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Abstract: Biomolecules are attractive building blocks with self-assembly ability, structural diversity,
and excellent functionality for creating artificial materials. Heparin and protamine, a clinically
relevant pair of biomolecules used in cardiac and vascular surgery, have been shown to coassemble
into particulate polyelectrolyte complexes in vitro. The resulting heparin–protamine particles exhibit
adhesive properties that enable advantageous interactions with proteins, cells, and various other
substances and have been employed as functional materials for biomedical applications. In this
review article, we summarize recent progress in research on the use of heparin–protamine particles
as drug carriers, cell adhesives, and cell labels. Studies have demonstrated that heparin–protamine
particles are potentially versatile in biomedical fields from drug delivery and regenerative medicine
to plastic surgery.

Keywords: molecular self-assembly; heparin; protamine; nanoparticle; microparticle; polyelectrolyte
complex; biomedical application

1. Introduction

Biomolecules, such as proteins, nucleic acids, lipids and carbohydrates, form sophisti-
cated assemblies via intermolecular interactions and constitute living organisms in nature.
The self-assembly ability, structural diversity, and excellent functionality of biomolecules
make them attractive as building blocks for creating artificial materials [1–10]. In fact, assem-
bled biomolecular materials have found practical applications; clinical examples include
collagen sponges used for hemostasis and wound healing [11,12] and lipid nanoparticles
constituting drug products (e.g., COVID-19 vaccines) [13–16]. In addition to these clinically
used materials composed of a single class of biomolecules, multicomponent assemblies
have been explored to access new material properties and morphologies. For instance, the
combination of proteins and nucleic acids is of interest in nanotechnology [17,18], while
composites of lipid nanoparticles and polysaccharide hydrogels have been investigated as
drug carriers [19]. These studies demonstrate that multicomponent biomolecular systems
offer opportunities to generate a broad spectrum of functional materials.

Heparin and protamine are a clinically relevant pair of biomolecules. Heparin is a
mixture of linear anionic polysaccharides with many sulfate groups and has been used
clinically as an anticoagulant for more than 70 years [20–23]. In cardiac and vascular
surgery, the use of the anticoagulant is followed by the administration of protamine,
a small arginine-rich cationic protein, to neutralize the heparin [23–26]. The fact that
pharmaceutical grade heparin and protamine are commercially available and clinically
used in cardiac and vascular surgery makes these biomolecules attractive as building blocks
for in vivo applications. The neutralization effect is a consequence of complex formation
between cationic protamine and anionic heparin via electrostatic interactions and other
intermolecular interactions. The complex formation in blood indicates that heparin and
protamine can coassemble robustly even in crowded environments. Furthermore, the fact
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that the complexes form in patients’ blood suggests that heparin–protamine coassemblies
have good biocompatibility, which encouraged us to explore this multicomponent system
for the production of biomaterials.

Studies have explored the in vitro coassembly of heparin and protamine and demon-
strated their coassembly into nanometer- or micrometer-sized particles that are useful for
biomedical applications [27–33]. For particle preparation, low-molecular-weight heparin
(several kDa), which is fractionated from heparin (10–20 kDa), is frequently used instead of
heparin due to the lower risk of bleeding with the low-molecular-weight form [25,34,35].
In fact, we have developed particles from low-molecular-weight heparin as a drug delivery
carrier with low bleeding risk for in vivo administration [28]. Heparin–protamine particles
tend to have a net negative charge, as heparin is generally used in excess of protamine in
terms of charge; a high fraction of protamine causes precipitation rather than particle forma-
tion [29]. Despite a net negative charge, polyelectrolyte complexes can exhibit attraction not
only to positively charged substances but also to negatively charged proteins and surfaces
through electrostatic interactions [36], partly due to the patchiness of charges on the protein
surface and the charge regulation for proteins by counterpart polyelectrolytes [37]. In
addition, the particles exhibit strong interactions with heparin-binding proteins; notably,
the bioactivities of such proteins tend to be enhanced upon binding to heparin. These
characteristics, coupled with the biocompatibility and commercial availability of heparin
and protamine (Figure 1), have led to the use of particulate heparin–protamine complexes
as carriers for proteins [28,29,38–45] and adhesives for cells [46–48]. Such studies demon-
strate that heparin–protamine particles show great promise as versatile nanomaterials in
biomedical engineering and medicine. In this review article, we summarize recent research
progress on heparin–protamine particles for biomedical applications (Figure 2).
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Figure 2. Schematic outline of this review article. (a) Section 2: Drug carriers. Heparin–protamine
particles are useful as carriers for proteins and small-molecule drugs. (b) Section 3: Adhesives for
cells. Heparin–protamine particles act as adhesives for cell aggregate formation. (c) Section 4: Cell
labeling. Heparin–protamine complexes facilitate cell labeling with iron oxide nanoparticles.

2. Drug Carriers

As stated above, heparin–protamine particles are useful as carriers for proteins due
to their ability to adsorb proteins via electrostatic interactions and other intermolecular
interactions. The particles can preserve loaded proteins from degradation by protease
and from heat inactivation [29]. Moreover, loaded proteins are released from the par-
ticles in a controlled manner, probably through enzymatic degradation of heparin and
protamine. A study reported that the subcutaneously injected heparin–protamine particles
disappeared visually after 14 d [28]. This section introduces recent studies that further
investigated heparin–protamine particles as drug carriers for clinical application. Notably,
heparin–protamine particles have sometimes been subjected to chemical and nonchemical
modification to develop advanced drug carriers.

2.1. Intact (Nonmodified) Particles

The potential of heparin–protamine particles as drug carriers has been investigated,
especially for fibroblast growth factor (FGF)-2, a protein that stimulates cell proliferation
and is used clinically in wound care [49–51]. FGF-2 has the advantageous ability to strongly
bind to heparin and heparin-like molecules and, moreover, is activated by its binding to
heparin [20,21,52,53]. These characteristics have prompted us to use heparin–protamine
particles as carriers of FGF-2 for various applications.

FGF-2-containing heparin–protamine nanoparticles were used for the treatment of
crush syndrome [54]. A rat model of crush syndrome was prepared by compressing the
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hind limbs of anesthetized rats using a device, followed by the local administration of
FGF-2-containing heparin–protamine nanoparticles. The treated rats exhibited a higher
score in motor function, better blood flow, a higher number of blood vessels, and faster
recovery of muscle tissue than rats administered FGF-2 alone (i.e., without heparin and
protamine). Another study investigated the potential of heparin–protamine carriers for
wound care associated with radiation therapy [55]; although radiation therapy is effective
for cancer treatment, radiation exposure tends to cause a delay in wound healing as a
side effect. Cutaneous full-thickness defect wounds in the backs of rats were made with
a punch and a sharp blade. Although X-ray irradiation delayed wound healing, FGF-2-
containing heparin–protamine nanoparticle administration prior to irradiation led to a
significantly shorter delay accompanied by vascularization, fibrous tissue formation, and
fewer apoptotic dermal fibroblasts. Studies on crush syndrome and irradiated wounds
demonstrated that FGF-2-containing heparin–protamine particles can promote the healing
of various kinds of injury.

FGF-2-containing heparin–protamine nanoparticles were shown to promote hair
growth in a clinical study (Figure 3) [56]. Twelve participants with thin hair transder-
mally applied FGF-2-containing nanoparticle dispersions to the skin of their scalps twice a
day for 6 months, resulting in an increase in the mean diameter of their hairs. Objective
improvements in thin hair were observed in two cases. Additionally, nine participants
experienced greater bounce and hair resilience. Thus, the transdermal application of FGF-2-
containing heparin–protamine nanoparticles to the scalp has potential as a new treatment
for alopecia.
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Heparin–protamine particles can carry not only FGF-2 but also other proteins. In
fact, various growth factors contained in platelet-rich plasma were loaded into heparin–
protamine particles [38]. Notably, many growth factors in platelet-rich plasma exhibit
heparin-binding ability and are activated upon binding, similar to FGF-2. The resultant
complexes containing growth factors from platelet-rich plasma were administered to split-
thickness skin graft donor site wounds in male rats [57]. The treatment effectively promoted
epithelialization and new vessel formation, suggesting that platelet-rich plasma-containing
heparin–protamine particles are useful in healing split-thickness skin wounds.

2.2. Nonchemically Modified Particles

The nonchemical modification of heparin–protamine particles has been demonstrated
to be a promising strategy for creating advanced drug carriers. Nonchemical modification
strategies are generally advantageous in terms of simplicity compared with the chemical
modification strategies described in the next subsection. Additionally, the use of US Food
and Drug Administration (FDA)-approved and clinically used drugs (i.e., intact heparin
and protamine) may contribute to shortening the time required for safety evaluation, even
for off-label use.

Heparin–protamine complexes tend to have a net negative charge because anionic
heparin is the major component, as stated above. The net negative charge was exploited for
the nonchemical modification of particles through electrostatic interaction with a cationic
peptide, GRKKRRQRRRPPQ (Figure 4) [36]. This sequence is derived from the human
immunodeficiency virus-1 (HIV-1) viral protein TAT (trans-activator of transcription) and is
known as a cell-penetrating peptide [58,59]. Thus, the cationic peptide was used to endow
heparin–protamine nanoparticles with transmembrane transport ability. The cationic
peptide was adsorbed onto heparin–protamine nanoparticles, making the net charge of
the particles less negative. The resultant peptide-decorated nanoparticles were loaded
with model proteins, namely, β-galactosidase and RNase T1. It is noted that both of the
loaded proteins have net negative charges, suggesting that those proteins interacted with
the polyelectrolyte complexes through local charges in proteins. In vitro experiments
revealed that the peptide-decorated nanoparticles transported proteins into cells due to the
cell-penetrating ability derived from the attached peptides. Furthermore, targeted protein
delivery to mouse hepatocytes was achieved in vivo with peptide-decorated nanoparticles
through a hydrodynamics-based injection method.

While proteins can be loaded easily into heparin–protamine particles as described
above, small-molecule drug-loading efficiency tends to be relatively low. To improve
the efficiency, calcium carbonate (CaCO3) was incorporated into heparin–protamine com-
plexes [60]. The organic–inorganic hybrid drug carriers were prepared by mixing the
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solution containing protamine and CO3
2− and the solution containing heparin and Ca2+

under particular conditions, resulting in particles with a vesicular morphology. The pres-
ence of CaCO3 increased the loading efficiency of a small-molecule drug, doxorubicin,
possibly due to the presence of nanopores in the inorganic–polymer hybrid assemblies and
decreased drug permeability by CaCO3. Another small-molecule drug, tariquidar, was
also loaded at a low content into the hybrid nanovesicles. In addition to increased drug
loading capacity, CaCO3, which has a relatively high water solubility at a low pH, endowed
the system with pH sensitivity; the loaded antitumor drugs were preferentially released
at lower pH. This pH sensitivity was favorable for drug delivery to tumor sites with a
relatively low pH. In vitro experiments with nonresistant cells (HeLa and MCF-7) and
drug-resistant cancer cells (MCF-7/ADR) showed that the dual drug-loaded nanovesicles
exhibited improved tumor cell inhibitory efficiency, especially for drug-resistant cells. In
a later study, a tumor-targeting ligand, biotin, was additionally introduced into hybrid
nanovesicles to enhance cell uptake through biotin receptor-mediated endocytosis [61].
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Figure 4. Protein delivery using heparin–protamine nanoparticles decorated with a cell-penetrating
peptide. (a) In vitro delivery of β-galactosidase into cells. Blue cytoplasmic deposits indicate success-
ful delivery. (b) In vivo delivery of β-galactosidase to mouse hepatocytes through hydrodynamics-
based injection. Brown cytoplasmic deposits observed throughout the liver specimens indicate
successful delivery. Adapted from Ref. [36].

2.3. Chemically Modified Particles

Chemical modification is a powerful strategy to generate various functional drug
carriers from heparin and protamine. To date, controlled release of small-molecule drugs,
oral delivery, and improved anticancer efficacy have been achieved by using chemically
modified heparin–protamine particles, as shown below.
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Heparin–protamine nanocapsules were chemically crosslinked to serve as carriers of
small-molecule drugs [62]. The nanocapsules were prepared by the layer-by-layer assembly
of heparin and protamine on a silica template, followed by loading of the anticancer drug
doxorubicin and chemical crosslinking. Chemical crosslinking prevented the premature
release of loaded doxorubicin, possibly due to decreased permeability of the nanocapsule
walls. In vitro experiments using MCF-7 breast cancer cells showed that the nanocapsules
were readily internalized and degraded inside the cells, releasing the loaded doxorubicin
and causing cancer cell death.

Bile acid-conjugated heparin–protamine nanoparticles were found to be orally avail-
able [63]; oral availability is a challenging characteristic for biomolecular nanoparticles
due to biological barriers in the body [64–66]. After chemical conjugation with bile acid,
low-molecular-weight heparin was mixed with protamine for nanoparticulate complex
formation [63]. The bile acid-conjugated nanoparticles successfully attached to the entero-
cyte surface and were then internalized by the cells through interaction between the bile
acid on the nanoparticles and the bile acid transporters of the cells. Animal experiments
using nude mice revealed that orally administered nanoparticles interacted with bile acid
transporters in the ileum and were taken up by epithelial cells.

For antiangiogenic therapy, a low-molecular-weight heparin–taurocholate conjugate—
LHT7—which contains ~7 taurocholate groups in a heparin chain, has been developed and
shown to act as an angiogenesis inhibitor [67–69]. Nevertheless, LHT7 showed toxicological
effects including liver functional disturbances and limited anticancer effects [69]. To increase
therapeutic duration while decreasing liver toxicity, PEGylated LHT7 was assembled with
protamine to form nanoparticulate complexes [70]. The LHT7-containing nanoparticles
exhibited improved antiangiogenic effects through the extended circulation and tumor
accumulation of nanoparticles and the continued slow release of PEGylated LHT7. Notably,
the nanoparticles diffused through leaky tumor blood vessels and extravasated through
the blood vessels surrounding the collagen layer. A later study performed PEGylation on
protamine, rather than heparin derivatives, to prevent undesirable structural changes to
the heparin derivatives by the PEGylation process [71].

More recently, PEGylated LHT7–protamine nanoparticles were used as carriers for
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) [72], which exhibits se-
lective cytotoxicity to cancer cells for cancer therapeutics but has low stability and a short
half-life [73–75]. It was found that the loading of TRAIL into the nanoparticles improved
both the pharmacokinetic properties and the tumor accumulation rate while maintain-
ing the tumor-selective cytotoxicity of TRAIL [72]. Histological analysis revealed both
antiangiogenic efficacy and the homogeneous induction of cancer cell apoptosis by the
PEGylated LHT7–TRAIL–protamine nanocomplexes, suggesting synergistic antitumor
effects of accumulated TRAIL and LHT7 in tumor tissue.

3. Adhesives for Cells

Heparin–protamine particles have attractive interactions with cells as well as proteins
and, consequently, have been investigated as adhesives for cells. Recent studies demon-
strated the application of heparin–protamine adhesives to cell culture, cell transplantation,
and skin grafting.

3.1. Cell Culture

Heparin–protamine nanoparticles were used as coating materials for cell culture plastic
plates to enhance the adhesion and growth of cells [76]. When the nanoparticle dispersions
were applied to cell culture plates, the nanoparticles were adsorbed onto the plastic surfaces
to form a stable coating layer. Adipose-derived stromal cells and bone marrow-derived
mesenchymal stem cells adhered well to the coated plates due to the adhesive properties of
the heparin–protamine layer. Moreover, the heparin–protamine coating layers seemed to
adsorb various heparin-binding substances from platelet-rich plasma supplemented with
FGF-2, stimulating cell proliferation. Importantly, these cells maintained their multilineage



Polymers 2022, 14, 932 8 of 15

potential for differentiation into adipocytes or osteoblasts. A later study demonstrated the
three-dimensional culture of various human cells by using human plasma–medium gels
containing heparin–protamine microparticles [77].

3.2. Cell Transplantation

Cell transplantation is a promising therapeutic strategy for tissue regeneration [78–80].
Nevertheless, there are still challenges, including poor survival and integration of trans-
planted cells in the targeted tissues. For cell transplantation, heparin–protamine micropar-
ticles were used as adhesives for the production of cell aggregates [81]. Human synovial
mesenchymal stem cells formed aggregates upon mixing with the adhesive microparti-
cles while maintaining cell viability. When injected into a cartilage defect model in the
pig femoral trochlea, cell aggregates with heparin–protamine microparticles were pre-
vented from leaking from the transplanted site. Additionally, further experiments using
an osteoarthritic rabbit model suggested that the cell aggregates regenerated cartilage
defects even in patients with advanced osteoarthritis, although the mechanisms mediating
regeneration of cartilage and cardiomyocytes have yet to be elucidated.

Adipose-derived stromal cell aggregates with heparin–protamine particles were
shown to ameliorate limb ischemia in a mouse model (Figure 5) [82]. The cell aggre-
gates were allotransplanted into unilateral hindlimb ischemic muscles induced in adult
mice by ligation of the iliac artery and hindlimb vein. Cell transplantation promoted
neovascularization and prevented ischemic limb loss. Heparin–protamine particles seemed
not only to induce cell aggregate formation but also to immobilize, retain, and gradually
release various heparin-binding growth factors from adipose-derived stromal cells, leading
to sustained vascularization.
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3.3. Skin Grafting

Skin grafting is a common technique for treating burns, chronic ulcers, and skin defects
after cutaneous surgical procedures [83–85]. Nevertheless, skin grafts tend to suffer from
stagnated revascularization, which leads to poor outcomes. It was reported that heparin–
protamine particles were useful to increase the survival rate of full-thickness skin grafts [86].
Heparin–protamine particles and various growth factors from platelet-rich plasma were
injected into full-thickness skin wounds created on the dorsal skin of rats, followed by
full-thickness skin grafting. This therapeutic approach effectively promoted the survival
rate of full-thickness skin grafts with increased blood flow and new vessel formation at the
grafting site.

4. Cell Labeling

Heparin–protamine complexes were reported to facilitate cell labeling with iron oxide
nanoparticles as described below. This cell labeling method found applications in the
magnetic resonance imaging (MRI) and magnetic targeting of transplanted cells.

4.1. MRI

Cell-based therapies have attracted considerable attention in regenerative medicine [87,88].
To understand the therapeutic effects, noninvasive imaging approaches have been devel-
oped for monitoring the migration of cell products [89,90]. In this context, heparin and
protamine were employed to label cells with ferumoxytol, a superparamagnetic iron ox-
ide nanoparticle, for in vivo MRI (Figure 6) [91]. It should be highlighted that all of the
components—namely, heparin, protamine, and ferumoxytol—are FDA-approved drugs,
although this use is off label. As a cell labeling experiment, heparin, protamine and feru-
moxytol were added to hematopoietic stem cells, neural stem cells, bone marrow stromal
cells, and T cells. As a result, ternary nanocomplexes composed of heparin, protamine,
and ferumoxytol were internalized into the endosomes of those cells. No long-term effect
or toxicity on cellular physiology or function was observed for the cells labeled with the
ternary nanocomplexes. In vivo MRI successfully visualized labeled human bone marrow
stromal cells that had been intracranially implanted in rat brains.
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After pioneering work, fundamental and preclinical studies have been conducted on
the clinical use of the heparin–protamine–ferumoxytol cell labeling system for MRI [92–95].
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A preclinical study optimized the labeling protocol and investigated the efficacy for MRI
and the safety/toxicity of this cell labeling system [92]. Neural stem cells labeled through
the optimized protocol were viable and proliferative and retained their tumor tropism
in vitro. MRI revealed the dynamic in vivo distribution of the labeled cells after intracere-
bral or intravenous injection into glioma-bearing mice. Preclinical studies of the labeled
cells intracerebrally administered to mice showed no significant clinical or behavioral
changes, no neuronal or systemic toxicities, and no abnormal accumulation of iron in the
liver or spleen. This report has led to a clinical trial of the heparin–protamine–ferumoxytol
cell labeling system for posttransplant MRI visualization and tracking.

4.2. Magnetic Targeting

Stem cell transplantation is a promising therapeutic strategy for acute or chronic
ischemic cardiomyopathy [96]. Nevertheless, its efficacy tends to suffer from the low
efficiency of cell retention and engraftment, partly due to the “wash-out” of cells by
coronary blood flow and heart contraction [97]. To overcome this issue, the magnetically
targeted delivery of cells labeled with heparin–protamine–ferumoxytol complexes was
investigated [98]. Rat cardiosphere-derived stem cells were labeled with ternary complexes
and intracoronarily infused into syngeneic rats. Magnetic targeting successfully increased
the cardiac retention of the transplanted cells without cardiac inflammation and iron
overload, leading to attenuated left ventricular remodeling and therapeutic benefit.

5. Summary and Outlook

This review summarizes recent research progress on heparin–protamine particles for
drug carriers, cell adhesives, and cell labels (Table 1). One of the most important charac-
teristics of the biomolecular polyelectrolyte complex is the adhesive property, which is
manifested via electrostatic interactions and other intermolecular interactions. This charac-
teristic allows the loading of various substances, such as proteins and nanoparticles, and
the adhesion of cells. Consequently, heparin–protamine particles are potentially versatile in
various biomedical fields from drug delivery and regenerative medicine to plastic surgery.
The fact that both components are commercially available as pharmaceuticals and are
clinically used in surgery suggests that this multicomponent biomolecular system shows
great promise for practical applications. In fact, some applications introduced in this review
are under clinical or preclinical investigation.

Table 1. Recent studies on the biomedical application of heparin–protamine particles.

Section Application Additive/Modification
for Particles Ref.

2. Drug carriers

Healing of crush syndrome with FGF-2 - [54]
Healing of irradiated wounds with FGF-2 - [55]

Healing of skin graft donor sites with platelet-rich plasma - [57]
Hair growth with FGF-2 - [56]

Targeted protein delivery to mouse hepatocytes Cell-penetrating peptide [36]
Antitumor drug delivery in vitro CaCO3 [60]

Targeted antitumor drug delivery in vitro CaCO3, conjugation
of biotin [61]

Antitumor drug delivery in vitro Chemical crosslinking [62]
Oral delivery Conjugation of bile acid [63]

Antiangiogenic therapy of tumors Conjugation of
taurocholate, PEGylation [70]

Antiangiogenic therapy of tumors Conjugation of
suramin, PEGylation [71]
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Table 1. Cont.

Section Application Additive/Modification
for Particles Ref.

Proapoptotic and antiangiogenic therapy of tumors with TRAIL Conjugation of
taurocholate, PEGylation [72]

3. Adhesives for cells

Two-dimensional cell culture - [76]
Three-dimensional cell culture - [77]

Cell transplantation for cartilage regeneration - [81]
Cell transplantation for ameliorating limb ischemia - [82]

Improving the survival of full-thickness skin grafts with
platelet-rich plasma - [86]

4. Cell labeling Cell tracking by MRI Ferumoxytol (iron
oxide nanoparticles) [91–95]

Magnetically targeted delivery of cells Ferumoxytol (iron
oxide nanoparticles) [98]

Despite recent progress, there is still plenty of room for further research into heparin–
protamine particles. Their fundamental characteristics, including their internal structure,
interaction with proteins and other substances, physicochemical and biological stability,
and pharmacokinetics, have yet to be fully revealed. Furthermore, the modification of
heparin–protamine particles is still in the early stages of research. We are especially inter-
ested in nonchemical modification with poly- and oligoelectrolytes, which offer a large
variety of functionalities and can be readily incorporated into polyelectrolyte complexes
via electrostatic adsorption. Attractive candidates include synthetic aptamers [99] and
peptide growth factors [100], which will endow heparin–protamine complexes with excel-
lent biofunctionalities. The resulting functionalized particles will find novel biomedical
applications. Further safety testing is necessary for heparin–protamine particles; although
heparin and protamine are FDA-approved drugs in clinical use, the biomedical applications
described in this review are off-label uses. Nevertheless, the fact that both components have
been FDA-approved for some purposes will contribute to shortening the time required for
safety evaluation of the particles.

It appears that heparin–protamine particles have been developed mostly in biomedical
engineering and medicine. Nevertheless, further investigations from the perspective of
molecular self-assembly may lead to innovations in assembled heparin–protamine materi-
als. It is hoped that this review will inspire polymer and materials scientists to contribute
to developing advanced biomedical materials via heparin–protamine coassembly.
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