
����������
�������

Citation: Andrianov, A.; Tomita, E.K.;

Veras, C.A.G.; Telles, B. A Low-Cost

Filament Winding Technology for

University Laboratories and Startups.

Polymers 2022, 14, 1066. https://

doi.org/10.3390/polym14051066

Academic Editor: Dagmar

R. D’hooge

Received: 27 January 2022

Accepted: 3 March 2022

Published: 7 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

A Low-Cost Filament Winding Technology for University
Laboratories and Startups
Artem Andrianov 1,* , Erika Kamada Tomita 1, Carlos Alberto Gurgel Veras 2 and Bruno Telles 1

1 Aerospace Engineering Course, University of Brasilia, Área Especial de Indústria Projeção A,
Setor Leste (Gama), Brasília 72444-240, Brazil; erika.kamadat@gmail.com (E.K.T.); bruno@telles.com.br (B.T.)

2 Mechanical Engineering Department, Campus Universitário Darcy Ribeiro, University of Brasilia,
Brasília 70970-900, Brazil; gurgel@unb.br

* Correspondence: andrianov@aerospace.unb.br; Tel.: +55-61-982344735

Abstract: This paper systematically explains the methodology and results of empirical work on the
development of a low-cost filament winding technology for manufacturing axisymmetric polymer
composite structures with a high length-to-diameter ratio, such as tubes, motor casings, and pressure
vessels. The principal objective was to examine the experiences and most optimal practices in the
development of computer-controlled equipment and auxiliary tooling for the wet filament-winding
process. To preclude expensive commercial software for the automated control of a winding machine,
analytical equations were derived for the winding trajectory of a four-axis filament-winding machine.
The feasibility of the proposed equations was successfully validated by laying the fiber along the
geodesic path marked on the surface of a cylindrical mandrel with hemispherical ends. Moreover, the
carbon/epoxy cylindrical casings with hemispherical ends and port openings of the same diameter
were wound to determine the thickness distribution in the hemispherical dome. The fiber volume
ratio in the wound composite parts was evaluated using an optical technique.

Keywords: filament winding; winding trajectory; composite casing; polymer composite

1. Introduction

Filament winding technology has been deployed extensively in the aerospace industry
since the early 1940s [1] and has persistently garnered interest from the scientific com-
munity. Data from Google Scholar, published in an insightful review on the automated
manufacturing and processing of fiber-reinforced polymer composites, revealed the pres-
ence of a markedly high number of papers concerned with filament winding even in recent
times [2]. However, the acquisition of composite structures with a unique shape of revolu-
tion and dimensions by university laboratories or startups requires sizeable investments.
Under these conditions, small companies typically seek alternative solutions. University
teams, however, can potentially benefit from sponsorship by equipment manufacturers,
as demonstrated in the case of the production of filament-wound rocket fuselages [3].
Another tenable solution is the development of in-house low-cost equipment for filament
winding [4].

A multitude of reports have highlighted the practicability of in-house laboratory equip-
ment for assessing new filament winding techniques and for the experimental fabrication of
advanced composite materials. Reference [5] presents a five-axis filament winding machine
(FWM), including a numerical control unit and liner. It is suggested in [6] to increase
the fiber volume ratio and decrease the void volume ratio of the composite casing. An
environmentally friendly FWM, without any discernible loss of quality was devised by the
separation of the resin components with their controllable feeding initially to a conventional
static-mixer and subsequently to a custom-designed resin impregnation unit [7,8]. In the
study reported in [9], the development of a controller using the B-spline interpolation tech-
nique entailed the construction of a three-axis FWM. A succinct description of the filament
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winding hardware that features precision guidance of the carbon nanotube-based material
is given in [10]. A “spiral-winder” was developed for the manufacturing cylindrical lami-
nated veneer lumber in [11]. The majority of the said research had a narrow purview with
their focus on specific scientific problems and engineering solutions related to filament
winding technology, and only a few details were presented regarding the cost-effective
design of the filament winder, its control system, and winding technique.

The volume ratio and decrease in the void volume ratio of the composite casing were
recorded. An environmentally friendly FWM, without any discernible loss of quality was
devised by the separation of the resin components with their controllable feeding initially
to a conventional static-mixer and subsequently to a custom-designed resin impregnation
unit [7,8]. In the study reported in [9], the development of a controller using B-spline inter-
polation technique entailed the construction of a three-axis FWM. A succinct description of
the filament winding hardware that features precision guidance of the carbon nanotube-
based material is given in [10]. A “spiral-winder” was developed for the manufacturing
cylindrical laminated veneer lumber in [11]. The majority of the said research works had a
narrow purview with their focus on specific scientific problems and engineering solutions
related to filament winding technology, and only a few details were presented regarding
the cost-effective design of the filament winder, its control system, and winding technique.

The methodology and results of one of the first attempts to design a low-cost computer-
operated wet filament winding system for manufacturing cylindrical and conical parts
or a combination of components are delineated in [12]. The associated system is accom-
panied by a software written in the AUTOLISP parametric programming language for
the visualization of the winding patterns. Another innovative lathe-type machine based
on a wet winding method is presented in [13]. The cost of the system is low because
of the implementation of a rigid automation: the control system is not controlled by a
computer, but is rather based on relays, limit switches, a timer, and a counter. Similar
low-cost design solutions have been presented, which are based on a speed control of two
DC [14] or AC motors [15]. An ingenious small-scale FWM has also been developed for
educational purposes [16]. This machine generates helical winding patterns with angles
ranging from 40 degrees to 80 degrees. The mandrel is driven by a cheap AC motor with
a relatively constant speed. The translational motion of the carriage with delivery eye is
provided by a stepper motor, which is more sophisticated in terms of control. All of the
mentioned systems have only two controllable axes that apply known limitations on a
variety of wound parts.

An example of modernization of a two-axis winder by adding two more controllable
axes is systematically detailed in [17]. In fact, one axis is adjusted manually (the distance
between delivery eye and mandrill) and the other axes are driven by three DC motors
with the same number of controllers. An efficacious low-cost solution is presented in [18],
wherein a three-axis filament winder is equipped with one AC motor for the mandrel
rotation and two AC servo-motors for the translation of the carriage. Servo-motors are
controlled by the LabView software. A three-axis portable FWM was developed with an
extensive use of the standard accessories for fabrication of hobby and laboratory machines,
such as OpenBuilds V-Slot aluminum profile and other parts (bearings, fixtures, pulleys,
belts, etc.) [19]. All the three axes of the winder are driven by stepper motors and controlled
by the microcontroller Arduino Uno and drive the expansion board computer numeric
control (CNC) Shield. Universal G-Code Sender software is used to send commands from
the computer to the winder in [20]. More recently, winders were equipped with mobile
software for wireless control [21]. The winding performance was assessed as satisfactory in
accordance with the criteria of the angle deviations and accuracy of the distance between
two adjacent helical roving positions in [22]. In addition, tubular structures have been
manufactured with the use of commercial software for generation of winding trajectory [23].
Notwithstanding the low-cost design philosophy deemed critical in the aforementioned
projects, the validation of the final product has been demonstrated for the structural
components with a non-sophisticated shape, such as tubes.
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A methodical description of a three-axis filament winder with an original technical
solution for the third degree of freedom (DOF) is given in the references [24,25]. Fibers are
consolidated by a twisting of the tow to form a bar of a circular cross-section. The twisting
can be performed by a rotation of the delivery carriage. Nevertheless, the developed equip-
ment only allows for the manufacturing of wrapped tow reinforced trusses. A meticulous
description of small-scale equipment with four DOF that combines the filament winding
with automated fiber placement is provided in reference [26]. A noteworthy advantage of
the contemporary technology is the likelihood of manufacturing components with concave
surfaces. However, the validation was fulfilled only with numerical simulations and not
by manufacturing the test specimen, the former being less complex and arduous than
the latter.

At present, there exist several commercial programs for generating the filament wind-
ing trajectories that use the mandrel’s shape as the initial data [27]. As stated in [28], a
more intricate approach for path generation is currently under investigation to enhance the
quality of the final product. The approach considers the alteration in the mandrel’s shape
due to an uneven thickness distribution of the ply from previous winding. Acquisition of
the commercial software for path generation increases the final cost of the technology, and
the latter approach requires the application of expensive equipment.

Another way to make the technology more cost-effective is the development of ana-
lytical solutions to determine the winding trajectories performed by components of the
FWM [29]. Depending on the shape of the mandrel, the fibers are laid along geodesic or
non-geodesic trajectories. In accordance with reference [30], which contains analytical solu-
tions for the winding paths of the parameterized shells of revolution, geodesic trajectories
provide the most stable and economical technique for filament-wound structures.

An efficacious, viable solution for the smooth winding motion is delineated in [29].
However, it is applicable only for two-axis FWMs. An analytical solution for four- and
five-axis machines is described in the form of the coordinates for the feed-eye trajectory
and the mandrel rotation [5,31]. Nevertheless, the solution in reference [5] only provides
satisfactory results for the spherical dome when the distance from the delivery eye to the
surface of the mandrel is zero. A generic kinematic model of the machine movements
to create a particular filament-wound product, on a particular machine configuration, is
discussed in reference [32]. The mathematical approach adopted for the derivation of the
executive expressions in [31,32] demands tremendous effort or skill from an FWM operator.

The primary objective of this work was to design low-cost computer-controlled equip-
ment for the filament winding of small-size axisymmetric aerospace structures, such as
tubes, casings, and pressure vessels. The secondary objective of the work was to obtain
simple and comprehensive analytical equations for the delivery eye trajectory by referring
only to analytic geometry. The derived equations were used for the winding of a cylindrical
casing with hemispherical domes, whose polar openings are of the same diameter.

The validation of the suggested low-cost winding technology was conducted by
manufacturing small-scale composite casings to evaluate the thickness and fiber volume
ratio of helical plies. The dimensions of the designed casing are close to the size of the test
motor of a hybrid propellant decelerator [33].

2. Materials and Methods
2.1. Constituents of the Composite Material

Carbon fiber, being the most difficult fiber to manage [1], has been used in this study
in the filament-winding process to appraise the capability of the proposed system under
demanding situations. Continuous carbon fiber tows based on polyacrylonitrile Teijin Car-
bon HTS45 E23 12K (Table 1) and epoxy resins of different grades produced by Huntsman
(Table 2) were used for manufacturing the casing on the developed winding machine.
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Table 1. Properties of the carbon fiber tow 1.

Parameter Minimal Nominal Maximal

ρ f , tex 720 800 880
ρ, g/cm3 1.77 1.80 1.83
F1 f , MPa 4050 4500 4950
E1 f , GPa 228 240 252

1 as affirmed by local supplier Texiglass.

Table 2. Cure schedules for three types of resin-impregnated tows.

Designation Resin Composition Initial Viscosity at
25 ◦C 1, mPa·s Cure Schedule

LY1564 Araldite
LY1564/XB3473 1000–1200 30 min at 130 ◦C + 12 h at

160 ◦C

LY5052
Araldite

LY5052/Aradur
TM5052

600–700
(to 1500 after 56–60 min) 24 h at 25 ◦C + 15 h at 60 ◦C

1 manufacturer’s data.

The fiber volume ratio was determined using an optical technique based on an image
analysis of micrographs of transverse cross sections of the coupons. The fiber volume
ratio was calculated as a ratio of the area of the fiber cross sections to the total area within
the frame of the micrograph. The thresholding tool of the open-source software ImageJ
1.53e was used to determine the area of fiber cross sections on the 8-bit micrograph with a
magnification of 400×.

2.2. Calculation of the Winding Parameters

The winding parameters for the casing with hemispherical domes were calculated
in accordance with the methodology and the recommendations delineated in [34,35]. The
geodesic trajectory is feasible for the cylindrical pressure vessel with hemispherical domes
of the radius Rc and polar openings of the equal radius rp (Figure 1).

The winding angle for the cylinder βc was calculated by equation:

βc = arcsin
rp

Rc
(1)

Along the length of the cylinder Lc, the mandrel has to rotate with a turn-around angle
Φc computed as follows:

Φc =
Lc tan βc

Rc
(2)

The winding angle at any point on the surface of the hemispherical dome βs can be
defined as a function of the z-coordinate as:

βs(z) = arcsin

√
R2

c − z2
p

R2
c − z2 (3)

In addition, the turn-around angle on the hemispherical dome Φs can be defined as a
function of the z-coordinate as well:

Φs(z) =
∫ z

0

1
R2

c − z2

√
R2

c − z2
p

z2
p − z2 dz (4)
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To lay the fiber along one side of the hemispherical surface, the mandrel ought to
rotate by a turn-around angle equal to Φs, given as:

Φs =
∫ zp

0

1
R2

c − z2

√
R2

c − z2
p

z2
p − z2 dz =

π

2
(5)

The turn-around angle for one winding cycle Φ1 can be computed as:

Φ1 = 2Φc + 4Φs (6)

The fiber crosses any latitude of the mandrel twice every winding cycle. For the
obtained value Φ1 not a multiple of 2π (360◦), the tow after one winding cycle returns to
the same latitude from which it started its trajectory but does not coincide with the starting
point. The angular pitch of winding Φ∗p is defined as an angle measured in the direction of
the mandrel rotation between the starting and final points of one winding cycle and can be
described mathematically as:

Φ∗p = Φ1 − 2π · integer
(

Φ1

2π

)
(7)
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The angular pitch must be increased to the closest angle, which is a multiple of 360◦

Φp =

{
60◦, 72◦, 90◦, 120◦, 180◦ when 60◦ ≤ Φ∗p < 180◦

240◦, 270◦, 288◦, 300◦, 360◦ when Φ∗p > 180◦

The difference between the accepted and calculated angular pitch, Φ f , distributed
uniformly between two flanges of the mandrel, can be given as:

Φ f =
Φp −Φ∗p

2
(8)

At an angular pitch of less than or equal to 180◦, the tow returns to the same starting
point after 2π/Φp winding cycles. Thus, to cover the entire surface of the mandrel with
fibers, the mandrel must rotate every 2π/Φp winding cycles by an angle corresponding to
the width of the tow given as follows:

Φw =
b

Rc cos βc
(9)

2.3. Validation of the Analytical Solutions for the Winding Trajectory

The efficiency of the analytical solution for the kinematic motion of the FWM was
ascertained by laying the synthetic strip along the geodesic path marked on the surface of
a cylindrical mandrel with hemispherical domes. The mandrel with continuous grooves
along geodesic path is printed with polylactide filament (Figure 2). The coordinates of the
geodesic path were calculated by equations from the previous subsection. The G-code for
controlling the four axes of the FWM was compiled manually after the discretization of the
derived analytical solutions.
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2.4. Manufacturing and Characterization of the Casing

The casing is wound over two types of mandrel with the same geometry (Rc = 60 mm,
rp = 21 mm, and Lc = 160 mm). The mandrel for the cold-curing epoxy composition LY5052
is made from polyethylene terephthalate glycolmodified (PETG) filament by 3D printing.
Water-soluble mandrel from sand/polyvinyl alcohol composition [35] was used for the
heat-curing epoxy resin LY1564. The sand components of the mandrel (Figure 3) were
molded together with aluminum bushings in low-cost silicon molds. After solidification in
an electric oven, these were mounted on a threaded shaft (Figure 4) with other components
of the mandrel, namely heat insulators and flanges. The sand mandrel was washed out
with hot water after manufacturing and curing the casing.
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The average velocity of the winding was 65 mm/s and the winding pitch was 4 mm.
The thickness distribution for the spherical dome of the casing was evaluated by a

so-called flat solution, suitable for a reliable and adequate approximation of real thickness
distribution [1]. The thickness at the portion of the dome adjacent to the polar openings tdo
is constant and can be defined as:

tdo =
Rctc cos βs√

b cos
(

βc +
b

Rc

)[
2rp + b cos

(
βc +

b
Rc

)] (10)

For the rest of the dome, the thickness td is a function of the z-coordinate:

td(z) =
Rcrp cos βs√
R2

c − r2
p − z2

(11)

The predicted thicknesses were compared with the real ones measured on segments
milled from the spherical dome of the wound casings. The measurements of the thickness
were performed using a Mitutoyo digital caliper (resolution 0.01 mm) with thin jaws to
avoid a distortion of the measured value due to the curvatures of the segments.

3. Results and Discussion
3.1. Design of the Filament Winder
3.1.1. Design Concept

The vast variety of equipment and techniques applied to the filament-winding process
necessitates a comprehensive analysis of the technology to justify the design configura-
tion [36]. The common filament-wound structures used in aerospace programs are tanks,
pressure vessels, motor casings, struts, and booms [37]. Thus, the selected design concept
must be adapted to design the shells of revolution, preferably with a high length-to-
diameter ratio and appropriate for laboratory applications or a single-unit production.

In a previously conducted study [38], all filament winders were divided into two
groups, namely conventional and robotic, based on the type of the equipment. The former
has a minimum required DOF, i.e., it is optimized for specific applications [36]. The
application of an industrial robot is the typical characteristic of a robotic filament winding
complex [39]. Technical and economical comparisons of the filament winders depend
on a multitude of factors, with the most prominent being the size of the product being
manufactured, configuration of the equipment, and the level of automation. In general,
conventional FWM can accommodate mandrels with a high length-to-diameter ratio and
robotic FWM are more adapted for small components with complex shapes [38]. However,
the working envelope of robotic systems can be extended using additional linear axis.
Despite the high market demand and competitiveness, which are among the principal
merits of the conventional technology, the substitution of the rigid automation of the
conventional winders with flexible automation typical for the robotic cells discernibly
enhances the product value and market prospects [40,41]. However, robotic systems may
require skilled personnel and increased maintenance costs. Apparently, the conventional
equipment is more rational for the custom-made production of the components with a
relatively simple axisymmetric shape and high length-to-diameter ratio.

Notwithstanding the heterogeneity in the layouts of the conventional filament winding
equipment mentioned in the references [42,43], there are three archetypal basic configu-
rations [44]: a lathe-type (helical) winder, a racetrack (in-plane or polar) winder, and a
tumble winder. The racetrack (polar or in-plane) winders are effective for winding angles
close to zero, but the length-to-diameter ratios of the wound parts are delimited to 1.8–2.0
to obviate the fiber slippage [43]. The tumble winder is efficient for the low-cost and
high-speed manufacturing of spherical or “Dutch cheese”-shaped shells of revolution, but
is not appropriate for winding hoop layers on cylindrical surfaces [45]. The configuration
of a tumble winder suggested in reference [39] is capable of manufacturing long structures,
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but imposes demanding requirements on the rigidity of the mandrel holding structure.
The lathe-type winders are the most prevalent and conventional machines with some
limitations in the range of extremely small winding angles. Other disadvantages of the
lathe-type machines include high delivery eye translations and accelerations in comparison
with the racetrack or tumble winders. However, none of these drawbacks preclude the
extensive use of the lathe-type configuration for manufacturing the axisymmetric aerospace
structures mentioned above. Another cogent reason that renders a conventional lathe-type
machine more appropriate for the applications presented here is the correlation of its cost
with the number of DOF [36]. The sufficient number of DOF for the filament winder is
determined by a number of independent parameters that describe the relative orientation
between delivery eye and mandrel [39]. The greater the number of DOF the winder has,
the more intricate the wound part and the control system are anticipated to be [46]. By the
adoption of the conventional methods of linear algebra, it was shown that FWM must have
at least six DOF [39]. However, for tow-winding, the sufficient number of DOF is four, as
the twisting of the tow is of less importance. For the axisymmetric mandrel, some of the
independent parameters might be constant. For instance, the distance between the surface
of the mandrel and delivery tool might be constant for the helical tow-winding around the
cylindrical mandrel. Thus, the number of sufficient DOF decreases to two. Components
that are more complex than a cylinder can be wound with only two DOF [29]. It is worth
noting that a low number of DOF requires a more elaborate calculation of the delivery
eye trajectory and speed [31]. An additional DOF eliminates unrealistic translations in the
winder components [32]. Consequently, the configuration with four DOF was selected for
the filament winder under consideration.

From the three impregnation methods described in [47], only wet/dry winding has a
widespread application for aerospace components. For occasional non-batch applications,
the wet winding method is more advantageous when compared with the dry method for
the following reasons [47,48]: (1) enhanced variety of fiber/resin combinations; (2) lower
probability of fiber damage; (3) longer shelf life for resins, while prepregs must be stored in
a freezer for a limited period; (4) room temperature cure; and (5) lower cost. Moreover, the
wet winding equipment can be easily readjusted for prepreg winding.

The latter is considered available and straightforward from two roving impregnation
systems, a dip-type and a drum-type bath system [49]. Notwithstanding the poor control
over the fiber volume ratio that leads to an excess of resin, the drum-type bath systems have
a wide application in industry. A doctor blade device may adjust the required resin-film
thickness on the drum, restricting the amount of resin that can enter the polymer composite.
Thus, the proposed low-cost technology for the irregular or laboratory production of the
polymer composite shells of revolution with a high length-to-diameter ratio is based on
a lathe-type filament winder with four DOF and a proper bath-type resin impregnation
system. This low-cost concept is predicated on the extensive use of standard aluminum and
steel profiles for the structural frames, off-the-shelf mechanical and electronic components,
3D-printed parts, obsolete personal computer and cheap software for the control system,
and manual generation of the control codes supported by analytical equations. In addition,
there are no complex adaptive tensioning systems. The pretension is provided by a simple
tensioning mechanism, such as rotating scissor bars with manual adjustment [50]. The
variation in fiber tension can be minimized by the appropriate feed-eye trajectory [31].

3.1.2. Description of the Filament Winder

The system for the filament winding comprises the main units formed by the winder,
the stationary creel, and the operator’s workplace (Figure 5). The stationary creel is a carbon
steel shelf that holds a maximum of four fiber packages on a cardboard tube. The operator’s
workplace is a desk equipped with a monitor, a keyboard, and a mouse. The winder was
installed on a carbon steel stand holding cabinets for the control system, protected from
resin leakage by a silicone layer.
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Figure 5. The devised low-cost filament winding system.

There are four fully controlled axes in the filament winder (Figure 6): X is the rotation
of the mandrel, Y is the linear translation of the carriage along the mandrel’s axis, Z is the
linear translation of the delivery eye across the mandrel’s axis and A is the eye-rotation axis.
A stepper motor with a frame size established by the National Electrical Manufacturers
Association (NEMA) is the primary source of torque for all controllable axes. The torque
from the stepper motors to the executive mechanisms is transferred through the timing belt
drive (axes Y, Z, and A).

The planetary drives with reductions of 1:10 and 1:5 are installed between the stepper
motor and the timing belt of axes X and Y, respectively.

The winder consists of two primary assembly units: a frame and a carriage. The frame
is made from a V-slot aluminum profile and holds the stepper motors of axes X and Y
(Figure 7). The tailstock is equipped with both a rotating center and drill chuck to provide
a variety of clamping methods. A pair of linear guides with slide blocks for installation of
the carriage is also included.
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Figure 7. Assembly components of the filament winder frame (sensors are not shown): 1—aluminum
V-slot profile; 2—stepper motor with planetary reduction drive; 3—timing belt; 4—slider block;
5—linear guide rail; 6—lathe chuck; 7—tailstock with tool set.

The carriage encompasses three subassemblies (Figure 8): the carriage frame, the
impregnator, and the delivery head. The carriage frame is made from a V-slot aluminum
profile (Figure 8a). Two braces are installed in a gantry plate between the mini wheels. The
timing belt, whose ends are fixed to the extremities of the braces, provides linear translation
Z of the braces. The middle portion of the belt is pulled over the GT2 timing pulley, which
is driven directly by the stepper motor. The impregnator (Figure 8b) is installed between
the carriage braces and consists of a heated resin bath with an impregnation drum, rotating
scissor bars with manual adjustment, a couple of guides, and a tension compensator with
a torsion spring. The tension compensator works similarly to a rotating scissor bar and
the distance between the bars can also be adjusted. The hollowed drum is made from
high density polyethylene to facilitate rotation. The guides are made from stainless steel
or polyoxymethylene (POM). The delivery head (Figure 8c) is responsible for the fourth
controllable DOF and consists of an aluminum tube supported by a set of mini wheels. The
tube holds the delivery eye with a couple of rollers made from POM.
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components (drivers, switches, and sensors) and vice versa (Figure 9). The low-cost iso-
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A low-performance PC (1 GHz processor) with an obsolete version of Microsoft Win-
dows (2000, XP, Vista) can be employed for a direct connection from the PC’s motherboard 
to the “Mach3 Interface Board” through a parallel port [52]. This approach considerably 
reduces the cost of the control system. The stepper motors with encoders are used to en-
hance the accuracy of tow deposition. Contact-limit switches are used to prevent the Y 
and Z linear axes from causing damage to the structure of the winder. The winder is 
equipped with relocatable proximity sensors, whose primary function is to establish a 
home position or a reference position (origin of the Y and Z coordinates). The heating 
control of the impregnation bath is separated from the control system. It is equipped with 
a simple thermostat that maintains a predetermined temperature of the resin in the im-
pregnation bath. 

Figure 8. Assembly components of the carriage: (a) frame, (b) impregnator and (c) delivery head; 1—
roller; 2—hollow pulley; 3—closed timing belt; 4—stepper motor; 5—brace; 6—timing belt; 7—frame;
8—bracket; 9—gantry plate with mini wheels; 10—static bar; 11—tension compensator; 12—water
basin; 13—drain; 14—impregnation drum; 15—doctor blade; 16—rotating scissor bars; 17—guide;
18—heating element; 19—thermostat; 20—terminal for the heating element; 21—fixture of the timing
belt at the end of the brace; 22—proximity sensor Z; 23—limit switch Y.

3.1.3. Control System

The control system of the filament winder is based on commercial software ArtSoft
Mach3, a widely used solution for custom-made CNC machines [51]. The Mach3 software,
in combination with a breakout board, virtually transforms a PC into a CNC machine
controller.

The breakout board was incorporated to translate signals from the PC to the winder’s
components (drivers, switches, and sensors) and vice versa (Figure 9). The low-cost
isolating breakout board “Mach3 Interface Board,” adopted for the control system, also
functions as circuit protection. The requirement of an auxiliary 12–24 V power supply for
the switch control can be confirmed as the primary disadvantage of the board.

A low-performance PC (1 GHz processor) with an obsolete version of Microsoft Win-
dows (2000, XP, Vista) can be employed for a direct connection from the PC’s motherboard
to the “Mach3 Interface Board” through a parallel port [52]. This approach considerably
reduces the cost of the control system. The stepper motors with encoders are used to
enhance the accuracy of tow deposition. Contact-limit switches are used to prevent the
Y and Z linear axes from causing damage to the structure of the winder. The winder is
equipped with relocatable proximity sensors, whose primary function is to establish a
home position or a reference position (origin of the Y and Z coordinates). The heating
control of the impregnation bath is separated from the control system. It is equipped
with a simple thermostat that maintains a predetermined temperature of the resin in the
impregnation bath.
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3.2. Trajectory of the Delivery Eye

To place the tow along the geodesic path when the distance between the delivery
eye and the mandrel surface is not zero, equations for the coordinates of the delivery-eye
trajectory are indispensable.

The tow runs over a large circle of the sphere [34], thus the trajectory of the tow
is a circle that lies in a plane. The coordinate system of the plane xyz is formed by an
elemental rotation of the mandrel’s coordinate system xyz about axis x by an angle βc
(Figure 10a). For simplicity, it is considered that the trajectory of the delivery eye is also
a circle (Figure 10b), and therefore, the distance λ between the delivery eye E and the
mandrel surface M is constant.
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The closed-line segment EM must be tangential to the surface of the dome. It is
calculated through the radius Re, defined by the operator:

λ =
√

R2
e − R2

c . (12)
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The coordinates of the delivery eye in the coordinate system xyz are defined through
the variable angle α depicted in Figure 10b:

xe = MC−MB = Rc cos α− λ sin α,
ye = 0,

ze = AB− BE = Rc sin α− λ cos α.
(13)

The coordinates of the delivery eye in the mandrel’s coordinate system xyz are defined
by the following well-known equations of linear algebra:

xe = xe,
ye = ye cos βc − ze sin βc,
ze = ye sin βc + ze cos βc.

(14)

Substituting Equations (13) into (14) provides

xe = Rc cos α− λ sin α,
ye = −

rp
Rc
(Rc sin α + λ cos α),

ze =

√
Rc2−rp2

Rc
(Rc sin α + λ cos α).

(15)

The coordinates of the delivery eye are obtained through controllable DOF (i.e., in the
coordinate system of the winder), which are determined from Figure 10c in terms of the
coordinates in the mandrel’s coordinate system xyz.

X = tan−1 ye
xe

,
Y = ze,

Z =
√

xe2 + ye2.
(16)

Finally, substituting Equations (15) into (16) provides the formulas for the delivery eye
trajectory as a function of α

X = tan−1
[
− rp(Rc sin α+λ cos α)

Rc(Rc cos α−λ sin α)

]
,

Y =

√
Rc2−rp2

Rc
(Rc sin α + λ cos α),

Z = ((Rc cos α− λ sin α)2 +
(

rp
Rc

)2
(Rc sin α + λ cos α)2)

1/2
.

(17)

An involute screw surface analytically described in a Cartesian coordinate system [53]
provided the coordinates of the delivery eye trajectory for the cylindrical part of the mandrel
(Figure 11):

xi = Rc cos θ + λ sin βc sin θ,
yi = Rc sin θ − λ sin βc cos θ,

zi = Rcθ cot βc − λ cos βc.
(18)

Here, angle θ is a function of the axial coordinate z:

θ =
z tan βc

Rc
. (19)

The delivery eye trajectory is given through controllable DOF of the winder as follows:

X = z tan βc
Rc

,
Y = z,

Z = ((Rc cos θ + λ sin βc sin θ)2 + (Rc sin θ − λ sin βc cos θ)2)
1/2

(20)
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The angle of the eye rotation axis A depends on the winding angle, such that the axis
of the roller must be perpendicular to the direction of the tow:

A =
π

2
− β (21)

Here, β is calculated by Equation (3) for the hemispherical dome and by Equation (1)
for the cylinder.

3.3. Validation of the Analytical Solution for the Winding Trajectory of the FWM

The length of the cylindrical part of the mandrel Lc = 84.1 mm is chosen in such a
manner that the imprinted grooves are continuous along the geodesic path (see Figure 2)
and form a closed loop.

The winding parameters (Table 3 and Figure 12) yield the same pattern on the surface
of the mandrel for both the tow and the grooves. The trajectories of the delivery eye and
the tow calculated for the constant distance λ = 67 mm by Equations (17) and (20) are
illustrated in Figure 13. The wound pattern obtained by the calculated trajectories (the
generated G-code is given in Appendix A) corresponds to the pattern of the imprinted
grooves (Figure 14), which, in turn, substantiates the reliability and effectiveness of the
suggested equations.

Table 3. The winding parameters for the mandrel with imprinted geodesic path, in degrees.

βc Φc Φs Φ1 Φp Φf Φw

20.5 15 90 420 0 0 15
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As the geodesic trajectory has been calculated for a filament with an infinitesimally
small width, a strip with a width of 3.5 mm partially covers the surface of the flange.
Overlap can be eliminated by decreasing the opening radius in the calculations of the
geodesic path or can be regulated with a slight displacement of the initial position of the
delivery eye out of the mandrel. However, deviations from the geodesic path are inevitable
in the latter case.

3.4. Characterization of the Casings

The winding parameters used for the manufacturing of the casings are the same for
all of the double helical plies in the layup (Table 4 and Figure 12). The winding pitch for
the 90◦ ply is 4 mm.

Table 4. The winding parameters for the mandrel with imprinted geodesic path, in degrees.

βc Φc Φs Φ1 Φp Φf Φw

20.5 57.1 90 474.2 120 2.91 4.08

Before winding the casings with carbon filament impregnated by two types of the
epoxy resin, the calculated trajectory of the delivery eye was already successfully verified
for the double angle-ply layer with use of the synthetic strip (Figure 15). The winding of one
double angle-ply layer required approximately 16 min at the maximum speed established
in the G-code, which is equal to 6000 mm/min for the linear translations (Z and Y axes)
and 6000 degrees/min for the rotational motion (X and A axes).
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The thicknesses measured along the dome wall of the wound casings with different
resin compositions and stacking sequences are in good agreement with the distribution
predicted by the flat solution, except for the portion near the flange (Figure 16), as a
result of the varying compaction performance of the composite material at the dome.
Notwithstanding the significant amount of resin drips from the casing surface before the
curing is completed, a great volume of resin is trapped inside the layer (Figure 17). At the
flange, there is a huge zone covered in resin and there are multiple pores. In the cylindrical
part, the trapped resin is between the plies and there are few pores. The most porous casing
is made from composition LY1564 (Figure 18). The size and the distribution of voids can be
attributed to the absence of an adaptive tensioner of the tow in the developed FWM and
excessive resin content inherent to the drum-type bath impregnation system. In the latter
case, the voids originate from entrapped air bubbles or from more complex local curing
effects described in the literature [54].

The evaluated fiber volume ratio is in the range of 52–55% for the casing LY5052
[±20.53/90] and in the range of 50–56% for the casing LY1564 [±20.53/90]. These data are
given for the near cylindrical parts of the casing, excluding the layer of the pure resin on
the external surface shown in Figure 17.

Although the winder can lay the fiber on the surface of the mandrel straight along the
geodesic path (Figure 14), there are compromises to be made in using the low-cost design
solutions. For the given setup, the fiber volume ratio decreases by up to 50–52% in the
cylindrical casing, depending on the resin type. According to [55], the change in the fiber
volume fraction from 50% to 65% improves the strength of the composite by at least 10%.
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4. Conclusions

The presented work validates the possibility of manufacturing axisymmetric com-
posite structures, such as pressure vessels, with low-cost filament winding equipment.
The cost-effective system relies on off-the-shelf components, an obsolete computer, and an
affordable control system. The manually generated G-codes using the derived analytical
equations for the delivery eye trajectory further reduce the cost of the system. The equations
are obtained by referring only to analytic geometry and do not demand additional efforts
or specific skills from an FWM operator. The preliminary results of manufacturing trials
showed that the winder lays the fiber straight along the geodesic trajectory. Despite this
fact, there might be compromises in using low-cost design solutions. Therefore, further
works will investigate the performance of wound composite structures and the winding
accuracy of other axisymmetric and non-axisymmetric shapes. Consequently, the suggested
low-cost equipment provides small research teams with the possibility to carry out their
projects, at least in the initial development stages.
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Abbreviations

E position of the delivery eye on its trajectory;
E1 f tensile modulus of the fiber;
F1 f tensile strength of the fiber;
Lc length of the cylindrical part;
M point of tangency of the fiber to the surface of mandrel;
Rc radius of the cylindrical casing and hemispherical dome;
Re radius of the circular trajectory of the delivery eye;
rp radius of polar opening;

td(z)
thickness distribution in the dome (excluding the portion near the
opening) as a function of the z-coordinate;

tdo thickness in the dome near the opening;
zp z-coordinate of the polar opening;
α angle between axis x and radius vector to the point M in the plane xyz;
β winding angle;
βc winding angle on the cylindrical part;

βs(z)
winding angle on the hemispherical dome as a function of the
z-coordinate;

η initial viscosity, mPa·s

λ
distance between the delivery eye and point of tangency of the fiber to
the surface of mandrel;

ρ f linear mass density of the fibers;

Φ
turn-around angle (an angle of mandrel rotation to lay the tow along its
predetermined trajectory);

Φc turn-around angle for the cylindrical part;

Φs(z)
turn-around angle for the hemispherical dome as a function of the
z-coordinate;

Φ1 turn-around angle for one winding cycle;
Φ∗p calculated angular pitch of winding;
Φp accepted angular pitch of winding;
Φ f turn-around angle per one flange;
Φw turn-around angle for the width of the tow.
CNC computer numeric control
DOF degrees of freedom
FWM filament winding machine
LVDT linear variable differential transformer
NEMA National Electrical Manufacturers Association
POM polyoxymethylene
PC personal computer
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