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Abstract: A polymer model exhibiting heterogeneous Johari–Goldstein (JG) secondary relaxation is
studied by extensive molecular-dynamics simulations of states with different temperature and pres-
sure. Time–temperature–pressure superposition of the primary (segmental) relaxation is evidenced.
The time scales of the primary and the JG relaxations are found to be highly correlated according to a
power law. The finding agrees with key predictions of the Coupling Model (CM) accounting for the
decay in a correlation function due to the relaxation and diffusion of interacting systems. Nonetheless,
the exponent of the power law, even if it is found in the range predicted by CM (0 < ξ < 1), deviates
from the expected one. It is suggested that the deviation could depend on the particular relaxation
process involved in the correlation function and the heterogeneity of the JG process.

Keywords: polymer melt; Johari–Goldstein relaxation; dynamic heterogeneity; molecular-dynamics
simulation

1. Introduction

By lowering the temperature T or increasing the pressure P and avoiding crystal-
lization, polymeric dense melts transform into a glass [1]. Close to the glass transition,
relaxation occurs via both the primary (α) and the faster secondary (β) processes [2–4]. The
β process has been intensively studied over the years [4–10].

In linear polymers, the secondary relaxation is due to the dynamics of the fragments
of the chain [2,11–13] and considered a genuine manifestation of the Johari–Goldstein
(JG) β relaxation [5]. The close relationship of the JG relaxation with the α relaxation has
been noted [4,6–8,14], also due to the fact that both of them exhibit broad distribution of
relaxation times [3,15,16] and cooperative dynamics [8,17,18].

It was early noted that the molecular reorganisation giving rise to the JG relaxation
process is similar to those involved in the glass transition itself [19] with extensive later
support [4,6,7,13,20–23]. It was concluded that the JG relaxation is a precursor to structural
relaxation and viscous flow, with sluggish dynamics due to cooperativity driven by many
body dynamics [6,8,15,18,24].

The several common features between JG and primary relaxation suggests that the
secondary relaxation time τβ and the primary relaxation time τα are correlated. This
aspect has been widely investigated by the Coupling Model (CM) developed by Ngai and
coworkers, who predicted the many-body effects in relaxation and diffusion of interacting
systems [4]. CM focusses on the independent or primitive relaxation with time scale τ0. At
times shorter than tc (tc ' 2 ps, insensitive to both the temperature T and the pressure P),
the basic molecular units relax independently of each other and the correlation function
φ(t) relaxes as an exponential with decay time τ0:
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φ(t) = exp

(
− t

τ0

)
t < tc (1)

For t > tc, the intermolecular interactions slow down the α relaxation and the correla-
tion function assumes the Kohlrausch–Williams–Watts (KWW) stretched exponential form
(0 < β ≤ 1):

φkww(t) = exp

[
−
(

t
τ

)β
]

t > tc (2)

with τ = τα. The primitive relaxation is considered as precursor of the α relaxation, as
expressed by the relation between their respective time scales:

τ0 = (tc)
n(τα)

β (3)

where β = 1− n. Equation (3) follows from the requirement of continuity of φ(t), as given
by Equations (1) and (2), at tc and holds in the limit tc � τ0 [4]. In many glass formers with
genuine JG relaxations, it is found that, on changing both T and P, τ0(T, P) ' τβ(T, P) [7].
Then, Equation (3) is finally recast as

τβ = (tc)
n(τα)

β (4)

Noticeably, Equation (4) predicts a power–law relation between τβ and τα if the expo-
nent β is constant, i.e., it does not depend on T and P. Given the generic form of the correlation
function φ(t) assumed by CM, this conclusion has to be considered as independent of
the particular relaxation process considered by φ(t). Equation (4) suggests that the JG
relaxation and the primary relaxation are strongly correlated due to the intermolecular
interactions whose influence becomes apparent for times exceeding tc, a few picoseconds,
i.e., much shorter than both τβ and τα.

Close to the glass-transition spatial correlations between dynamic fluctuations—so-
called dynamic heterogeneity (DH)—become apparent during the evolution of the α
process [25–33]. Nonetheless, DH has been evidenced from picosecond [9] through β
relaxation time scales [34–36], in agreement with previous suggestions [22].

The usual tool to characterize DH is the non-Gaussian parameter (NGP) [37]:

α2(t) =
3
5
〈r4(t)〉
〈r2(t)〉2 − 1 (5)

where r(t) is the modulus of the particle displacement in a time t. Brackets denote the
ensemble average. NGP vanishes if the displacement is a spatially homogeneous single
Gaussian-random process [38]. NGP has recently revealed the JG relaxation in metallic
glasses [24] and polymers [36].

In this work, we report results from thorough molecular-dynamics (MD) simulations
of a polymer model melt exhibiting strong DH of both the primary and JG relaxations, and
constant stretching parameter β of the primary relaxation. Evidence is given of a power-law
correlation between τβ and τα. The finding is consistent with Equation (4). However, the
exponent of the power law is found to be different from β.

2. Model and Numerical Methods

A dense melt of coarse-grained (bead-spring) linear polymer chains with Nc = 512 lin-
ear chains made of M = 25 monomers with mass m each, results in a total number of
monomers N = 12,800 being studied by MD simulations [36]. Non-adjacent monomers
in the same chain or monomers belonging to different chains are defined as “non-bonded”
monomers. Non-bonded monomers at mutual distance r interact via a shifted Lennard–
Jones (LJ) potential:
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ULJ(r) = ε

[(
σ∗

r

)12
− 2
(

σ∗

r

)6
]
+ Ucut, (6)

σ∗ = 21/6σ is the minimum of the potential, ULJ(r = σ∗) = −ε+Ucut. The potential is trun-
cated at r = rc = 2.5σ and the constant Ucut adjusted to ensure that ULJ(r) is continuous
at r = rc with ULJ(r) = 0 for r ≥ rc. Along the same linear chain, monomers are bonded
by the harmonic potential Ubond(r) = kbond(r− l0)

2, where the constant kbond = 2000ε/σ2

to ensure high stiffness and the rest of the bond length l0 = 0.48σ. A bending poten-
tial Ubend(α) = kbend(cos α− cos α0)

2 (kbend = 2000ε, α0 = 120◦) ensures that the angle α
between two consecutive bonds is nearly constant. The above model builds a torsional
barrier when l0 < 0.5σ—as in the present work—which is discussed elsewhere [36]. Our
chain model exhibits a significant local stiffness. In fact, the length `K of the associated
Kuhn segment [39] is `K∼2, larger than the one of flexible polymer model, such as the
Kremer–Grest model with `KG

K ∼1 [40].
All the data presented in the work are expressed in reduced MD units: length in units

of σ; temperature in units of ε/kB, where kB is the Boltzmann constant; and time in units of
τMD = (mσ2/ε)1/2. Roughly, τMD = 1 corresponds to about 1 ps [41]. We set σ = 1, ε = 1,
m = 1 and kB = 1.

Simulations were carried out with the open-source software LAMMPS [42,43]. Equili-
bration runs were performed at constant pressure P and temperature T (NPT ensemble) [44]
(details about the barostat are found elsewhere [42,43]; the barostat damping parameter
equals to 0.1 in MD time units). The investigated (P, T) pairs are listed in Table 1. It is
worth nothing that, although some physical states (P = 0; T = 0.85, 0.9, 0.95, 1.1) were also
considered elsewhere [36], the data reported in the present work have been produced inde-
pendently, following the protocol mentioned above, so as to ensure maximum consistency
and further support their robustness.

For each state, the equilibration was terminated not earlier than three times the end-to-
end relaxation time [39]. Production runs were performed within the NVT ensemble [44].
Pressure was evaluated during all the production runs to monitor the full consistency with
the pre-set value of the NPT equilibration run. Other details are given elsewhere [36].

Table 1. Investigated temperature and pressure values.

T\p 0 0.5 1 1.5 2.5 5 7.5 10

1.1 ◦ ◦ ◦ ◦ ◦ ◦ ◦

1 ◦ ◦ ◦ ◦ ◦

0.95 ◦ ◦ ◦ ◦ ◦

0.9 ◦ ◦ ◦ ◦ ◦

0.85 ◦ ◦ ◦ ◦ ◦ ◦

3. Results
3.1. Bond Correlation Function

It has been demonstrated that the reorientation processes exhibit particular sensitivity
to secondary motions [35,45–48]. From this respect, a convenient process is the reorientation
of the chain bonds [35,48] with bond correlation function (BCF) [49]:

C(t) = 〈cos θ(t)〉 (7)

θ(t) is the angle spanned in a time t by the unit vector along a generic bond of a chain.
Figure 1 plots representative isothermal and isobaric decays of BCF. It exhibits an

initial decay for t . 1 which is virtually independent of (P, T). Then, a characteristic
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two-step drop is apparent, evidencing two relaxation processes, i.e., the fast JG and the
slow primary (segmental) relaxations [36,48,50,51].
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Figure 1. Isothermal and isobaric (inset) plots of selected BCFs, Equation (7). The superimposed thin
solid black lines are the best fit with Equation (8).

3.2. Time Temperature and Pressure Superposition of Primary Relaxation

At long times, the shape of the BCF decay does not depend on the physical state. To
show that, Figure 2 plots the master curve obtained by shifting the curves of Figure 1
horizontally, resulting in a remarkable time–temperature–pressure superposition (TTPS)
in the time window of primary relaxation for BCF(ts) . 0.55. The best fit of the master
curve with the stretched exponential Aφkww(t), where A is an adjustable constant, yields
βTTPS = 0.415.

TTPS motivated us to fit the whole BCF decay using different fit functions ensuring de-
cay with constant stretching at long times. First, we adopted a weighted sum of two stretched
exponentials, accounting for the primary (p) and the secondary (s) JG relaxation:

C(t) = ∆pφkww
p (t) + ∆sφkww

s (t) (8)

where φkww
i (t), i = p, s is Equation (2) with τ = τi, β = βi. We set βp = βTTPS = 0.415 so

as to leave Equation (8) with five adjustable parameters, i.e., ∆p, ∆s, τp, τs, βs. The best-fit
procedure yields excellent agreement, as shown in Figure 1.

Figure 2 shows that at short times in the JG time window, TTPS does not work. In fact,
the best-fit procedure performed with Equation (8) returns stretching parameters of the JG
relaxation which depend on the state and tend to decrease by slowing down the primary
relaxation, see Figure 3.

Figure 2. Time−temperature−pressure superposition (TTPS) of BCF for all the states in Figure 1.
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The curves are shifted along the horizontal axis to optimise their superposition at long times. The
superimposed solid black line is the best fit with a stretched exponential proportional to φkww(t),
Equation (2), with βTTPS = 0.415.

Figure 3. Stretching parameter of the secondary JG relaxation of all the investigated states according
to the best fit with Equation (8). The dashed line is a guide for the eyes. Stretching increases mildly
with the primary relaxation time.

3.3. Dynamic Heterogeneity

Figure 4 plots the NGP of the states in Figure 1 and shows how their DH develops
with time. As in other studies, NGP is largely independent of (P, T) at very short times
(t . 0.1), suggesting a major role of static structure [35]. The small peak at about 0.1 marks
the average time between two consecutive collisions of the monomer with the cage formed
by the closest neighbours [52]. For t > 0.1, NGP is strongly dependent on (P, T). Two
peaks are observed, the one occurring at a shorter time attributed to the JG heterogeneity
whereas the one located at longer times are due to the familiar DH of the primary, structural
relaxation [36]. The height of the NGP parameter in the JG region is not surprising, given
the considerable stretching of the JG relaxation seen in Figure 3.
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Figure 4. NGP, Equation (5), of all the states in Figure 1. DH is apparent in both the secondary JG
relaxation time scale, t∼1–10, and the the primary, segmental relaxation, t∼103–104.
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3.4. Fractional Coupling of Primary and JG Relaxations

We now test the possible correlation between the time scales of the primary, τp, and
the secondary JG, τs, relaxation processes. Figure 5 shows the result by fitting the BCF in
terms of Equation (8). The correlation is excellent (Pearson correlation coefficient R = 0.998)
and well-expressed by a power law with exponent ξ = 0.71± 0.01.

To test the robustness of the result, we fit BCF with other functions with the same
number of adjustable parameters. No significant changes were observed, i.e., τp and τs
exhibit excellent power-law correlation with rather similar exponent. As an example, we
considered the Williams ansatz [35,53–56]:

C(t) =
[
∆p + ∆sφkww

s (t)
]
φkww

p (t) (9)

which leads to ξ = 0.69 ± 0.01 (R = 0.997). Furthermore, following [16,35,55,56], we
replaced φkww

s in Equation (8) with the Mittag–Leffler function:

φml
s (t) = Ea

(
− (t/τs)

)
(10)

with

Ea(x) =
∞

∑
k=0

xk

Γ(ak + 1)
(11)

where Γ(x) is the gamma function. This leads to ξ = 0.69± 0.01 (R = 0.996). If the same
replacement is performed in Equation (9), we find ξ = 0.68± 0.01 (R = 0.996).

Figure 5. Correlation plot between the JG relaxation time τs and the primary relaxation time τp of all
the investigated states, as drawn by fitting BCF C(t) with a weighed superposition of two stretched
exponentials, Equation (8). The correlation is excellent (Pearson correlation coefficient R = 0.998) and
best fit with a power law with slope ξ = 0.71± 0.01 (dashed line). The grey area is the confidence
region within one standard deviation of the best-fit parameters.

4. Discussion

The strong power-law correlation between the primary and the JG relaxation, evi-
denced by Figure 5, is the key result of the present work. The power-law coupling between
different time scales in systems with significant DH is documented, a well-known example
being the breakdown of the Stokes–Einstein relation [26,57].
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The coupling model (CM) offers a highly investigated conceptual framework predict-
ing, according to Equation (4), the fractional coupling between the JG and the primary
relaxation. Notably, if TTPS holds, the stretching parameter β of the primary relaxation is
independent of the (P, T) state and the fractional coupling reduces to a power law between
τβ and τα with exponent β (0 < β ≤ 1). Indeed, the polymer model under study exhibits
TTPS, Figure 2, and a power-law correlation between τβ and τα in the investigated (P, T)
range, Figure 5, with exponent 0 < ξ < 1. These findings are fully consistent with CM.
However, the exponent of the power law (ξ = 0.71± 0.01) differs from the stretching
parameter of the primary relaxation (βTTPS = 0.415).

To the present level of understanding, the disagreement is not easily interpreted.
We offer some tentative routes to be explored in future studies. First, notably, while the
well-known phenomenon of DH on the time scale of the primary (structural ) relaxation
plays a central role in CM via the stretched relaxation, Equation (2), the influence of much
less investigated DH on the JG time scale, which is evidenced in the present and previous
studies [36], is not apparent in CM. Furthermore, we notice that CM is quite generic, i.e.,
the predictions are independent of the relaxation process involved in the correlation function
φ(t). However, if the torsional autocorrelation function is studied by MD simulations of a
polymer model which is rather similar to the present one, one finds a power law between
JG and primary relaxation with an exponent ξBS∼0.25 (see Figure 7 in ref. [51]), which is
almost three times less than ours (ξ = 0.71± 0.01) by considering BCF. This finding suggests
that, even if the power-law coupling is robust, i.e., it is revealed by different correlation
functions, and captured by CM, the exponent ξ of the power law and the stretching β
could depend on the particular relaxation process in a different way. Unfortunately, no
information about the possible TTPS and the stretching parameter of the primary relaxation
is given in ref. [51], thus hampering a closer comparison with the present study. We noted
elsewhere that BCF is more sensitive to the JG relaxation than the torsional autocorrelation
function in the polymer model of the present study [48].

The influence of both the choice of the correlation function, as well as the magnitude
of DH in JG relaxation, on the observation of the fractional coupling between the primary
and the JG relaxation is postponed to future systematic studies.

5. Conclusions

A polymer model exhibiting heterogeneous JG secondary relaxation was studied by
extensive MD simulations of states with different temperature and pressure. The TTPS of
the primary (segmental) relaxation is evidenced. The time scales of the primary and the JG
relaxations are found to be highly correlated according to a power law in agreement with
CM predictions. Nonetheless, the exponent of the power law, even if it is in the CM range
(0 < ξ < 1), deviates from the expected one. This motivates further investigation of the
particular relaxation process involved in the correlation function addressed by CM and the
heterogeneity of the JG process.
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The following abbreviations are used in this manuscript:

BCF Bond correlation function
CM Coupling model
DH Dynamical heterogeneity
JG Johari–Goldstein
KWW Kohlrausch–Williams–Watts
LJ Lennard–Jones
MD Molecular dynamics
NGP Non-Gaussian parameter
NPT Constant number of monomers N, constant pressure P and constant temperature T
NVT Constant number of monomers N, constant volume V and constant temperature T
TTPS Time–temperature–pressure superposition
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