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Abstract: Cellulose nanofibrils (CNFs) have attracted much attention because of their renewability
and potential biocompatibility. However, CNFs are extremely hydrophilic due to the presence
of a large number of hydroxyl groups, limiting their use as a water-resistant material. In this
work, we controlled the adsorption behavior of silica nanoparticles on the surface of CNFs by
adjusting the synthesis conditions. The silica nanoparticle size and packing efficiency on the CNF
surface could be controlled by varying the ammonium hydroxide and water concentrations. In
addition, hexadecyltrimethoxysilane (HDTMS) was successfully grafted onto CNF or CNF/silica
nanocomposite surfaces, and the quantitative content of organic/inorganic substances in HDTMS
was analyzed through XPS and TGA. The HDTMS-modified CNF/silica nanocomposites were more
advantageous in terms of hydrophobicity than the HDTMS-modified CNF composites. This is because
the silica nanoparticles were adsorbed on the surface of the CNFs, increasing the surface roughness
and simultaneously increasing the amount of HDTMS. As a result, the HDTMS-modified CNFs
showed a water contact angle (WCA) of ~80◦, whereas HDTMS-modified CNF/silica nanocomposites
obtained superhydrophobicity, with a WCA of up to ~159◦. This study can provide a reference for
the expansion of recyclable eco-friendly coating materials via the adsorption of silica nanoparticles
and hydrophobic modification of CNF materials.

Keywords: cellulose nanofibrils; CNF/silica nanocomposites; hexadecyltrimethoxysilane;
superhydrophobicity

1. Introduction

Environmental issues due to plastics are increasing the demand to replace petroleum-
based materials with eco-friendly natural materials. Cellulose, the most abundant resource
on earth, has gained substantial attention owing to its renewability, recyclability, biodegrad-
ability, nontoxicity, light weight, and good mechanical properties [1–5]. The various types of
nanocellulose can be classified according to their width and length; these include cellulose
nanocrystals (CNCs), cellulose nanofibrils (CNFs), and cellulose microfibrils (CMFs) [3,6].
CNCs have a short, rod-like shape around 2–20 nm in width and around 100–500 nm
in length [7]. CNFs have a long, fibrillar shape around 1–100 nm in width and around
500–2000 nm in length [8,9]. The applications of nanocellulose are limited due to its
lack of hydrophobicity, which is caused by the presence of a large number of hydroxyl
groups (–OH). Low moisture resistance is one of the most important factors to consider in
practical applications, as it seriously affects reliability and performance [10–13]. Recently,
various studies have been conducted on the modification of the surface and structure of
nanocellulose. The modification is mainly based on the reactivity of the hydroxyl group
for surface and structural properties. It is through functionalization reactions—such as
oxidation, etherification, esterification, silylation, and polymer grafting—that nanocellulose
can improve its extraction capacity and enhance the hydrophobicity of its surface [7,14,15].
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Hydrophobic surfaces are formed due to the combination of two key factors: low
surface energy, and surface roughness (i.e., hierarchical structures). A surface can become
superhydrophobic when it is imparted with microroughness or nanoroughness. These
surface properties are typically characterized by a water contact angle (WCA) greater than
150◦ and a sliding angle of less than 10◦ [16–18]. This can be explained via the Wenzel
state [19] and Cassie state [20], using the “lotus” model. The wetting behavior of surfaces
has attracted much attention because of its wide range of applications, such as for self-
cleaning, anti-icing, water–oil separation, and anticorrosion. These characteristics are also
reported in various forms, such as plastic composites, paints, coatings, packaging films,
papers, aerogels, and sponges [21–30]. Lu et al. [25] reported magnetic/silanized ethyl
cellulose sponges prepared from hexadecyltrimethoxysilane (HDTMS) and mixed with fer-
roferric oxide (Fe3O4) nanoparticles (WCA > 150◦). Feng et al. [26] reported cellulose/silica
aerogels developed from recycled cellulose fibers and methoxytrimethylsilane (MTES),
with an average WCA of 151◦. Baidya et al. [27] reported superhydrophobic CNF com-
posites fabricated from perfluorooctyltriethoxysilane and [3-(2-aminoethylamino)propyl]
trimethoxysilane, with a WCA of 160◦. Nevertheless, fluorinated compounds are expen-
sive, and may accumulate and become toxic in organisms and the environment [31,32].
In addition, many well-known studies using HDTMS have been conducted to impart
roughness and superhydrophobicity to the surface of silica nanoparticles. Some studies
have investigated the hydrophobic surfaces of cotton or wood using a HDTMS-modified
silica nanoparticle coating solution [33–38]. Although many previous studies have focused
on the phenomenon of imparting hydrophobicity, quantitative analysis of the modification
of HDTMS does not provide a sufficient explanation.

In this study, hydrophobic CNF/silica nanocomposites were prepared through the
adsorption of silica nanoparticles on the CNFs’ surface and subsequent modification us-
ing HDTMS (Figure 1a). We attempted to impart hydrophobicity using HDTMS with a
long alkyl group, and precursors such as MTES with a relatively short alkyl group were
excluded from the selection because the formation of nanoparticles was dominant [39]. The
CNF/silica nanocomposites were prepared via the sol–gel method. The adsorption behav-
ior and silica nanoparticles could be controlled by adjusting the synthesis conditions, such
as water and ammonium hydroxide concentrations, and the scale-up process was applied.
The introduction of silica nanoparticles increased the surface roughness, surface area, and
thermal stability of the nanocomposites (Figure 1b). The HDTMS-modified CNF/silica
nanocomposite could be controlled from around 88◦ to 159◦ through the HDTMS con-
centration (with a HDTMS concentration of around 0.1 to 2.0 wt%). In addition, as a
result of the hydrolysis–condensation reaction of HDTMS, it was possible to obtain the
contents of the thermally decomposed organic region and the non-decomposed inorganic
region through TGA. In particular, it was confirmed that the HDTMS-modified CNF/silica
nanocomposite (with a HDTMS concentration of ~2.0 wt%) had an HDTMS content of
~56.18 wt% (inorganic HDTMS 12.24 wt%, organic HDTMS 43.94 wt%), and achieved super-
hydrophobicity (>159◦) in various pH solutions (Figure 1c). The obtained HDTMS-modified
CNFs and CNF/silica nanocomposites were characterized via Fourier-transform infrared
(FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis
(TGA), field-emission scanning electron microscopy (FE-SEM), and transmission electron
microscopy (TEM). The effects of HDTMS-modified CNFs and CNF/silica nanocompos-
ites on the morphology, wettability, and roughness were investigated by measuring the
water contact angles, and via atomic force microscopy (AFM). The results can provide a
reference for the adsorption of silica nanoparticles on CNFs and the hydrophobic modi-
fication of CNF/silica nanocomposites, as well as expanding their range of eco-friendly
coating applications.
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Figure 1. (a) Schematic of the preparation of HDTMS-modified CNF/silica nanocomposites, (b) 
morphology of CNFs and CNF/silica nanocomposites, and (c) morphology and water droplets on 
an HDTMS-modified CNF/silica nanocomposite with different pH values. 
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with a fluid containing cellulose fibers that collided with one another at high pressure to 
fibrillate at the nanoscale. Tetraethyl orthosilicate (TEOS), HDTMS, ammonium hy-
droxide (NH4OH, 28 wt%), and ethanol (CH3CH2OH) were purchased from Sig-
ma-Aldrich (St. Louis, MO, USA). 
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under different reaction conditions—specifically, by varying the reaction solvent and 
catalyst concentrations (Table 1). In the first step of the process, ammonium hydroxide 
was added to the CNF/ethanol solution under stirring and sonication for 15 min. After 
nitrogen was bubbled at room temperature for at least 30 min to deoxygenate, TEOS was 
then added at a rate of 2 mL/h. The hydrolysis and condensation reaction was carried out 
under constant stirring at room temperature for 24 h. After the reaction, the colloid dis-
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HDTMS-modified CNF nanocomposites were also investigated. All samples were puri-
fied via several centrifugation and redispersion cycles to remove the unreacted precursor 
and catalyst. The compositions are shown in Tables 1 and 2. 
  

Figure 1. (a) Schematic of the preparation of HDTMS-modified CNF/silica nanocomposites, (b) mor-
phology of CNFs and CNF/silica nanocomposites, and (c) morphology and water droplets on an
HDTMS-modified CNF/silica nanocomposite with different pH values.

2. Materials and Methods
2.1. Materials

The CNF dispersion (1 wt%) was purchased from CNNT (Suwon, Korea). The width
of the CNFs was in the range of 10–100 nm, and they had a length of several micrometers
(Figure S1). The CNFs were manufactured using an aqueous counter collision system,
with a fluid containing cellulose fibers that collided with one another at high pressure to
fibrillate at the nanoscale. Tetraethyl orthosilicate (TEOS), HDTMS, ammonium hydrox-
ide (NH4OH, 28 wt%), and ethanol (CH3CH2OH) were purchased from Sigma-Aldrich
(St. Louis, MO, USA).

2.2. Preparation of CNF/Silica, HDTMS-Modified CNF/Silica, and HDTMS-Modified
CNF Nanocomposites

In all of these experiments, the CNF dispersion was replaced with ethanol from
water. The CNF water dispersion was exchanged via centrifugation dispersion cycles using
ethanol. The HDTMS-modified CNF/silica nanocomposites were prepared in two steps
by controlling the HDTMS concentration, as shown in Figure 1a. Firstly, the synthesis
of the CNF/silica nanocomposite series (CNF/silica-1,2,3, and 4) was examined under
different reaction conditions—specifically, by varying the reaction solvent and catalyst
concentrations (Table 1). In the first step of the process, ammonium hydroxide was added
to the CNF/ethanol solution under stirring and sonication for 15 min. After nitrogen was
bubbled at room temperature for at least 30 min to deoxygenate, TEOS was then added at a
rate of 2 mL/h. The hydrolysis and condensation reaction was carried out under constant
stirring at room temperature for 24 h. After the reaction, the colloid dispersion was purified
via centrifugation and redispersion cycles to remove the unreacted precursor and catalyst.
Finally, the CNF/silica nanocomposite dispersion was obtained. Secondly, the HDTMS-
modified CNF (h-CNF 0.4 and 0.8) and HDTMS-modified CNF/silica nanocomposites (h-
sCNF 0.1, 0.5, 1.0, and 2.0) were examined under different HDTMS concentrations (Table 2).
HDTMS-modified CNF/silica nanocomposites were prepared using CNF/silica-4 via the
sol–gel method at 40 ◦C. As control samples, HDTMS-modified CNF nanocomposites were
also investigated. All samples were purified via several centrifugation and redispersion
cycles to remove the unreacted precursor and catalyst. The compositions are shown in
Tables 1 and 2.
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Table 1. A typical recipe for the preparation of CNF/silica nanocomposites by varying the reaction
solvent and catalyst concentrations.

Samples CNF
(g)

TEOS
(mL)

EtOH
(mL)

NH4OH
(mL)

H2O
(mL)

[H2O]
[TEOS]

NH4OH
(M)

CNF/silica-1 0.20 2.00 95.00 3.00 - 11.96 0.44
CNF/silica-2 0.20 2.00 85.50 3.00 9.50 70.39 0.44
CNF/silica-3 0.20 2.00 87.50 1.00 9.50 62.42 0.15
CNF/silica-4 0.80 4.00 230.00 6.00 - 11.96 0.36

Table 2. A typical recipe for the preparation of CNF/silica, h-CNF, and h-sCNF nanocomposites by
varying the HDTMS concentrations.

Samples CNF
(g)

CNF/Silica
(g)

TEOS
(mL)

HDTMS
(mL)

NH4OH
(mL)

H2O
(mL)

1 Step CNF/silica 0.8 - 4.0 - 6.0 230.0

2 Step

h-sCNF 0.1 - 0.5 - 0.1 2.5 97.4
h-sCNF 0.5 - 0.5 - 0.5 2.5 97.0
h-sCNF 1.0 - 0.5 - 1.0 2.5 96.5
h-sCNF 2.0 - 0.5 - 2.0 2.5 95.5

Control
h-CNF 0.4 0.2 - - 0.4 2.5 97.1
h-CNF 0.8 0.2 - - 0.8 2.5 96.7

2.3. FE-SEM and TEM Analysis

The morphology of the CNF, CNF/silica, h-sCNF, and h-CNF nanocomposites was
examined via FE-SEM (SU8020, Hitachi, Tokyo, Japan) and TEM (HT7700, Hitachi, Tokyo,
Japan). The FE-SEM images were collected at an accelerating voltage of 3 kV. The samples
were coated onto a silicon wafer using a solution of CNF/silica nanocomposites diluted in
ethanol; the wafer was then coated with Pt/Pd using an ion sputter coater (E-1045, Hitachi,
Tokyo, Japan). The TEM images were collected at an acceleration voltage of 100 kV on a
carbon-coated copper grid.

2.4. Zetasizer Analyzer and Zeta Potential Analysis

The Z-average particle size was measured at 25 ◦C with a Zetasizer (Nano ZS, Malvern
Instruments Ltd., Worcester, UK) using a ~0.1% dispersion solution. The zeta potential (ζ)
was determined using a laser electrophoresis zeta potential analyzer (Nano ZS, Malvern
Instruments Ltd.). The zeta potential analysis was performed at pH 12 and 25 ◦C. The zeta
potential was calculated from the electrophoretic mobility (µe) using Smoluchowski’s equation,

ζ =
4πη
ε
× µe (1)

where ζ is the zeta potential in mV, ε is the dielectric constant of the medium, η is the
viscosity of the solution, and µe is the electrophoretic mobility [40].

2.5. FTIR Spectroscopy and XPS Analysis

The chemical structure and composition of the CNF, CNF/silica, h-sCNF, and h-
CNF nanocomposites were characterized via FTIR spectroscopy (Cary 600 Series, Agilent
Technologies, Santa Clara, CA, USA) in the range of 4000–600 cm−1, and via XPS (NEXSA,
Thermo Fisher, Waltham, MA, USA) with a monochromated Al Kα source (1486.6 eV).

2.6. TGA

The thermal properties were measured using a thermogravimetric analyzer (Q500, TA
Instruments, New Castle, DE, USA). The silica and the inorganic/organic HDTMS were
confirmed by the thermal decomposition amount and residual amount. The measurements
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were performed using a weight of 10 ± 0.5 mg to raise the temperature to 800 ◦C under
nitrogen gas.

2.7. WCA and AFM Analysis

The surface properties and WCA were analyzed using a contact angle analyzer (Smart-
Drop standard, FEMTOFAB, Seongnam, Korea); the measurements were conducted three
times at room temperature with 1 mL water droplets. The surface roughness and morphol-
ogy of the dimple nanostructures were measured via AFM (NX10, Park Systems, Suwon,
Korea) in noncontact mode. The samples were coated onto a PET film by spray-coating.

3. Results and Discussion
3.1. Effect of the Synthesis Conditions on the Morphology of the CNF/Silica Nanocomposites

Figure 2 and Table 3 show the morphology of the CNF/silica nanocomposites ob-
tained using different synthesis conditions—specifically, by varying the reaction solvent
and catalyst concentrations. The size of the silica nanoparticles was determined via the
TEM image analysis and the Zetasizer analysis, and the silica content was determined
via TGA. In the CNF/silica-1, it was confirmed that anisotropic silica nanoparticles with
a size of around 10–30 nm were adsorbed on the CNF surface (Figure 2a,b). Butler et al.
reported that, under low [H2O]/[TEOS] molar ratios, a matrix with a more open structure
was produced because of incomplete hydrolysis [41]. Increasing the water content of the
CNF/silica nanocomposites (CNF/silica-2) resulted in an increase in the silica particle size
and the formation of isotropic silica nanoparticles; additionally, the silica content increased
from around 57.93 to 70.00 wt% (Figure 2c,d). Decreasing the ammonium hydroxide con-
centration of the CNF/silica-3 compared to CNF/silica-2 resulted in a decrease in the
silica particle size and silica content to ~67.81 wt% (Figure 2e,f). The scale-up process
(CNF/silica-4) produced similar results to CNF/silica-1. Indeed, the silica content de-
creased slightly because the ammonium hydroxide concentration was slightly lower, which
can be expected to result in smaller silica nanoparticles. Figure 3 shows the morphology
and schematic of the adsorption and separation of silica nanoparticles on the CNF surface.
The adsorption of silica nanoparticles was investigated by measuring the zeta potential
of CNFs and CNF/silica nanocomposite in ethanol solution at pH 12. The zeta potential
of the CNFs and CNF/silica nanocomposite was −31.2 mV and −61.2 mV, respectively.
This result shows that both CNFs and CNF/silica nanocomposites are in a stable state in an
ethanol solution. In general, the threshold of stability of a colloidal nanoparticle solution in
terms of the zeta potential is ±30 mV [40]. In particular, the CNFs have relatively lower
repulsive force between nanofibers than silica nanoparticles. Therefore, the incorporation
of silica nanoparticles in the CNFs makes the colloidal solution relatively more stable than
CNFs alone. Previous studies have shown that silica nanoparticles are in a relatively more
stable state at around −60 mV in a pH solution [42].
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Figure 2. Morphology of CNF/silica nanocomposites investigated via SEM and TEM analysis:
(a,b) CNF/silica-1, (c,d) CNF/silica-2, (e,f) CNF/silica-3, and (g,h) CNF/silica-4.
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Table 3. Silica particle size and silica content of CNF/silica nanocomposites.

Samples
Particle Size Silica Content (wt%)

(c)Size (nm) (a) Size (nm) (b)

CNF/silica-1 10 ~ 30 166.1 57.93
CNF/silica-2 13 ~ 90 96.57 70.00
CNF/silica-3 16 ~ 78 57.02 67.81
CNF/silica-4 10 ~ 30 85.07 57.67

(a) Particle size measurement analysis of 30 samples by TEM images, (b) by Zetasizer, and (c) by TGA analysis.
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Figure 3. Morphology of the CNF/silica nanocomposites investigated via SEM analysis:
(a) CNF/silica-1, (b) CNF/silica-1 after washing with water, and (c) scheme of adsorption and
separation of silica nanoparticles on the CNFs’ surface.

The addition of water with relatively strong hydrogen bonding results in the separation
between silica nanoparticles and CNFs. It is considered that the affinity between CNFs and
water is relatively higher than that of silica nanoparticles. Similarly, in other studies, it can be
seen that CNFs have a high affinity for water, with a zeta potential of around −65 mV [43,44].

As a result, the adsorption of the silica nanoparticles on the CNF surface appears
to be a phenomenon that occurs due to hydrogen bonding rather than covalent bonding.
Additionally, the adsorbed silica nanoparticles were separated from the water solution
using ultrasonic waves, and the silica nanoparticle size was measured using a Zetasizer.
The size of silica nanoparticles in CNF/silica-1 was ~166 nm, while that in CNF/silica-
4 was ~85 nm, showing rather large values, unlike TEM analysis. It is expected that
anisotropic silica nanoparticles are actually agglomerated with one another. In particular,
the difference in the silica nanoparticle size of CNF/silica-4 compared to CNF/silica-1 was
thought to be due to the relatively high CNF concentration (0.20% to 0.33%) and low TEOS
concentration (2.00% to 1.67%). As a result, the size and content of the silica nanoparticles
can be controlled through water and ammonium hydroxide concentrations. In a previous
work, it was found that increasing the water content resulted in an increase in the silica
particle size and a decrease in the packing efficiency. Silica nanoparticles are generated
and stabilized in an excess of an aqueous solution, which decreases their adsorption on the
CNF surface [42].
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3.2. Chemical Structure of the CNF, CNF/Silica, HDTMS-Modified CNF/Silica, and
HDTMS-Modified CNF Nanocomposites

Figure 4 shows the FTIR spectra of the CNF, CNF/silica, HDTMS-modified CNF/silica,
and HDTMS-modified CNF nanocomposites. The absorption peaks of the CNF/silica nanocom-
posites are attributed to the Si–OH and Si–O–Si vibration in the range 3100–3500 cm−1, as well
as at 1080 and 800 cm−1 [42,45,46]. The absorption peaks at 3100–3500 and 1080 cm−1 partially
overlap with the CNF absorption peak, and tend to shift toward slightly higher wavelengths.
Modification with HDTMS yielded additional absorption peaks at 2925, 2845, and 1458 cm−1,
which were attributed to the –CH2CH2 and –CH3 vibrations of the alkyl group (–C16H33) [36].
In Figure 4, the highlighted area represents the integral values of the spectra of the alkyl group
(3038–2788 cm−1, and 1410–1400 cm−1) and the silane group (863–740 cm−1). Increasing the
HDTMS concentration in CNF/silica nanocomposites increases the peak area of the alkyl group
compared with that of the silane group. In h-sCNF 0.1, the peak of the alkyl group did not
appear clearly, but the peak areas increased slightly from around 0.38 to 0.47 (3038–2788 cm−1)
and from 0.10 to 0.15 (1419–1400 cm−1); therefore, it was inferred that a sufficient HDTMS
modification had occurred. Similarly, the HDTMS modification of the CNF nanocomposites
resulted in the appearance of peaks attributed to the alkyl group.
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and the silane group (863–740 cm−1).

3.3. Characterization of the CNF, CNF/Silica, HDTMS-Modified CNF/Silica, and
HDTMS-Modified CNF Nanocomposites

Table 4 and Figure 5 show the elemental composition of the CNF surface before and
after modification with TEOS and HDTMS, as investigated via XPS. CNFs predominantly
consist of C (56.20%) and O (43.80%), which is consistent with the (C6H10O5)n composition
of cellulose. The calculations of the amounts of CNFs, silica, and HDTMS are presented
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in the Supplementary Materials. Here, the amount of HDTMS was calculated assuming
CH3(CH2)15SiOk (k = 1). In the CNF/silica nanocomposites, silica nanoparticles showed
surface adsorption of ~55.15 wt% to the mass of the CNFs. As the concentration of HDTMS
increased, the HDTMS modification of the CNF/silica nanocomposites increased from
~8.17 wt% to ~56.18 wt%, whereas the HDTMS modification of the CNF nanocompos-
ites decreased from ~39.46 wt% to ~34.73 wt%. The results show a similar trend to the
FTIR analysis.

Table 4. Surface composition of the CNF, CNF/silica, h-sCNF, and h-CNF nanocomposites, as
measured via XPS.

Samples
Atomic Percentage (%) Amount (%)

FWHM
C O Si CNF Silica HDTMS

CNF 56.20 43.80 - 100.00 - - -
CNF/silica 29.20 54.65 16.15 44.85 55.15 - 1.96
h-sCNF 0.1 33.94 50.97 15.05 40.65 51.18 8.17 1.98
h-sCNF 0.5 52.82 35.78 11.40 30.14 34.04 35.82 2.11
h-sCNF 1.0 57.14 31.85 11.01 24.98 31.09 43.92 2.18
h-sCNF 2.0 64.82 25.66 9.52 20.29 23.53 56.18 2.37
h-CNF 0.4 67.30 30.55 2.15 60.53 - 39.46 1.82
h-CNF 0.8 66.71 31.37 1.92 65.27 - 34.73 1.76

As shown in Figure 5a–d, the high-resolution C1s spectra of the samples were fitted
with three peaks—namely, C1, C2, and C3 at 284.3 ± 0.1, 286.0 ± 0.2, and 287.4 ± 0.3 eV,
respectively, which correspond to the C–C/C–H/C–Si, C–O/C–OH, and O–C–O/C=O
groups, respectively [47]. As shown in Figure 5e–k, the high-resolution Si2p spectra of the
samples were fitted with three peaks—namely, S1, S2, and S3 at 102.0 ± 0.2, 102.9 ± 0.1,
and 103.5 ± 0.1 eV, respectively, which correspond to the Si–C and SiO2 groups [47–49]. For
Si2p spectra, the chemical structure was observed with binding energies of 102.9 eV and
103.5 eV corresponding to the Si oxidation states Si3+ and Si4+, respectively [48,50–52]. As
shown in Figure 5a–d, the HDTMS modification of the CNF/silica nanocomposites resulted
in an increase in the C1 peak (284.4 eV) and a significant decrease in the C2 (286.0 eV) and
C3 (287.4 eV) peaks for oxygen-containing groups.

Similarly, the C1 peak is pronounced in h-CNF (Figure 5c,d), but it is difficult to find
a trend for the HDTMS concentration. As shown in Figure 5e–h,j,k, the new peak corre-
sponding to S1 (102.0 eV) gradually increases in the h-sCNF nanocomposites, thus showing
a trend of increasing full width at half-maximum (FWHM) from 1.95 (CNF/silica) to 2.37.
The h-CNF nanocomposites exhibit binding energy of S1 (102.0 eV) and S2 (102.9 eV) [48,49];
as a result, the appearance of new peaks corresponding to C1 (284.3 eV) and S1 (102.0 eV)
indicates that the Si–C groups were introduced in the CNF and CNF/silica nanocomposites.
In particular, the HDTMS modification at high concentrations for the CNF (h-CNF 0.8)
nanocomposites results in a reduction in the S2 (103.0 eV) peak of SiO2 compared to the
h-CNF 0.4 (Figure 5j,k); that is, in h-CNF 0.4, the SiO2 structure is considered to be relatively
more dominant than in h-CNF 0.8. This part will be dealt with in more detail in the TGA
and morphological analysis.
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3.4. Thermal Degradation Properties of the CNF, CNF/Silica, HDTMS-Modified CNF/Silica, and
HDTMS-Modified CNF Nanocomposites

Figure 6 shows the TGA and derivative thermogravimetric (DTG) curves of the CNF,
CNF/silica, HDTMS-modified CNF/silica, and HDTMS-modified CNF nanocomposites.
Table 5 summarizes the thermal degradation properties (T10, Tinf, 1, Tinf, 2, and Tmax) of the
CNFs, silica, and inorganic/organic HDTMS. The inorganic/organic component content of
HDTMS was calculated based on the results of the TGA and XPS analysis. The calculation
is shown in detail in the Supplementary Materials. The CNFs mainly exhibited first-order
degradation (D1st) in the range from around 220 ◦C to 420 ◦C, and then almost degradation
at a temperature exceeding 670 ◦C as second-order degradation (D2nd). The amorphous
and crystalline components were found to be ~74.09 wt%, the total degradation of the
crystalline cellulose polymer chain was ~25.03 wt%, and the remainder was ~0.88 wt% of
ash. Such values are similar to those reported for the thermal decomposition of cellulose
obtained from other plant sources [53], due to the different binding energies of the chemical
structure and crystallinity [53–55]. The T10 and Tinf,1 of the CNFs were around 311.23 ◦C and
346.87 ◦C, respectively. CNF/silica nanocomposites tended to increases to around 337.64 ◦C
and 357.39 ◦C. The thermal stability of the silica nanoparticles was mainly due to the three-
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dimensional network structure of SiO2. Generally, the incorporation of inorganic materials
into the polymer matrix can enhance thermal stability by acting as a superior insulator and
mass transport barrier to the volatile products generated during decomposition [56,57].
Additionally, the volatilization of the CNFs may decrease because of the labyrinth effect of
the silica nanoparticles [58,59]. This effect is expected to increase the ash content in the CNF
nanocomposites from 0.88 wt% to 2.26 wt%. Similarly, the HDTMS modification gives rise
to inorganic/organic HDTMS, and the inorganic composition serves to improve the thermal
stability as an insulator does. In particular, HDTMS-modified CNF/silica nanocomposites
have decreased inorganic content (silica and inorganic HDTMS) compared to CNF/silica,
but increased T10 and Tinf,1, because organic HDTMS exhibits high thermal stability at a
decomposition temperature from around 519 ◦C to 527 ◦C [60–63].
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Table 5. Thermal degradation properties (T10, Tinf,1, Tinf,2, and Tmax) of the CNF, CNF/silica, h-sCNF,
and h-CNF nanocomposites, and inorganic/organic component content of HDTMS for the h-CNF
and h-sCNF nanocomposites.

Samples T10
(◦C)

a Tinf, 1
(◦C)

a Tinf, 2
(◦C)

b Tmax
(wt%)

Inorganic
HDTMS

(wt%)

Organic
HDTMS

(wt%)

CNF 311.23 346.87 560.01 0.88 - -
CNF/silica 337.64 357.39 - 57.41 - -
h-sCNF 0.1 341.63 360.87 - 55.02 1.58 6.59
h-sCNF 0.5 353.85 370.49 508.44 50.77 14.47 21.35
h-sCNF 1.0 357.16 367.86 512.58 46.54 13.19 30.73
h-sCNF 2.0 355.69 365.05 506.00 38.03 12.24 43.94
h-CNF 0.4 329.88 357.91 500.05 14.34 13.46 26.00
h-CNF 0.8 331.74 356.59 500.82 17.93 17.05 17.68

a: Inflection point of the TGA curve; b: residual amount.
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The HDTMS decomposed in a wide temperature range of ~200–500 ◦C, due to the
relatively insufficient Si–O–Si crosslinking structure and the organic region of the hexadecyl
group (–CH2(CH2)14CH3) [33,38,64,65]. Figure S2 shows the differential scanning calorime-
try (DSC) curve of the CNF/silica and HDTMS-modified CNF/silica nanocomposites.
A melting temperature of ~44.76 ◦C was confirmed via the DSC analysis, proving that
organic HDTMS was produced. Increasing the HDTMS concentration of the CNF/silica
nanocomposites gradually increased the organic HDTMS content but slightly decreased the
inorganic HDTMS content; therefore, the h-sCNF 1.0 and h-sCNF 2.0, which had relatively
high organic content, exhibited a slight decrease in thermal stability compared to h-sCNF
0.5. However, increasing the HDTMS concentration of the CNF nanocomposites resulted in
a decrease in the organic HDTMS content from around 26.00 wt% to 17.68 wt%. It can be
seen that this is consistent with the trend of the previous FTIR and XPS analyses.

3.5. Surface Properties of the CNF, CNF/Silica, HDTMS-Modified CNF/Silica, and
HDTMS-Modified CNF Nanocomposites

Figure 7 shows SEM and TEM images used to examine the modification of CNFs
with HDTMS in more detail. Modification of the CNF nanocomposites at a low HDTMS
concentration (h-CNF 0.4) results in the formation of HDTMS particles (Figure 7a,c). On
the other hand, in h-CNF 0.8, a coating can be observed on the CNF surface, and the
HDTMS particles are seldom observed (Figure 7b,d). It was expected that the HDTMS
particles would be formed simultaneously with the coating of the CNF surface in the
modification process. In particular, h-CNF 0.8 is probably due to the presence of a uniform
coating on the CNF surface, which forms a hydrophobic surface, and the HDTMS particles
are easily removed during the washing process. Therefore, h-CNF 0.8 shows a relatively
lower HDTMS content than h-CNF 0.4 and, in particular, the organic HDTMS content is
significantly reduced. These results are expected to show limitations in the modification
with HDTMS due to the low surface area of the CNFs. Figure 8 shows the morphology of
the HDTMS-modified CNF/silica nanocomposites with different HDTMS concentrations.
Increasing the HDTMS concentration gradually increases the coating area on the CNF/silica
nanocomposites. h-sCNF 2.0 is coated on the entire surface. Many studies have reported
the HDTMS modification of the surface of silica nanoparticles. Chang et al. [35,36] reported
that the silica nanoparticles were connected by a polymeric bridge, indicating a clear
tendency to aggregate with one another. At a low HDTMS concentration, the surface of
the silica nanoparticles became fuzzy, and tended to be coated with a thin layer. At a high
HDTMS concentration, the silica particles were densely coated with the polymer to form a
core–shell structure. Chang et al. [35] reported that an extremely dense polymer network
was observed at an HDTMS concentration of 5%.

The WCAs were investigated to examine the hydrophobicity of the HDTMS-modified
CNF nanocomposites. As shown in Figure 9a, the CNF and CNF/silica nanocomposites
exhibited low water repellency, with a WCA of around 4.5◦ and 35.9◦, respectively. The
HDTMS-modified CNF nanocomposites exhibited water repellency, with a WCA of ~79.3◦,
and the HDTMS-modified CNF/silica nanocomposites showed high water repellency, with
a WCA of ~159.1◦. The HDTMS of h-CNF 0.4 and 0.8 was around 39.46 wt% and 34.73 wt%,
respectively, whereas in h-sCNF 0.5 it was ~35.82 wt%, indicating high WCA despite similar
or lower content. In particular, h-sCNF 2.0 exhibited superhydrophobicity, with a WCA of
~159.1◦. This sample also exhibited superhydrophobicity in various aqueous solutions with
different pH values (Figure 9b); this was mainly attributed to the hydrophobicity of the
long alkyl chain of HDTMS. In addition, the incorporation of silica nanoparticles increased
the roughness of the surface, thereby remarkably improving its water repellency.
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Figure 9. (a) Surface properties of the CNF, CNF/silica, h-sCNF, and h-CNF nanocomposites obtained
via contact angle analysis. (b) Water droplets with pH values of 4, 7, and 10 exhibited a spherical
shape on the surface.

As shown in Figure 10, the roughness values of each sample were examined via AFM.
The CNF and HDTMS-modified CNF nanocomposites showed a smooth surface, with
roughness values of around 49.67 nm, 36.65 nm, and 32.21 nm. The reason for the decreases
in the roughness was that the roughness decreased due to the HDTMS coating on the CNF
surface. On the other hand, the CNF/silica and HDTMS-modified CNF/silica nanocompos-
ites showed relatively rough surfaces, with roughness values ranging from around 112.21 to
134.53 nm. These results show the effect that the incorporation of silica nanoparticles in the
CNFs imparts nanoroughness. In addition, it was confirmed that the increase in HDTMS
content imparted microroughness to HDTMS-modified CNF/silica nanocomposites by
aggregating CNFs with one another (Figure 8). Similarly, many studies have reported the
possibility to impart roughness and superhydrophobicity to the surface of silica particles
using HDTMS [33–37,66]. Xu et al. [34] reported that the change in hydrophobicity was not
significant when the HDTMS concentration was higher than 2%. Chang et al. [35] showed
that a HDTMS concentration of 1 wt% is the most optimal. However, the hydrophobicity
does not increase further with a higher HDTMS concentration, because the hierarchical
structure features derived from the silica particles are hidden in the dense network of
the coating; consequently, the roughness is no longer improved. Therefore, the HDTMS-
modified CNF nanocomposites have limitations in terms of imparting hydrophobicity. On
the other hand, the incorporation of silica nanoparticles into CNFs was more beneficial
for the HDTMS modification; as a result, the content of organic HDTMS was increased. In
addition, it is expected that a more pronounced surface modification of HDTMS may be
possible due to the increased surface area.
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4. Conclusions

Firstly, we controlled the adsorption behavior of silica nanoparticles on the surface of
CNFs by adjusting the synthesis conditions. The silica nanoparticles’ size and the packing
efficiency of the CNF surface could be controlled by varying the concentrations of ammo-
nium hydroxide and water. Increasing the water and ammonium hydroxide concentrations
increased the particle size of isotropic silica nanoparticles, while decreasing the concen-
tration decreased the particle size of anisotropic silica nanoparticles. The incorporation of
silica nanoparticles could impart thermal stability and surface roughness to the CNFs. The
degradation temperature increased from around 311.23 ◦C and 346.87 ◦C to 337.64 ◦C and
357.39 ◦C, while the surface roughness increased from around 49.67 to 128.69. Above all,
the phenomenon in which silica nanoparticles adsorbed on CNFs are desorbed again via a
water-based solution has the potential to be applied to fields where recycling is easy.

Secondly, we successfully grafted HDTMS onto the surface of CNF and CNF/silica
nanocomposites. The behavior of modified HDTMS was quantitatively analyzed via FTIR,
XPS, TGA, SEM, and TEM. HDTMS modification could increase the thermal stability
more effectively through the incorporation of silica nanoparticles, and imparted additional
hydrophobicity. The HDTMS-modified CNF/silica nanocomposites could be controlled
from around 88◦ to 159◦ through the HDTMS concentration. In particular, h-sCNF 2.0
exhibited superhydrophobicity, with a WCA of ~159.1◦ in various aqueous solutions
with different pH values. This study can provide a reference for the adsorption of silica
nanoparticles and the hydrophobic modification of CNF nanocomposites, as well as expand
their fields of application.
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mdpi.com/article/10.3390/polym14040833/s1, Figure S1: Morphology of the CNFs investigated via
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degradation properties (Tmax) and amounts of the CNFs, silica, and inorganic/organic HDTMS.
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