA g−1, respectively. When the current density returned to 100 mA g−1,
the discharge specific capacity quickly recovered to 161 mAh g−1, indicating its excellent
reversibility. In addition, the specific capacity was maintained around 151 mAh g−1 after
150 cycles at a current density of 100 mA g−1, indicating the long cycling stability of B,
N, F-doped CNF electrodes. The good rate capability suggested that B, N, F-doped CNF
electrodes are promising anode materials for SIBs. The rate capability of the B, N, F-doped
CNFs was superior than that of conventional CNFs because of the semi-ionic C–F bonds,
which increased the number of defects in the carbon matrix, and boron acted as an electron
acceptor to increase conductivity by shifting the Fermi level to the conduction band [77].
These factors facilitated the fast transfer of Na+ and electrons throughout the electrode.

In this study, centrifugally spun PVA/PVP-based nanofibers have been reported for the
first time. Moreover, in order to synthesize carbon nanofibers using environment-friendly
polymers, the optimum stabilization and carbonization conditions were determined, con-
sidering the nanofibrous structure and the carbon yield. Furthermore, B, N, F-doped CNFs
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were prepared via heat treatment and used as anodes in SIBs. In Table 3, the electrochemical
properties of some reported heteroatom-doped CNF electrodes are presented. Electrospin-
ning has been widely used in previous studies; however, in this study, an easy way to
synthesize high-performance anode materials through fast and cost-effective centrifugal
spinning has been reported for the first time. Hence, high-performance anodes with many
active sites and defects, along with high conductivity, were prepared using a fast and
environment-friendly method.

Table 3. Comparison of the performance of the SIBs based on CNF electrodes.

Electrodes Reversible Capacity Ref.

N-doped CNFs 100 mAh/g at 100 mA/g [78]
N-doped CNFs 150 mAh/g at 100 mA/g [79]

N,F-doped CNFs 150 mAh/g at 100 mA/g [80]
N-doped CNFs 150 mAh/g at 100 mA/g [81]
N-doped CNFs 150 mAh/g at 100 mA/g [72]

4. Conclusions

PVA/PVP-blend nanofibers have been used in many fields and it is important to
fabricate PVA/PVP nanofibers using a fast, safe and relatively environmentally-friendly
technique. PVA/PVP nanofibers with an average fiber diameter around 700 nm were
fabricated via centrifugal spinning. In order to investigate the effect of carbonization
conditions on the morphology and carbon yield, different thermal treatment times and
temperatures were applied. PVA/PVP-based carbon nanofibers and B, N, F-doped CNFs
were fabricated with a combination of centrifugal spinning and thermal treatment. B,
N, F-doped CNFs preserved their fibrous structure after heat treatment and delivered a
reversible capacity of around 150 mAh g−1 at a current density of 100 mA g−1. Therefore,
we demonstrated that centrifugally spun PVA/PVP-based B, N, F-doped CNFs are a
promising anode material candidate for SIBs.
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