
Citation: Koczoń, P.; Bartyzel, B.;

Iuliano, A.; Klensporf-Pawlik, D.;

Kowalska, D.; Majewska, E.;

Tarnowska, K.; Zieniuk, B.;
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Abstract: The growing perspective of running out of crude oil followed by increasing prices for all
crude oil-based materials, e.g., crude oil-based polymers, which have a huge number of practical
applications but are usually neither biodegradable nor environmentally friendly, has resulted in
searching for their substitutes—namely, bio-based polymers. Currently, both these types of polymers
are used in practice worldwide. Owing to the advantages and disadvantages occurring among
plastics with different origin, in this current review data on selected popular crude oil-based and
bio-based polymers has been collected in order to compare their practical applications resulting from
their composition, chemical structure, and related physical and chemical properties. The main goal
is to compare polymers in pairs, which have the same or similar practical applications, regardless
of different origin and composition. It has been proven that many crude oil-based polymers can be
effectively replaced by bio-based polymers without significant loss of properties that ensure practical
applications. Additionally, biopolymers have higher potential than crude oil-based polymers in many
modern applications. It is concluded that the future of polymers will belong to bio-based rather than
crude oil-based polymers.

Keywords: crude oil-based; bio-based polymers; chemical structure; properties; application

1. Introduction

The increasing demand for crude oil-based materials has contributed to the depletion
of natural reserves of petroleum. It is estimated that a serious shortage in crude oil and
significant increase in its costs will be noticed as early as 2040 [1], and petroleum supplies
will have been consumed until the end of this century. As much as 11–12% of crude oil
is used in the production of polymers [2,3]. Fossil fuel-based polymeric materials show a
variety of desirable physical properties such as durability, light weight, and resistance to
corrosion and chemical reagents. For this reason the spectrum of the applications of crude
oil-based polymers is extremely wide, from packaging [4] to constructional materials [5] and
medical equipment [6]. Unfortunately, the properties that make fossil-based polymers so
attractive trigger enormous environmental problems, since the vast majority of petroleum-
based polymers do not decompose and continue to remain almost untouched for centuries.
Environmental issues along with the upcoming deficiency in crude oil supplies have
gained a great concern among the polymer industry and researchers who try to find
new alternatives to crude oil-based polymers. Polymers from renewable resources have
recently attracted the attention of global scientists as a future perspective in replacing crude
oil-based polymers or reducing their usage.
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Bio-based polymers are polymers derived (at least in part) from renewable raw mate-
rials such as plant and animal biomass, and organic waste. This group of materials can be
biodegradable (such as polylactic acid—PLA) or nondegradable (such as biopolyethylene—Bio-
PE). However, bio-based polymers are considered environmentally responsible, since they
do not depend on finite fossil fuel reserves and can be obtained with a lower carbon foot-
print than their crude oil counterparts. Renewable raw materials such as starch, vegetable
oils, and proteins are nearly inexhaustible natural resources, the supply of which can be
restored in a short period of time. Renewables are inexpensive and readily available, ensur-
ing sustainable carbon transfer from biomass and similar materials to bio-based polymers
or intermediates used in their production.

Natural bio-based polymers of industrial application can be directly extracted from
biomass. Such polymers are produced in large quantities by plants (e.g., cellulose, hemi-
cellulose, starch, inulin, and pectin) or by animals (e.g., chitin and chitosan), and they
often need to undergo special modification to meet requirements for their use [7]. Molecu-
lar biology and genetic engineering can be successfully incorporated into the process of
creating agricultural crops of desirable properties or facilitating the procedure for subse-
quent recovery of biopolymers. Bio-based polymers can also be synthesized de novo by
various bacterial strains (e.g., Pseudomonas putida, Aeromonas hydrophila, Bacillus subtilis)
during fermentation processes using low molecular weight metabolism products. Another
group of bio-based polymers includes synthetic polymers from bio-derived monomers (e.g.,
PLA and other polyesters). Several prominent building blocks such as succinic, itaconic,
muconic, and lactic acids can be effectively produced from biomass [8].

The physicochemical properties of bio-based polymers are often similar to crude
oil-based polymers, which makes them a potential substitute for their crude oil-based
counterparts. Moreover, bio-based polymers can exhibit a wide range of new features,
which can enable novel applications in many technological fields. Not only should bio-
based production be cost-effective but also more sustainable in comparison to crude oil-
based production.

The paper discusses the possibility of replacing selected popular crude oil-based poly-
mers such as polyethylene, low density polyethylene, polystyrene, polyethylene terephtha-
late, and polyvinyl chloride with bio-based polymers made from renewable resources such
as polylactic acid (PLA), derived from an animal origin, such as chitosan, and received on
biotechnological pathways such as polyhydroxybutyrate (PHB) and pullulan. The choice
of the petroleum-based polymers was dictated by their versatile application in a multitude
of industries, whereas PLA and PHB are the major industry players that are bringing
bio-based polymeric materials to the market, and polysaccharides such as pullulan and
chitosan are fully appreciated by researchers and industrialists worldwide for their high
biocompatibility and biodegradability. The properties and practical applications of both
groups of polymers have been collected in order to compare them and indicate the possible
future perspectives for bio-based polymers.

2. Polyethylene vs. Polyhydroxybutyrate

Shopping bags, including those from supermarkets, plastic packaging, various lids,
industrial foils, milk containers, and others, including thin-wall containers, wire insulators,
pipes, injection, and blow molding, are all made from different types of chemically the
same material—polyethylene (PE). In addition to the products listed that are in common
use, clearly visible in modern world, PE has many other important, yet not so commonly
known applications, e.g., parts of various machines used in the food and paper industry,
veterinary and medicine tools and materials, and in the construction industry [9]. Although
there are currently many voices pointing out PE disadvantages, above all its inability to be
naturally degradable and having a share in the dramatic increase in the volume of litter,
one must admit that PE is a companion in everyday life [10].

The history of PE can be considered serendipitous both in terms of laboratory discovery
and industrial synthesis. It goes back to 1898 when Hans von Pechmann accidentally
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obtained a white waxy substance by heating diazomethane. Later on in 1900, a similarly
obtained waxy substance was proved to contain a long carbon chain and was given the
name “polymethylene” by Eugen Bamberger and Friedrich Tschirner. In both cases, the
waxy substance was polyethylene. Laboratory discovery was followed by industrial
synthesis of PE at the works of Imperial Chemical Industries (ICI), Northwich, the UK, in
1933. The very first patent referring to production of PE from ethylene was granted on
6 September 1937. Between first information in 1898 and the patent in 1937, several reactions
were tested to produce the waxy substance first obtained by Pechmann. Numerous chemical
pathways to obtain PE were worked out, which included several reactions, e.g., reaction of
decamethylene dibromide with sodium in a Wurtz-type reaction done by Carothers and Van
Natta in 1930 [11], hydrogenation of polybutadiene, modified Fischer–Tropsch reduction
of carbon monoxide with hydrogen, or reduction of poly(vinyl chloride) with lithium
aluminum hydride. Every pathway has advantages and disadvantages, e.g., inability to
obtain a polymer with molecular mass greater than 1300 with use of Wurtz-type reaction
or formation of branched-only or unbranched-only products. Currently, ethylene and
other materials generated from crude oil are primary source materials to produce PE
commercially [12–14].

The monomer of PE, ethylene, is chemically unsaturated and contains a double bond,
while PE is saturated containing only single bonds between carbon atoms (Figure 1). Carbon
chains can be straight or branched. In general, if the chains are straight, the basic form
of PE is considered, while branched chains are associated with low-density PE (LDPE).
Both forms are produced in polymerization reactions taking place under high pressure and
temperature. Ethylene is heated and pressed to break double bonds and form long chains.
Pressure is applied to make less space for ethylene molecules that are in gaseous form.
Although no equilibrium is considered in the polymerization reaction, the Le Chatelier
principle can be used to explain favoring of the forward direction: solid state products
(right-hand side of reaction) occupy much less space than gaseous substrates (left-hand
side of reaction) [12,15].
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Figure 1. The fragment of polyethylene structure.

The production process starts with preparation of ethylene with appropriate properties.
The monomer is sourced by dehydration of ethyl alcohol fermented from molasses. Another
source for ethylene is a selected fraction of crude oil fractional distillation. Before starting
the polymerization process, all undesired contaminants such as carbon monoxide, oxygen,
water, and acetylene must be removed. The use of inadequately prepared reactant yields
product of undesired properties, especially in terms of insulation or heat resistance [10,12].

The polymerization route requires applying high pressure of 100–300 MPa and tem-
perature of 350–600 K. This is the most common process, known as high-pressure poly-
merization. There are also other well-known technological methods of PE production,
e.g., Standard Oil Company Indiana process, high-density PE (HDPE) Phillips or Ziegler
process, and metallocene catalyzed process. Application of different conditions, namely
pressure, temperature, or catalyst, leads to production of PE, LDPE, or HDPE [10,12,16].

Currently PE is divided into classes that consider chemical structure and resultant
properties [10,12]. Structural classes are:

• Linear PE—with a macromolecule made of many monomer units arranged in a straight
line;

• Cross-linked PE (PEX)—where macromolecule has covalent bonds between the poly-
mer molecules.

PE can also be classified according to material density. The following classes are
described:
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• Low density PE (LDPE);
• Linear low density PE (LLDPE);
• Middle density PE (MDPE);
• High density PE (HDPE);
• Ultra-high molecular weight PE (UHMWPE).

In summary, PE with a general molecular formula of –[C2H4]n–, a degree of polymer-
ization of 1500–9000, and a melting point at 395–400 K [15] has very useful and desirable
mechanical and chemical properties, including being soft, transparent, tasteless and odor-
less, but not resistant to high temperature. The main advantage of all PE types is low price,
as costs of production are low. PE from each class has different properties; hence, it is
used in different areas of human life, for example, LLDPE has the highest impact strength,
tensile strength, and extensibility of all PE classes [15,17–19].

Without specific treatment, decomposition of PE takes hundreds of years, hence
many scientific and industrial interdisciplinary teams work on methods to increase its
decomposition rate or reuse [20–23]. Promising investigations cover the use of bacteria,
yeasts, and enzymes present in microorganisms to recover material that can be used for the
next synthesis of plastic exhibiting the quality equal to the one obtained in petrochemical
processes. Investigated microorganisms can also be used for remediation of plastic waste
present in soil and landfills [24–26]. However, there is no similar research on PE/LDPE
biomedical wastes.

Polyhydroxybutyrate—PHB—was discovered in 1925 by Maurice Lemoigne [27,28].
Chemically, it is polyester. There are several slightly different forms of this polymer,
namely poly-4-hydroxybutyrate (P4HP), polyhydroxyvalerate (PHV), polyhydroxyhex-
anoate (PHH), and the most common poly-3-hydroxybutyrate (P3HB).

With the molecular formula [OCH(CH3)CH2CO]n (Figure 2), PHB has similar me-
chanical properties to PE, while its greatest advantage over PE is biodegradability [29].
However, the biggest disadvantage is its high cost of production, and currently there is
intensive research focused on decreasing these costs [24,30–32].
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PHB that belongs to a polyhydroxyalkanoate (PHA) family is a semicrystalline ther-
moplastic polyester. Its glass transition temperature is 278–282 K; the melting point is
440–450 K. PHB has a very low Young’s modulus (3–3.5 GPa) compared to other biodegrad-
able biopolymers. Its decomposition lasts up to several years [15,33]. PHB is used as a
component in medical implants, surgical sutures, and elements of artificial tissues [34,35].

PHB can be obtained from its monomer—butyric acid—by microorganisms on bio-
logical pathways [29]. Production of PHB is more expensive than any other PE. Therefore,
sources of cheap organic matter are required. One way is food-originated residuals that
undergo fermentation to form volatile fatty acids, which are in turn converted by specific
bacteria, e.g., Cupriavidus necator to form PHB. Another method of PHB production is the
use of the strain R. piridinivorans BSRT1-1. This strain is isolated from soil, and it has been
stated that fructose and KNO3 are the best sources of carbon and nitrogen for bacteria
to produce PHB. Under optimal conditions, 3.60 g of PHB can be formed from 1 dm3 of
biomass. Details are provided in [36]. Bacillus cereus SH-02 (OM992297) is also considered
to be a good producer of PHB [37].

Both PE/LDPE and PHB are widely used in medicine and the veterinary and agri-
cultural industries. Although both are polymers, their physical, chemical, and biolog-
ical properties, together with their formation and methods of utilization, differ signifi-
cantly. Both plastics are commonly used in production of medicinal and veterinary mate-
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rials [12,29,38,39]. Materials and products obtained from both polymers can be in direct
touch with human organs. They can be used for production of bone tunnels [40], surgical
threads [41], containers, foils, slices, packaging [42], and antibacterial foils [43]. Owing
to relatively low costs, PE single-use products are manufactured and applied [21]. Or-
thopedics is a rapidly developing area for the use of polymers, including PE and PHB
applications. In the most common surgery worldwide, i.e., total knee arthroplasty (TKA),
endoprostheses used are made of PE. A specific type of PE used for this type of endopros-
theses provides physiological kinematics of the knee joint [44,45]. Additional advantage is
low specific weight, mechanical resistance, and transparency to X-rays [46].

A characteristic and practical important feature of this biopolymer is its significantly
high biodegradability and biocompatibility. As biopolymers generally, PHB can be rel-
atively easily decomposed by enzymes produced by living species. In the biological
environment, biodegradation can occur by oxidation, including photo-oxidation or hydrol-
ysis [47]. PHB can be easily decomposed inside human tissues by enzymatic or hydrolytic
decomposition, with pH kept at a constant level [48,49]. Products formed are easy me-
tabolized by human or animal organisms [50]. This ability to be degradable, especially in
the human body, allows use of PHB as a composite for implants. Additionally, PHB can
promote cell growth in a near-natural biological environment [28,49,51,52].

3. Polystyrene vs. Polylactide

Polystyrene (PS) is a thermoplastic polymer (Figure 3) made of aromatic hydrocarbon
monomer styrene that is derived from fossil-fuels [53].
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The synthesis of PS is based on the free radical polymerization of styrene using free-
radical initiators. It is mostly used in solid (high impact and general purpose PS), foam and
expanded PS forms. The main advantages of PS are low-cost, easy processing ability, and
resistance to ethylene oxide, as well as radiation sterilization. It is, however, not resistant
to organic solvents such as cyclic ethers, ketones, acids, and bases. The most popular
general purpose PS (GPPS or unmodified PS) is transparent, brittle, and rigid, which makes
this kind of material suitable for laboratory purposes, such as diagnostic and analytical,
and medical packaging (e.g., Petri dishes, tissue culture trays, pipettes, test tubes). For
high-strength products, high-impact PS (HIPS) is competitive with polypropylene and
PVC [54]. It is typically used in thermoformed products, such as catheters, heart pumps,
and epidural trays, and toys, packaging, and electronic appliances. Owing to its high
dimensional stability and easy processing, it is often chosen for the preproduction proto-
types in 3D-printing technique [55]. As a result of strong C-C and C-H bonds present in
the structure, PS is resistant to biodegradation without special treatment such as copoly-
merization and fictionalization. However, it was proved that some bacterial species are
able to form biofilm on the PS surface, which leads to its partial degradation [56]. PS can
be recycled using several methods. Mechanical recycling is the one with lowest cost, but
it has many limitations. The main obstacle is efficient separation of PS from the plastic
waste stream. Currently, PS is sorted using near-infrared technologies and complementary
sorting methods, including density, electrostatics, selective dissolution, and flotation [57].
The latter—froth flotation—is the most common due to its low cost and the possibility to
separate polymers with similar density. To increase the flotation effectiveness, surface mod-
ification can be performed, e.g., in the presence of KMnO4 [58] or K2FeO4 [59]. Recycled
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PS exhibits worse mechanical properties than neat polymer, and reduction in molecular
mass is also observed. Nevertheless, many products made of recycled PS can be found
on the market, e.g., pencils, doors, window frames, cups, plates, and bottles; some of
them even approved for food contact [60]. Chemical recycling of PS is less common due
to the high cost. It leads to the production of styrene, and other useful chemicals such
as benzene, toluene, indan, ethylbenzene, and benzoic acid, via pyrolysis and oxidation.
Recently, a novel simple and low-cost method has been reported that enables the oxidative
cleavage of PS to benzoic acid, formic acid, and acetophenone by singlet oxygen at ambient
temperature and pressure [61]. PS waste can also be converted to biodegradable PHAs [62].
To summarize, PS is one of the most important polymers present in our daily life. However,
once it has fulfilled its designed purpose, it is not easily degradable. Chemical recycling
is not economically convenient since the feedstocks are cheaper than the process itself;
additionally, mechanical recycling is limited due to the low separation efficiency of PS from
the plastic waste stream. That is why there is an urgent need to find sustainable alternatives
that can at least partially replace petroleum-based PS in use. The most popular green sub-
stitutes for PS are cellulose and thermoplastic starch used as thermal insulation materials
(foams) [63,64], and poly(vinyl alcohol) for bead-foaming process [65] and polylactide [66].

Polylactide (PLA)—biodegradable and compostable aliphatic polyester (Figure 4)—is
one of the key biopolymers with the largest market significance. The global volume of PLA
production was around 457,000 metric tons in 2021, which accounted for 29% of the total
biodegradable bioplastics production worldwide [67]. The PLA production on industrial
scale is either based on the ring-opening polymerization (ROP) of lactide, (method applied
by NatureWorks LLC, Plymouth, MN, United States, and Corbion N.V., Amsterdam, the
Netherlands) or direct polycondensation of lactic acid in an azeotropic solution (applied by
Mitsui Toatsu Chemicals, Inc., Tokyo, Japan) [68]. In both cases, high molecular mass PLA
is obtained; however, solvent-free ROP is preferable for production in large scale. In this
case, optically pure L-lactic or D-lactic acid is produced as a monomer of PLA by microbial
fermentation from renewable resources such as molasses, whey, sugar cane, and plants with
high starch content [69]. Next, LA is condensed to form low molecular mass prepolymer
PLA, which undergoes a controlled depolymerization to a cyclic dimer of lactate–lactide.
The polymerization of lactide is generally catalyzed by tin octanoate and requires short
reaction time at a temperature of about 440–460 K [70].
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The mechanical properties of PLA are similar to those of PS and polyethylene tereph-
thalate (PET) [71], also described in detail in Section 4 of this paper. It can also be a
sustainable alternative to polypropylene (PP) and PVC. PLA is as rigid and brittle as PS,
and its resistance to fats and oils resembles PET [71]. Although CO2, O2, N2, and H2O
permeabilities for PLA are higher than for PET, but lower than for PS [72], therefore many
attempts to improve the PLA barrier properties have been reported, e.g., by introducing
nanofillers with a lamellar structure [73]. In addition, it is characterized by a high tensile
modulus and resistance to UV radiation. Good mechanical and optical properties allow
PLA to compete with the existing crude oil-based thermoplastics. PLA containing approx.
5% of D-repeating units is a transparent, colorless, and relatively rigid material resembling
PS [74]. An extra advantage of PLA is its easy processing ability through conventional melt
processes such as extrusion, injection molding, compression molding, or blow molding,
which are also used for other commercial polymers, namely PS and PET [75].
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The properties of PLA depend on the polymer molecular mass and the degree of
crystallinity [76]. Stereochemistry also plays an important role. The stereochemical compo-
sition and distribution of monomer units along the polyester chain affect the properties of
PLA [74]. L-PLA (PLLA) and D-PLA (PDLA) are composed of lactic acid units of the same
chirality [77]. They are isotactic, stereoregular, and partially crystalline polymers (degree of
crystallinity up to 60%), the glass-transition temperature (Tg) is approx. 320–330 K, and
the melting point is 440–470 K [29,74,78]. On the other hand, D,L-PLA is an amorphous
polymer with a Tg of about 330 K. It shows worse mechanical properties and degrades
faster than PLLA and PDLA. The highest melting point, about 500 K, shows a racemic
mixture of PLLA and PDLA, in which chains of different chirality form a densely packed
network. Compared to the parent polymers, the resulting racemic PLA (PDLLA) has
enhanced functional properties, such as mechanical strength, durability, and thermal and
hydrolytic stability [79].

Desirable properties allow PLA to compete with PS in several application fields,
described below.

3.1. Packaging Application

Low toxicity, strong flavor and aroma barrier, and high transparency make PLA an
ideal material for fresh food packaging, especially fruit and vegetables [80]. Auras et al. [81]
tested and compared oriented PLA (OPLA) with PET and oriented PS (OPS) films intended
for production of fresh fruit and vegetables storage containers. According to these results,
mechanical, physical, and barrier properties of OPLA were comparable and, in some cases,
better than standard OPS and PET containers. Similar studies were performed for the shelf
life of blackberries [82] and blueberries [83] under retail conditions closed in the OPS and
OPLA containers. In both cases the shelf life was extended, proving that PLA can be a good
replacement for PS. PLA can be used also as trays for storage of mangoes, melons, and
other tropical fruit. The shelf life of the fruit packed in such a way was the same as of the
fruit packed in PET trays [84]. However, the PLA packaging is more susceptible to cracking
and breaking during transport when compared with OPS or PET. Neither the sheet nor the
finished product can be stored at temperatures above 313 K or relative humidity greater
than 50% [85].

3.2. Three-Dimensional Printing

The filaments used in 3D printing are primarily thermoplastics. The most popular are
PLA, acrylonitrile butadiene styrene (ABS) and HIPS [86]. In all three cases, filament can
also be produced from recycled plastic, which can significantly reduce its price. It is worth
mentioning that commercial filaments for 3D printing are 20 to 200 times more expensive
than those of raw plastics [87]. The source for PLA waste is food containers and bottles,
ABS filaments originating from car dashboards, and HIPS derived from refrigerators
or automotive parts [88]. The advantages of PLA as filament for 3D printing are ease
of printing, glossiness, and multicolor appearance. The dimensional accuracy of the
parts printed from PLA is high since it poses less warp behavior than the other filaments.
Compared to HIPS, PLA filament does not require a heated bed, it is odorless, and what
is more important, it releases many fewer volatile organic compounds and exhibits lower
particle emission during printing [89]. PLA prints have wider application than HIPS due to
biocompatibility and susceptibility to biodegradation, which are important in biomedical
application and tissue engineering [90]. Moreover, the price of 1 kg of PLA filament is
comparable to that for HIPS. This is why PLA can be a good alternative to HIPS in rapid
manufacturing of packaging prototypes using 3D printing technology [91].

3.3. Medical Application/Drug Delivery

Medical plastic has to be biocompatible, stable under different sterilization conditions,
and robust to surface modification. While PLA fulfils all these requirements, PS is not
applicable because of the cancerogenic properties of styrene and its very moderate biocom-
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patibility [54]. However, there are several studies on improving the biocompatibility of PS,
e.g., by nonequilibrium gaseous plasma treatment [92]. Both polymers can be sterilized
by ethylene oxide, gamma radiation, and electron-beam radiation, however, due to the
presence of a benzene ring in its structure, PS is more resistant to high radiation doses than
PLA. PLA exhibits strong resistance to sterilization processes with use of an autoclave or
dry heat [93]; standard PS is not autoclavable, but syndiotactic PS is excellent [94]. The
main application of PS in the laboratory field is the production of different containers for a
variety of liquids, cells, and bacteria, together with microspheres used as drug carriers and
magnetic particles. The biocompatibility of PLA makes this material an excellent applica-
tion as scaffolds for bone regeneration, implants, stents, along with bioresorbable surgical
and orthopedic threads and dental implants. Owing to the good mechanical properties of
PLA, it can be used in catheters, heart pumps, and epidural trays to replace PS [54]. PLA
and PS are also used as a surface for adhesion and proliferation of fibroblast and osteoblast
cell lines [95].

PLA is a promising bioplastic with mechanical properties comparable to those of
PS. In addition to its established position as a material for biomedical applications, it
can replace mass production plastics from petroleum. However, there are still challenges
that need to be addressed, e.g., improvement of barrier properties, which play a very
important role in maintaining food quality and safety [96]. Moreover, the cost of PLA
manufacturing is still too high to compete with PS. That is why there is a need to find
low-cost substrates and high-performance microorganisms to increase the efficiency of
LA production and obtain low-cost, high-quality PLA. Another concern is the recycling
of PLA. PLA can be easily degraded in the natural environment or in compost; however,
the idea of introducing a large amount of waste for biodegradation is unreasonable and its
transformation into chemical products more valuable than simply carbon dioxide and water
should be considered. Currently, several attempts of PLA recycling have been made but an
industrially feasible chemical recycling concept, in adherence to the fundamental principles
of closed-loop recycling within a Circular Economy, has not yet been developed [97]. Other
than PLA, products made from PS can be recycled, but the high cost of the recycling process
and the segregation problem make the technology inefficient. Moreover, the production
of biopolymers is considered more sustainable than petroleum-based materials due to the
reduced net carbon footprint [98].

4. Polyethylene Terephthalate vs. Chitosan

The abbreviation “PET” is well-known to all consumers worldwide and stands for a
petroleum-based synthetic polymer of terephthalic acid and ethylene glycol, i.e., polyethy-
lene terephthalate (Figure 5). The history of this polymer production dates back to the
1940s when Whinfield and Dickson [99] patented terephthalic esters in the form of linear
polymers. The second most important patent relating to the described plastic is the inven-
tion of Wyeth and Roseveare [100], i.e., a plastic soda bottle. In recent years, the global
production of this plastic exceeded 30 million metric tons and a 4% market growth rate is
expected in the coming years [101].
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The technology of PET production has been developed over the years, and now the
substrates for the synthesis of this polymer, i.e., terephthalic acid or dimethyl terephthalate
and ethylene glycol, are obtained from fossil-based resources. Consequently, the first two
compounds are produced from p-xylene and the diol is made through the oxidation of
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ethene. One of the major industrial-scale synthesis methods of polyalkylene terephthalates
is the so-called melt polycondensation, including a two-step process in the presence of
catalysts for (trans)esterification of substrates in an inert atmosphere at 460–500 K, and
subsequently, polycondensation of the intermediates at reduced pressure and increased
temperature (520–550 K) until obtaining enough viscous mixture resulting in the end
product [102].

The technology affects the appearance and the final form of PET, wherein the amor-
phous state the polymer is transparent, while in the semicrystalline state PET appears
opaque [103]. According to the ASTM (American Society for Testing and Materials) Inter-
national Resin Identification Coding System the number 1 was assigned to PET, meaning
low production costs together with high recycling possibilities [104,105]. PET materials are
characterized by high strength, rigidity, and hardness. High thermal stability is observed,
which is connected to the presence of para-substituted aromatic rings in the polymer struc-
ture. Such polyesters have a melting point above 520 K, and even a theoretical value of
565 K was calculated for PET if an accurate process of annealing would be used [103].
Moreover, both the Tg and density are strictly dependent on the final form of the poly-
mer; hence, Tg for the amorphous state is 340 K and for the semicrystalline PET is about
350 K [104]. Amorphous PET has a density of 1.30–1.34 g/cm3 and semicrystalline PET
is about 1.50 g/cm3. Crystalline PET is much denser than the amorphous form because
polymer chains of the former are closely packed and parallel, while they are disordered in
the latter [106]. Interestingly, exceeding the Tg point, thus the temperature above 340–350 K,
may lead to the decreased resistance of PET to hydrolysis [107].

Polyethylene terephthalate has found its application in single-use food packaging,
mainly for beverage bottles, but another major market is the textile industry and the
production of clothes, shoes, and carpet fibers [101,108]. Features such as transparency,
lightness, strength, and durability made PET bottles favored over those made of glass, and
the results of the Coca-Cola Company life-cycle assessment study in 1969 revealed that
bottles obtained from PET affected the environment less than their glass analogues [104].
The possibility of using PET in packaging material for food or pharmaceuticals results
from low permeability for gases and solvents, together with low moisture absorption [109].
Chemical stability of polymers is also extremely important. PET’s stability is observed
in weak acids and is also inert to several organic solvents from the alcohol, halogen, and
ketone groups [104,105]. Strong acids, bases, hydrocarbons, and aromatic compounds
are examples of chemicals that influence the stability of PET, and moreover, according to
Lepoittevin and Roger [103], PET may be soluble in a mixture of phenol and trichloroethane,
and in trifluoroacetic acid, o-chlorophenol, or hexafluoroisopropanol.

It is estimated that the degradation of plastic bottles lasts around 450 years, and 8%
of solid waste weight is contributed to PET [110]. Owing to the fact that almost 60% of
PET is discarded into landfills, solutions are being sought to reuse this plastic. Approaches
such as bottle reuse systems, bans on plastic bags, and the introduction of taxes and de-
posit systems have been successfully applied in many geographical regions, e.g., Europe,
America, and South Asia [111]. Currently PET waste is subjected to recycling processes
using both mechanical and chemical methods. Reactive extrusion is often used because
of its simplicity and the multiple extrusions carried out at 540–550 K lead to a decrease in
molecular mass of the polymer [110]. Among chemical recycling methods, the following
reactions are distinguished: hydrolysis at higher temperature and pressure, methanolysis,
glycolysis, aminolysis, and ammonolysis, which lead to the depolymerization of PET. Prod-
ucts obtained from chemical depolymerization found their application in various industries,
e.g., as cement replacement, corrosion inhibitors, paints, etc. [112]. Unfortunately, chemical
recycling of polymers seems to be unprofitable because the polymerization of fossil-based
substrates is much cheaper than reprocessing of polyesters [108].

PET is considered resistant to hydrolysis and enzymatic treatment, but the current
prospects for its biodegradation are very promising. Numerous studies have shown the use-
fulness of bacteria of the genera Ideonella, Bacillus, and Streptomyces, along with the enzymes



Polymers 2022, 14, 5551 10 of 21

produced from the esterase and cutinase group, the so-called PETases [101,104,108]. The
discovery of such microorganisms with their ability to produce PET hydrolyzing enzymes,
and their possible application in polymer biodegradation may be an innovative approach
in waste management in line with the circular economy system, which meets the goals of
sustainable development [108].

Currently, new packaging materials, mainly those which are bio-based and biodegrad-
able, are gaining interest among the consumers and food manufacturers. An interesting
example of such a polymer is chitosan (Figure 6).
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Chitosan is a biopolymer obtained after chitin deacetylation, the discovery of which
is attributed to the French physiologist Charles Rouget, who in 1859 heated chitin (a
glycan consisting of N-acetyl-D-glucosamine molecules) in an alkaline solution. From the
chemical point of view, this polysaccharide is a linear polymer consisting of D-glucosamine
units linked with β 1–4 glycosidic bonds. The process of removing acetyl groups is not
often entirely performed; therefore there are several chitosan preparations available on
the market with different degrees of deacetylation [113,114]. Interestingly, the industrial
production of chitosan started in Japan in 1971 [115].

It is believed that chitin, along with cellulose, is one of the most common biopolymers
found worldwide. The main sources of chitin and chitosan are crustaceans (shrimps and
prawns, krills, or crabs), and insects, together with microorganisms, mainly fungi, algae,
and some yeasts [113,116]. Shells and other inedible parts, i.e., crustacean waste, are a good
source for these polysaccharides, especially since their contents in this arthropod taxon
reach up to 20% dry weight and seafood consumption will grow increasingly [113,117]. In
the last few years, several biotechnology companies, such as the Mycodev Group (Freder-
icton, NB, Canada), Chibio Biotech Co., Ltd. (Qingdao City, Shandong Province, China),
and KitoZyme (Herstal, Belgium), have launched and have been producing the so-called
“vegetal chitosan” or “mycochitosan”, a fully nonanimal source for this polymer obtained
through the fermentation process with the use of filamentous fungi; hence, these prepara-
tions may be an alternative for people with shellfish allergies and for vegetarians [113].

The properties of chitosan and PET differ, especially in terms of strength and hardness.
Therefore, these polymers cannot be replaced one-to-one, but other attributes of the former
allow the use of plastics to be limited, as mentioned below. One of the main advantages of
this polysaccharide is that it can be consumed as opposed to petroleum-based synthetic
polymers. Chitosan has been considered as material for food packaging, but also as a
dietary supplement, biofertilizer, and biopesticide. Moreover, hydrogels and wound-
healing bandages based on chitosan are currently obtainable on the market [117]. This
polymer could be used for bodyweight reduction, but there are some concerns that it may
interact with fat-soluble vitamins. The lowest observed adverse effect level (LOAEL) for
chitosan is relatively high and it accounts for 450 mg/kg for men and 6000 mg/kg for
women [117]. In the case of oral median lethal dose (LD50) in mice, it was revealed that the
value was higher than that of sucrose and it exceeded 16 g/day/kg body mass [114].

Furthermore, its potential widespread application comes from both biological and
physical properties, such as antimicrobial activity, biodegradability, and film-forming
ability. Chitosan is not soluble in water and organic solvents but dissolves in dilute acetic or
hydrochloric acids. Chitosan-based edible coatings and films are able to extend the shelf life
of food products, prolong their quality, improve nutritional and antioxidant properties, and
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prevent the growth of food-spoilage microorganisms. In order to improve some features
of such films, various additives are added, such as plasticizers in the form of polyols (e.g.,
glycerol) and emulsifiers. Chitosan can also be blended with other biopolymers, such as
alginate, pectin, starch, or caseinate, or enriched with different valuable compounds (e.g.,
polyphenol extracts) to enhance its applicability [118].

Among various polymers, chitosan is distinguished by its antimicrobial activity. Inter-
estingly, two different mechanisms may be responsible for this activity, but in each case the
chemical structure is the clue. The first mechanism is associated with chitosan binding to
DNA molecules causing bacterial cell death. In the second one, chitosan and more specifi-
cally the amino groups in the chain of this polysaccharide in the acidic medium generate
a cationic charge that binds to negatively charged bacterial cell walls and membranes,
resulting in permeability disturbances and cell leakage. In addition, by lowering the pH
value, the improvement in the antibacterial activity is observed due to the increase in the
protonation of the amino groups [119].

Chitosan shows remarkable potential for biomedical applications. Apart from already-
mentioned bioactive dressings for healing wounds and burns, this polysaccharide can be
used in preparing drug delivery systems of different forms (tablets, gels, granules, films,
or microcapsules) or can serve as an artificial kidney membrane impermeable for serum
proteins, and potential material for contact lenses, specifically due to its good tolerance
by living tissues [116]. Over the past few decades, scientists were also interested in the
use of chitosan in tissue engineering and regenerative medicine. Both PET and expanded
polytetrafluoroethylene (ePTFE) are usually standard materials for prosthetic vascular
grafts, but the need for small-diameter (<4 mm) application becomes problematic with
the use of these two synthetic polymers [120]. Chupa et al. [121] indicated the meaningful
potential of chitosan and its complexes with glycosaminoglycans or dextran sulfate in the
preparation of newly bioactive materials that exhibited activity both in vitro and in vivo
and modulated the activity of smooth muscle and vascular endothelial cells.

Pure chitosan films are not thermoplastic and thus cannot be softened by heating,
thus their extrusion, molding, or heat-sealing is limited [122]. Some properties of chitosan-
based films, e.g., water vapor and oxygen permeabilities, are thus important parameters
influencing the applicability of the coating or film for food packaging (since the moisture
and oxygen levels can lead to lowering the quality of food), can change depending on
the addition of some materials incorporated into chitosan films, as well as the charac-
teristics of chitosan, i.e., the degree of deacetylation and the methodology of coatings
and films manufacturing. Wang et al. [118] reported that the use of organic compounds
such as polyphenols in chitosan films led to a decrease in water vapor permeability due
to the interactions between compounds and limiting interactions with water molecules.
Moreover, the use of nanoparticles led to similar observations because good dispersion
in the film and filling the spaces resulted in hindered migration of water. Furthermore, it
is believed that the tightly packed structure of chitosan with plenty of hydrogen bonds
may have limited oxygen permeability, and the incorporation of chitosan-based films with
graphene oxide nanosheets or silver nanoparticles caused a significant reduction in oxygen
permeability [119].

In the near future, chitosan-based packaging may find its niche in producing active
and intelligent packaging. The first type, in addition to the features typically assigned
to packaging, is characterized by carrying additional properties maintaining the quality
and increasing the safety of the products, which in the case of chitosan relates to its
antimicrobial and antioxidant activities [119]. The term “intelligent” in the case of the latter
refers to the possibility of using packaging for real-time food quality monitoring. This
approach arouses the interest of scientists, thereupon extensive research is undertaken,
but also industry attention is attracted. Recently colorimetric and pH-indicating films are
under special examination, where both their manufacturing and specific properties on the
selected food products are assessed. Methylene blue is an example of a dye applied in
chitosan-based films, whereby its color depends on oxygen concentration in the atmosphere
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surrounding the product and decreasing oxygen content may indicate microbiological
contamination [118]. As pH-indicating compounds, both synthetic and natural substances
are used in chitosan films. The studies on the use of alizarin, along with anthocyanins
from purple potato or grapes were conducted and confirmed the applicability of these
compounds to monitor changes in food, where pH alternations may suggest that the
product is stale or contaminated [118,119].

Concluding, it cannot be clearly stated which polymer is better, PET or chitosan.
Similarly it cannot be confirmed with certainty that the latter, i.e., a polymer of natural
origin, will replace PET because they differ significantly in their properties. PET is primar-
ily a packaging material used in the beverage industry with high hardness and rigidity.
Inversely, chitosan is used to create coatings and films, and the possibility of producing
edible packaging is an additional advantage. Finally, the prospect of producing active
and intelligent packaging based on chitosan, which will be also edible, biodegradable,
and compostable, points in favor of its use. Therefore, the production of chitosan-based
packaging will be a limitation in the use of PET, replacing it in selected applications, rather
than a complete replacement.

5. Polyvinyl Chloride vs. Pullulan

Polyvinyl chloride—PVC—is a long-chain thermoplastic polymer produced by a free-
radical polymerization of vinyl chloride monomer. Industrial synthesis of PVC is dated to
the early 1930s, and recent estimates account production volume as third among plastics
after polypropylene and polyethylene, and up to 25% of total plastic production [21]. The
basic raw materials for the PVC synthesis come from crude oil and sodium chloride and
hence only 43% of this polymer mass is petroleum-based [123]. The chemical formula of
PVC is (C2H3Cl)n, and the chemical structure is a long chain with the repeating unit of
vinyl chloride, as shown in Figure 7.
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As a thermoplastic material with excellent chemical and mechanical properties, PVC
has widespread uses. These properties together with low production cost affect the eco-
nomic significance of PVC worldwide. The most important properties are polymer dura-
bility, high chemical resistance, resistance to water and weather conditions, and adhesive-
ness [124,125]. Moreover, because of its high polarity, it has the ability to accommodate a
wide range of additives such as stabilizers, plasticizers, lubricants, or pigments [126]. The
addition of different chemicals to PVC resins modifies its properties and may change the
possible way of use. The unplasticized PVC is hard and rigid and can be used in plumb-
ing, construction, fencing, or drainage systems, whereas plasticizers incorporated into the
polymer make it softer and more flexible, thus useful in electrical cable insulation, medical
devices, or inflatable toys [127]. These hard and soft variants of PVC compounds differ
considerably in terms of the Tg and flexibility at specific temperatures [128]. Additionally,
high transparency of this polymer is useful in film production or light-transmitting panels.
It is a lightweight material, with high strength-to-weight ratio, which imparts no taint
or taste. Notwithstanding, almost 70% of PVC compounds is used in the construction
industry [129], next in medicine (flexible blood containers or inhalation masks) [130,131],
and the packaging industry (wrap films with good oxygen barrier properties) [132].

Despite the outstanding position of PVC mainly among medical polymers, it is con-
sidered to be harmful to both human and environment because of various chemicals and
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dangerous degradation products released during its life cycle [123]. Its complex composi-
tion together with low thermal stability makes this polymer difficult to recycle, but there
are available techniques for the management of PVC waste, both mechanical [133] and
feedstock [134].

Pullulan is an extra-cellular, unbranched, water soluble, neutral, nonionic, nontoxic,
nonmutagenic, noncarcinogenic exopolisaccharide. This biopolymer is obtained from
fermentation medium of the fungus-like yeast Aureobasidium pullulans, generally referred
to as “black yeast”. The final yield of pullulan is highly affected by media composition and
culture conditions [135,136]. The large scale production started in 1976 by Hayashibara
Co., Ltd. (Okayama, Japan), which is still the leading commercial producer worldwide
together with Shandong Jinmei Biotechnology Co., Ltd. (Zhucheng, China). Pullulan is
generally marketed as white or off-white dry powder or capsules [137]. The chemical
formula of pullulan has been suggested to be (C6H10O5)n, and its chemical structure
consists of repeating units of maltotriose linked with each other by the α 1–6 glycosidic
bonds [138–140]. Pullulan structure is often seen as an intermediate between amylose and
dextran structures. The chemical structure is shown in Figure 8.
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The peculiar structure of pullulan (mainly the α 1–6 linkages) affects strongly its high
solubility in both cold and hot water, and its lack of ability to form gels. It is responsible for
the high structural flexibility, but is also reflected in the lack of crystalline regions within
the polymer, which has a completely amorphous organization [141]. Pullulan compounds
have a high heat resistance and are biodegradable in biologically active environments,
therefore it can be utilized in many different ways. It has a significant mechanical strength,
adhesiveness, thick film, and fiber formability, stability of aqueous solution over a broad
range of pH, low viscosity, and good oxygen- and moisture-barrier properties [136,142];
it also inhibits fungal growth in food [143]. Pullulan can be formed into compression
moldings that can resemble PS and PVC in transparency, gloss, hardness, and strength, but
which are far more elastic [135]. Additionally, the capacity to form thin layers, nanoparticles,
flexible coatings, and standalone films means it can successfully replace other synthetic
polymers derived from petroleum, such as polyvinyl alcohol [138].

This polysaccharide is also colorless, tasteless, odorless, and, what is more important,
edible, however, not attacked by the digestive enzymes in human gut [136,142]. It has a
“generally recognized as safe” status in the United States [144] and in the European Union
is a food additive of microbial origin E1204 [145].

As a nonpolluting “plastic”, the biodegradable and biocompatible biopolymer pullulan
could be used in different sectors, especially pharmaceutical (hard and soft capsules, drug
delivery systems, anticancer nanoparticles) [146,147], biomedical (wound healing) [137],
environmental, food, and cosmetics (body and skin application) [148]. However, despite all
the pullulan advantages, its high cost is the limiting factor for wide scale applications.

The most emerging area of interest in pullulan application is still the food packag-
ing sector. Because of the nonbiodegradable character of synthetic polymers and their
great impact on the environment, research remain focused on developing ecofriendly and
biodegradable food packaging systems obtained from natural sources. Such applications
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are edible coatings and active films, which are known to protect food, extend the shelf life
of the product, and improve its quality. A thin layer of pullulan is formed directly on the
surface of a product and can be safely eaten with a protected food. Pullulan was used as
an edible coating on, e.g., highbush blueberries [149], Fuji apples [150], and white aspara-
gus [151]. Moreover, pullulan is also an excellent medium for different compounds, which
play an important role in prolonging shelf life: chitosan [152], thymol [153], pectin [154], or
propolis [142].

6. Summary

The most important properties of the polymers discussed earlier in this paper have
been collected and are presented below (Table 1).

Table 1. Selected properties of all the polymers discussed in this paper.

Property
Pairs of Polymers (Fossil–Bio)

PE–PHB PS–PLA PET–Chitosan PVC–Pullulan

Density (kg/m3) 950 c 1262 d 1111–1127 d 1248–1290 d 1300–1500 c 1000 e 1330–1380 c 1500 ± 100 e

Young’s
Modulus (GPa) 0.7 c 3–3.5 a 3.4 c 3.0 f 1.7 d 0.63 g 3.4 c N/A *

Tensile Strength
(MPa) 30–40 a 20–40 a 34.5–68.9 b 50–70 f 62 a 9.7 g 48 c 40.2 e

Elongation
at Break

(%)
200–700 a 5–10 a 1–2.3 b 4.0 f 30–80 b 2.6 g 85–104 d N/A *

Flexural Strength
(MPa) 40 d 33–40 d 68.9–103 b 100 f 96.5–124.1 b N/A * 72 d N/A *

Izod Notched
Impact Strength

(J/m)
60–80 d 35–50 d 21 b 26 b 59 b N/A * 21–53 d N/A *

Degree
of Crystallinity

(%)
25–80 a 50–60 a N/A * 3.5–14 a 7.97 a 57 h 11–15 d N/A *

Melting
Temp.

(K)
390–410 a 440–450 a 513 d 440–470 a 530 a 360 e 485–583 d 193 e

Glass Transition
Temp. (K) 140–370 a 278–282 a 373 d 320–330 a 340–354 a N/A * 353–370 d N/A *

a [29], b [53], c [155], d [156], e [157], f [158], g [159], h [160], * N/A—not available.

The total replacement of crude oil-based polymers with bio-based polymers is not yet
possible, mainly because of functional properties of synthetic polymers, namely durability,
mechanical, and water vapor barrier. Therefore, to partially eliminate synthetic polymers
from packaging systems and to reduce environmental impact, biopolymers combined
with crude oil-based polymers are of interest. Chemical modification helps in combining
specific characteristics of different polymers, resulting in a unique and suitable material
with interesting properties [161].

7. Conclusions

Bio-based polymers can replace crude oil-based polymers in a variety of applications
from everyday products to medical materials or advanced technology. Yet a noticeable
difference in the physicochemical parameters between both groups of polymers prevents
the petroleum-based synthetic polymers from being substituted directly by their bio-based
counterparts. Nevertheless, the replacement of crude oil-based polymers by bio-based
polymers in only selected applications would considerably diminish the net carbon foot-
print and create sustainable solutions in polymeric materials management. Many bio-based
polymers such as PHB and PLA, which are commonly adapted in the production of bio-
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compatible devices extensively used in surgery, drug delivery, and cardiovascular systems,
or dentistry, can successfully compete with their hydrocarbon polymeric analogues, namely
PE and PS. PLA meets all the requirements to be a perfect biomaterial, whereas PS, which
may be contaminated with residual styrene, might be considered cancerogenic. Similarly,
PVC, used primarily in the construction, medical, and packaging industry, is regarded as
toxic to humans and the environment due to harmful compounds released during its life
cycle.

The food packaging sector, which is dominated by PET, a polymer resistant to biodegra-
dation, is currently searching for a bio-based and biodegradable replacement. Chitosan,
one of the most widespread biopolymers found in nature, can at least in part rival PET
and contribute to a considerable reduction in plastics. This polysaccharide, which has a
film-forming ability, is edible and can be consumed together with the food product; addi-
tionally, its antimicrobial and antioxidant properties can increase the safety and stability
of the protected foodstuff. Edible coatings formed by pullulan are reported to prolong
the shelf-life of numerous fruit and vegetables; these properties can be enhanced by the
addition of other bioactive molecules. All of these ecofriendly and innovative advantages
may constitute a springboard for creating active and intelligent packaging in the future.
However, PET is still the best option for the beverage industry, which needs hard and rigid
polymeric materials for packaging.

The implementation of bio-based polymers in many industrial sectors is currently
limited mainly due to the high costs of their production. The manufacturing of crude
oil-based polymers remains still more cost-effective, although such polymers are resistant
to biodegradation, and their recycling is as yet uneconomical.

A significant challenge for the future is to synthesize novel, sustainable bio-based
polymers with such functionalities that could enable the substitution of their conventional
analogues. Biotechnology is a strategic factor, which can notably contribute to the transition
from fossil-derived plastics to bioplastics acquired from renewable resources. Technological
advancements and new biotechnological findings may allow for better development of
bio-based materials and reduce production expenditures.

Author Contributions: Conceptualization, P.K. and E.G.-S.; resources, P.K., E.G.-S., B.B., A.I., D.K.-P.,
D.K., E.M., K.T. and B.Z.; writing—original draft preparation, P.K., E.G.-S., B.B., A.I., D.K.-P., D.K.,
E.M., K.T. and B.Z.; writing—review and editing, P.K., E.G.-S., A.I. and E.M.; visualization, D.K.
and K.T.; supervision, P.K. and E.G.-S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bhunia, H.P.; Basak, A.; Chaki, T.K.; Nando, G.B. Synthesis and characterization of polymers from cashew nut shell liquid: A

renewable resource V. Synthesis of copolyester. Eur. Polym. J. 2000, 36, 1157–1165. [CrossRef]
2. Clark, J.H. Green chemistry: Today (and tomorrow). Green Chem. 2006, 8, 17–21. [CrossRef]
3. Scott, G. “Green” polymers. Polym. Degrad. Stab. 2000, 68, 1–7. [CrossRef]
4. Chaudhary, V.; Punia Bangar, S.; Thakur, N.; Trif, M. Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of

the Food Packaging Industry. Polymers 2022, 14, 829. [CrossRef] [PubMed]
5. Hou, W.J.; Xiao, Y.; Han, G.Y.; Lin, J.Y. The Applications of Polymers in Solar Cells: A Review. Polymers 2019, 11, 143. [CrossRef]

[PubMed]
6. Zaharescu, T.; Varca, G.H.C. Radiation modified polymers for medical applications. Radiat. Phys. Chem. 2022, 194, 110043.

[CrossRef]
7. Babu, R.P.; O’Connor, K.; Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013, 2, 8.

[CrossRef] [PubMed]

http://doi.org/10.1016/S0014-3057(99)00171-8
http://doi.org/10.1039/B516637N
http://doi.org/10.1016/S0141-3910(99)00182-2
http://doi.org/10.3390/polym14040829
http://www.ncbi.nlm.nih.gov/pubmed/35215741
http://doi.org/10.3390/polym11010143
http://www.ncbi.nlm.nih.gov/pubmed/30960127
http://doi.org/10.1016/j.radphyschem.2022.110043
http://doi.org/10.1186/2194-0517-2-8
http://www.ncbi.nlm.nih.gov/pubmed/29470779


Polymers 2022, 14, 5551 16 of 21

8. Rorrer, N.A.; Vardon, D.R.; Dorgan, J.R.; Gjersing, E.J.; Beckham, G.T. Biomass-derived monomers for performance-differentiated
fiber reinforced polymer composites. Green Chem. 2017, 19, 2812–2825. [CrossRef]

9. Ferreira, T.; Mendes, G.A.; de Oliveira, A.M.; Dias, C.G.B.T. Manufacture and Characterization of Polypropylene (PP) and High-
Density Polyethylene (HDPE) Blocks for Potential Use as Masonry Component in Civil Construction. Polymers 2022, 14, 2463.
[CrossRef]

10. Jeremic, D. Polyethylene. In Ullmann’s Encyclopaedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2014; pp. 1–34.
11. Carothers, W.H.; Van Natta, F.J. Studies on polymerization and ring formation. III. Glycol esters of carbonic acid. J. Am. Chem.

Soc. 1930, 52, 314–326. [CrossRef]
12. Brydson, J.A. Polyethylene. In Plastics Materials, 7th ed.; Butterworth-Heinemann: Oxford, UK, 1999; pp. 205–246.
13. Chen, L.; Pelton, R.E.O.; Smith, T.M. Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET)

bottles. J. Clean. Prod. 2016, 137, 667–676. [CrossRef]
14. Siracusa, V.; Blanco, I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET):

Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications.
Polymers 2020, 12, 1641. [CrossRef]

15. Rabek, J.F. Polimery. Otrzymywanie, Metody Badawcze, Zastosowanie; Wydawnictwo Naukowe PWN: Warszawa, Polska, 2013; p. 15.
16. Zhong, X.; Zhao, X.; Qian, Y.; Zou, Y. Polyethylene plastic production process. Insight Mater. Sci. 2018, 1, 1–8. [CrossRef]
17. Fico, D.; Rizzo, D.; Casciaro, R.; Esposito Corcione, C. A Review of Polymer-Based Materials for Fused Filament Fabrication (FFF):

Focus on Sustainability and Recycled Materials. Polymers 2022, 14, 465. [CrossRef]
18. Salakhov, I.I.; Shaidullin, N.M.; Chalykh, A.E.; Matsko, M.A.; Shapagin, A.V.; Batyrshin, A.Z.; Shandryuk, G.A.; Nifant’ev, I.E.

Low-Temperature Mechanical Properties of High-Density and Low-Density Polyethylene and Their Blends. Polymers 2021, 13, 1821.
[CrossRef]

19. Rana, S.K. Blend of high-density polyethylene and a linear low-density polyethylene with compositional-invariant mechanical
properties. J. Appl. Polym. Sci. 2002, 83, 2604–2608. [CrossRef]

20. Coates, G.W.; Getzler, Y.D.Y.L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 2020, 5,
501–516. [CrossRef]

21. Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [CrossRef]
22. Vollmer, I.; Jenks, M.J.F.; Roelands, M.C.P.; White, R.J.; van Harmelen, T.; de Wild, P.; van der Laan, G.P.; Meirer, F.; Keurentjes,

J.T.F.; Weckhuysen, B.M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem. Int. Ed. 2020, 59,
15402–15423. [CrossRef]

23. Wu, W.M.; Criddle, C.S. Characterization of biodegradation of plastics in insect larvae. In Enzymatic Plastic Degradation; Weber, G.,
Bornscheuer, U.T., Wei, R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Volume 648, pp. 95–120. [CrossRef]

24. Filiciotto, L.; Rothenberg, G. Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem 2021, 14, 56–72. [CrossRef]
25. Conk, R.J.; Hanna, S.; Shi, J.X.; Yang, J.; Ciccia, N.R.; Qi, L.; Bloomer, B.J.; Heuvel, S.; Wills, T.; Su, J.; et al. Catalytic deconstruction

of waste polyethylene with ethylene to form propylene. Science 2022, 377, 1561–1566. [CrossRef] [PubMed]
26. Uddin, M.A.; Koizumi, K.; Murata, K.; Sakata, Y. Thermal and catalytic degradation of structurally different types of polyethylene

into fuel oil. Polym. Degrad. Stab. 1997, 56, 37–44. [CrossRef]
27. Lemoigne, M. Etudes sur L’autolyse microbienne acidification par formation D’acide β-oxybutyrique. Ann. Inst. Pasteur. 1925, 39,

144–173.
28. Degli Esposti, M.; Chiellini, F.; Bondioli, F.; Morselli, D.; Fabbri, P. Highly porous PHB-based bioactive scaffolds for bone tissue

engineering by in situ synthesis of hydroxyapatite. Mater. Sci. Eng. C 2019, 100, 286–296. [CrossRef] [PubMed]
29. McAdam, B.; Brennan Fournet, M.; McDonald, P.; Mojicevic, M. Production of Polyhydroxybutyrate (PHB) and Factors Impacting

Its Chemical and Mechanical Characteristics. Polymers 2020, 12, 2908. [CrossRef]
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