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Abstract: In this study, fluorinated polyurethane (FPU) was prepared from dialcohol-terminated per-
fluoropolyether as a soft segment; isophorone diisocyanate (IPDI) as a curing agent; 1,2,4-butanetriol
(BT) as a crosslinker; and 1,4-butanediol (BDO) as a chain extender. Fourier transform infrared
spectroscopy (FTIR) and 1H NMR were used to characterize the structure of the FPU. The mechanical
properties of the FPUs with different BDO and BT contents were also measured. The tensile strength
and breaking elongation of the optimized FPU formula were 3.7 MPa and 412%, respectively. To
find out the action mechanism of FPU on Al, FPU/Al was prepared by adding Al directly to FPU.
The thermal decomposition of the FPU and FPU/Al was studied and compared by simultaneous
differential scanning calorimetry-thermogravimetry-mass spectrometry (DSC-TG-MS). It was found
that FPU can enhance the oxidation of Al by altering the oxide-shell properties. The combustion
performance of the FPU propellant, compared with the corresponding hydroxyl-terminated polyether
(HTPE)-based polyurethane (HPU) propellant, was recorded by a high-speed video camera. The FPU
propellants were found to produce smaller agglomerates due to the generation of AlF3 in the com-
bustion process. These findings show that FPU may be a useful binder for tuning the agglomeration
and reducing two-phase flow losses of aluminized propellants.

Keywords: fluorinated polyurethane; thermal decomposition; agglomeration; aluminized propel-
lants; combustion performance

1. Introduction

Polyurethane binder is an important component of composite solid propellants, which
function as a matrix to provide dimensional stability for filler particles [1,2]. The evolution
of composite solid propellant energy performance is usually accompanied by the innova-
tion of the binder system. As the binder evolved from the initially developed bituminous
to hydroxyl-terminated polybutadiene (HTPB) and hydroxyl-terminated polyether (HTPE),
the specific impulse of the propellants increased gradually from 176 to 270 s [3,4]. Although
these new composite solid propellants have superior energy performance, the agglomera-
tion of aluminum combustion, usually existed in these high-aluminized HTPB and HTPE
propellants, often brings a series of nonignorable problems [5–7]. The agglomeration of Al
prolongs the combustion interface between aluminum and oxygen, resulting in incomplete
thermal energy conversion and high two-phase flow losses [8,9]. It has been reported that
for every 10% of unburned Al, the specific impulse (Isp) loss is approximately 1% [10].
Moreover, the agglomeration of Al also causes adverse effects on the working process of
the motor system, such as slag accumulation, nozzle erosion, and unsteady motion inside
the combustion chamber [11,12].

To avoid problems associated with the agglomeration of Al, recent efforts have focused
on the addition of fluorine-containing polymers to Al powders [13–15]. The oxidation
reaction of Al-fluorine has a higher energy density than that of Al-oxygen [14]. More im-
portantly, fluorine-containing polymers such as polytetrafluoroethylene (PTFE), polyvinyli-
dene difluoride (PVDF) and homemade organic fluoride have proven to be effective in
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reducing agglomeration [16–18]. Wen et al. [16] prepared fluoropolymer-coated Al compos-
ite particles, which showed a shorter ignition delay time and smaller agglomerates during
propellant combustion. Guo et al. [17] found that adding organic fluorides can significantly
decrease the particle size and residual active aluminum in the condensed combustion
products of aluminized propellants. However, most of the reported fluoropolymers are
used as additives rather than binders in solid propellants because of the solid-state of
common fluoropolymers or the limitations of the preparation process [16,19]. Therefore,
finding a suitable FPU binder is expected to reduce the agglomeration of Al of aluminized
propellant and avoid the above drawback.

In this paper, FPU was successfully prepared via the curing reaction of a liquid fluorine-
containing prepolymer. The FPU was subsequently used as a binder in the aluminized
propellant for the purpose of improving agglomeration. FTIR, 1H NMR and mechanical
tests were used to analyze the structural and mechanical properties of FPU. DSC-TG-MS,
SEM, EDS and high-speed photography were used to analyze the role of FPU loading with
respect to decomposition behavior and combustion performance. In addition, a mechanism
for the suppression of agglomerate size in the combustion of FPU/AP/Al propellants
is postulated.

2. Materials and Methods
2.1. Materials

All the materials utilized in the experiments were of analytical grade. Dialcohol
terminated perfluoropolyether (Fluorolink, E10-H) was purchased from Solvay Com-
pany (Brussels, Belgium), with an average equivalent weight (NMR) of 750. Hydroxyl-
terminated polyether (HTPE) was obtained from Liming Research Institute of Chemical
Industry (Luoyang, China), with an average molecular weight of 2800 and hydroxyl value
of 0.73 mmol/g. Isophorone diisocyanate (IPDI), triphenylbismuth (TPB), 1,2,4-butanetriol
(BT) and 1,4-butanediol (BDO) were purchased from Aladdin Biochemical Technology Co.,
Ltd. (Shanghai, China) E10-H, HTPE, BT and BDO were dried under vacuum at 70 ◦C
before use to ensure the removal of moisture. Ammonium perchlorate (AP, 220 µm and
20 µm) was provided by Jiangyang Chemical Industry Co., Ltd. (Taiyuan, China). Al
powder was purchased from the Angang Group Aluminum Powder Co., Ltd. (Anshan,
China). The nominal purity is 99%, with the impurities being mainly Si and Fe. The Al
powder was screened through 300 mesh, 900 mesh and 2300 mesh screens, and particles of
20–54 µm and <5 µm were used. The chemical structures and physical-chemical properties
of materials involved in the present work can be found in Table 1.

Table 1. Properties of involved materials.

Samples Molecular Formula Molecular Weight Density (g/cm3) Roles

E10-H
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2.2. Preparation of FPU and FPU/Al/AP Propellant

Fluorinated polyurethane was prepared using E10-H as soft segments, IPDI as curing
agent, BDO as chain extender and BT as crosslinker. The whole reaction process is depicted
in Scheme 1. E-10H was first to react with IPDI to form the NCO-terminated prepolymer
E10-H-NCO due to E10-H and IPDI being immiscible (as shown in the illustration in
Scheme 1). Then, the prepolymer reacted with BDO and BT to complete the curing process.
In this experiment, the reaction was performed in a three-necked flask equipped with a
magnetic stirrer, an oil bath and a thermometer. E10-H (8 g), IPDI (2.22 g, 10 mmol) and
TPB (5 mg, 0.05 wt%) were added to a three-necked flask and vigorously stirred at 50 ◦C
for 7 h. Then, BT and BDO were added to the flask and stirred for 10 min to ensure uniform
mixing. The molar ratio of OH/NCO in (E10-H+BT+BDO)/IPDI was fixed to 1/1. Finally,
the liquid mixture was poured into a polytetrafluoroethylene mould and degassed for
15 min, followed by transfer in an oven at 60 ◦C for 5 days to complete the curing process.
The formulations of FPU are shown in Table 2.
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Scheme 1. The synthesis procedure of fluorinated polyurethane (FPU).

Table 2. Sample code designation and formulation of FPU.

Samples E10-H/g IPDI/g -OH Ratio of BDO/BT BDO/g BT/g

FPU-0 8 2.22 4/0 0.54 0
FPU-1 8 2.22 3/1 0.405 0.106
FPU-2 8 2.22 2/2 0.27 0.212
FPU-3 8 2.22 1/3 0.135 0.318
FPU-4 8 2.22 0/4 0 0.424

The propellant consisted of 14 wt% FPU binder, 70 wt% AP (80 wt% coarse 220 µm
and 20 wt% fine 20 µm) and 16 wt% Al (20–54 µm). The propellant was mixed in a 20 g
batch for 20 min using a vibratory mixer (ExLabSEM-I, Hubei Hangpeng Chemical Power
Technology Co., Ltd., Hubei, China) at 60 G gravity. Then, the thick propellant slurry
was directly cast into a quartz tube (dimensions: Φ 7 mm × 20 mm) and cured for about
5 days under 60 ◦C to obtain compact propellant samples. To study the effects of fluorine
on the combustion properties of Al, HTPE-based polyurethane (HPU) was also prepared
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to compare the HPU/Al/AP propellant. HTPE is a kind of polyether prepolymer with a
similar molecular skeleton (C-O-C) to E10-H [20]. HPU is one of the binders used in typical
industrial propulsion [21]. The synthesis process of HPU was the same as that of FPU,
replacing E10-H with HTPE only.

2.3. Characterization

FTIR spectroscopy was measured using a VERTEX70 spectrometer (Bruker, Werder
Bremen, Germany), over a wavelength range of 4000–600 cm−1 at a resolution of 4.0 cm−1.
The 1H NMR spectra of the specimens were measured on an AV-400 NMR spectrometer
(Bruker, Werder Bremen, Germany) using deuterated dimethyl sulfoxide (DMSO-d6) as a
solvent. The mechanical properties of FPU films were measured by an electronic universal
testing machine (AGS-J, Shimadzu, Kyoto, Japan) at a constant strain rate of 100 mm/min
at room temperature. The test samples were cut into dumbbell shapes of 20 mm (neck
position length) × 4 mm (width) × 1 mm (thickness). Every sample was tested at least five
times, and the average value was recorded.

Thermal decomposition was analyzed by differential scanning calorimetry (DSC) ther-
mogravimetry (TG), which was coupled with mass spectrometry (MS) analysis (STA449C
and QMS 403C, Netzsch, Selb, Germany). Heating was performed from room temperature
to 1200 ◦C at a heating rate of 10 K/min in Ar.

The FPU/Al/AP propellant was ignited using a CO2 laser under ambient conditions.
The laser beam was directed to the specimen through a ZnSe lens with a focal length of
500 mm. The ignition combustion process was recorded using a high-speed video camera
(i-SPEED 726, Essex, UK) at 1000 fps. Surface morphology of combustion products was
observed using scanning electron microscopy (SEM, S4800, Hitachi, Tokyo, Japan), and
elemental mapping measurements were obtained by energy-dispersive X-ray spectroscopy
(EDS). The crystal structure was identified by powder X-ray diffraction (D8 FOCUS, Brucker,
Werder Bremen, Germany) using nickel-filtered CuKα radiation (40 kV, 40 mA) at 2θ angles
of 4–80◦, scanning step = 0.02.

3. Results and Discussion
3.1. Curing of FPU

FPUs with various -OH molar ratios of the chain extender (BDO) and crosslinker (BT)
were prepared by a solvent-free two-step polymerization method. The chemical structures
of E10-H, E10-H-NCO and FPU-3 were assessed by FTIR spectral analysis (Figure 1a).
The peaks at 1145 cm−1 and 1211 cm−1 in the fingerprint spectrum correspond to CF2
symmetric stretching and CF2 asymmetric stretching [22]. The characteristic absorption
peak at approximately 3420 cm−1 in E10-H corresponds to the -OH groups. After reaction
with IPDI, four new peaks were observed in E10-H-NCO: 3329 cm−1 and 1546 cm−1

(stretching vibration and bending vibration of N-H in the -NHCOO- structure), 2264 cm−1

(stretching vibration of -NCO) and 1713 cm−1 (stretching vibration of C=O in the -NHCOO-
structure) [23–25]. These results confirmed the successful preparation of the E10-H-NCO
prepolymer. In the spectrum of FPU-3, the characteristic peak of the -NCO group at
2264 cm−1 disappears, which is a sign of its full conversion.
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Figure 2. (a) Stress–strain curve of FPUs, and (b) tensile properties (tensile strength, elongation at 

break and Young’s modulus) of FPUs. 

Figure 1. (a) FTIR spectra and (b) 1HNMR spectra of E10-H, E10-H-NCO and FPU-3.

The occurrence of the polyurethane reaction was also evidenced by 1H NMR analysis.
A comparison of the 1H NMR spectrum of FPU-3 with E10-H-NCO and E10-H is shown
in Figure 1b. Regarding E10-H, the -OH groups give two peaks at 4.5–4.8 ppm [26]. The
peaks at 6.9–7.1 ppm in both E10-H-NCO and FPU-3 represent the characteristic peaks of
urethane NH groups [27]. The appearance of -NHCOO- peaks and the absence of -OH
peaks indicate that the curing reaction of FPU occurred.

3.2. Mechanical Properties

The mechanical properties are important and essential, they must be studied for the
successful use of PU. Figure 2a displays the stress-strain curves of FPUs with various
OH molar ratios of BDO/BT. FPU-0 showed the highest elongation at break (735%), and
the minimum tensile strength (1.38 MPa). In contrast, FPU-3 showed the highest tensile
strength of 3.7 MPa and a moderate elongation at break of 412%. The values of tensile
strength and elongation at break obtained from the stress-strain curves of all FPUs are
summarized along with the Young’s modulus data, as shown in Figure 2b. The Young’s
modulus values were obtained from the slope of the linear portion of the stress-strain
plot, where Hook’s law is obeyed. The elongation at break of the FPUs decreased with
increasing BT content, whereas the tensile strength first increased and then decreased,
and the Young’s modulus increased. This result shows the classical phenomenon of the
trade-off of mechanical properties, which is primarily caused by the increase in BT content,
which led to the increase in the chemical cross-linking network during the urethane curing
reaction [28,29]. The interaction of crosslinking density resulted in an increase in tensile
strength and Young’s modulus of the FPUs.
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In the following work, FPU-3 was selected as the binder to be used in subsequent
studies because it had the highest tensile strength and suitable elongation, which are
necessary for binders of solid composite propellants and cast explosives.

3.3. Thermal Decomposition Behavior of FPU

The thermal decomposition behavior of the FPU was investigated by simultaneous
DSC-TG-MS at a heating rate of 10 ◦C/min under an argon atmosphere. The DSC-TG-
DTG curves of the FPU are shown in Figure 3a. The DSC curve only exhibited two weak
peaks during the decomposition of PU, and an endothermic peak at approximately 271 ◦C
succeeded by an exothermic peak at approximately 287 ◦C. Generally, all polyurethanes
undergo a two-stage decomposition process, including the scission of hard segments
and the cleavages of soft segments [30,31]. In this study, the decomposition of FPU is
divided into three stages according to the weight loss of TG and DTG. The first stage from
231 to 271 ◦C corresponds to the depolymerization of the hard segments accompanied
by an approximately 3.8% mass loss. The latter two stages correspond to the pyrolysis
of the residual products. During the second stage, the residual products decompose
rapidly and release gaseous products and other carbonaceous products. Remarkable
FPU decomposition was observed by the sharp decrease in mass in the TG curve in the
temperature range of 271–365 ◦C, accompanied by a maximum rate of mass loss at 328 ◦C
in the DTG curve. Accordingly, several striking peaks of the ionic current intensity of
decomposition gaseous products were observed at approximately 328 ◦C in the 3D pattern
(Figure 3b).
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The ion current intensity of the MS signals and their possible decomposition gaseous
products at the DTG peak temperature is shown in Figure 3c. The main MS signals were
found at m/z values of 44, 28, 18, 27, 29, 43, 47, 20, 66 and 69 in the order of descending
intensity. As depicted in Figure 3c, m/z = 44 and 28 are the two main ion current peaks in
the second stage. m/z = 28 can be attributed to CO, and m/z = 44 can be attributed to CO2
and C2H4O according to the molecular structure of FPU (Scheme 1). The large number of
gaseous carbonaceous products detected by MS results indicates the rapid decomposition
of the carbon skeleton at this temperature. Moreover, there are some fluorine fragments
in gaseous products since m/z signals of 20 (HF), 50 (CF2), 66 (CF2O) and 69 (CF3) are
detected. These fluorine fragments are strong oxidants and are favorable for the ignition
and combustion of aluminum [16,32]. Figure 3d shows the ion current intensity of fluorine
fragments vs. temperature curves. The onset and ending temperatures of the fluorine
fragment intensity curves were almost the same as the temperature range of the second
stage. Therefore, the decomposition of fluorine in FPU occurs mainly in the second stage.
The third stage from 365 to 496 ◦C corresponds to the further degradation of the residual
residue. Some HF (m/z = 20) is also released in the third stage (Figure 3d), which is
beneficial for prolonging the reaction time between HF and aluminum.

3.4. Comparison of Combustion Properties of HPU/Al/AP and FPU/Al/AP Propellant

Figure 4 shows the high-speed video flame images during the laser ignition experi-
ments of the FPU/Al/AP propellant and HPU/Al/AP propellant at atmospheric pressure.
The time interval between the two selected successive frames was 2 ms. FPU has a dramatic
effect on the combustion characteristics of the Al particles. Figure 4a–c shows the typical
agglomeration processes of Al on the burning surface of the HPU/Al/AP propellant. The
neighboring Al particles stick together and collapse into one fused drop, which is consistent
with the experimental study of aluminum agglomeration of solid propellants reported by
Wen et al. [5]. In contrast, no obvious agglomeration of the FPU/Al/AP propellant was
observed. According to the analysis above, FPU decomposition will release fluorine frag-
ments with strong oxidation. During FPU/Al/AP propellant heating, fluorine fragments
and aluminum particles’ reaction can then produce AlF3 at the FPU/Al interfaces. AlF3
begins to sublime at 1276 ◦C, well below the combustion temperature of Al, which helps to
reduce the agglomeration of molten Al particles [33].

The combustion products of the two aluminized propellants were collected in an open
environment and observed by SEM (shown in Figure 5). As we expected, the FPU/AP/Al
combustion products appeared to be in a similar size range to that of virgin Al, indicating
that agglomeration did not occur appreciably. In contrast, HPU/AP/Al exhibited the
highest agglomeration, reaching approximately 150 µm with a regular spherical shape.
This result is consistent with previous experiments showing that Al particles on the burn-
ing surface of FPU/AP/Al propellants tend to be smaller than those on HPU/AP/Al
propellants.
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The diameter of the combustion products was analyzed using Nano Measurer software.
The size-distribution data of combustion products for the HPU/AP/Al propellant and
FPU/AP/Al propellant are shown in Figure 6. The diameter of HPU/AP/Al is distributed
in the range of 15–185 µm. A major part of the combustion products is below 50 µm,
while the number of fractions of the agglomerates >60 µm is only 6.5%. It seems that
there are few agglomerated Al particles, but when the agglomerate is regarded as a sphere,
the agglomerate volume reaches about 61%. The agglomeration of Al particles leads to
low propellant combustion efficiency and high two-phase flow losses. Compared with
HPU/AP/Al, FPU/AP/Al results in a reduction in the maximum diameter size from
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181.3 µm to 76.7 µm, which represents a decrease in the agglomerate volume of more than
10 times. This result suggests that the FPU binder can significantly reduce the agglomeration
of Al particles in a solid propellant.
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Figure 6. Size distribution of combustion products for the two propellants at atmospheric pressure:
HPU/Al/AP (a); FPU/Al/AP (b).

The X-ray patterns of combustion products for the HPU/AP/Al propellant and
FPU/AP/Al propellant are shown in Figure 7. Weak peaks of γ-Al2O3 and α-Al2O3,
in addition to strong peaks of Al, are observed for both samples. The Al is the major phase
due to the negative oxygen balance of propellants, resulting in the incomplete combustion
of Al particles. Compared with HPU/AP/Al, the FPU/AP/Al propellant shows stronger
α-Al2O3 peaks. This is due to the fact that the generated AlF3 promotes conversion of
γ-Al2O3 to α-Al2O3, and the reaction mechanism is discussed later. However, the AlF3
peak was not observed in the XRD spectrum due to its consumption during the combustion
process.
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Figure 7. XRD patterns for combustion products for the two propellants.

3.5. Mechanism of Suppressing Agglomeration

To investigate the reaction mechanism between FPU and Al, the FPU/Al composite
with mass ratio of 1:1 was prepared and tested by DSC-TG-MS method. The results are
shown in Figure 8. The decomposition of FPU/Al is very similar to that of FPU in the
temperature range of 100–800 ◦C. There is also no obvious endothermal or exothermic
peak on the DSC curve, except for the melting peak of Al powder at 663 ◦C. The FPU
decomposition process is also divided into three stages based on the weight loss of TG
and DTG. According to the previous analysis of the thermal decomposition behavior of
FPU, we know that fluorine fragments were mainly released in the second stage, as well
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as in the third stage for HF release. When Al is incorporated into FPU, the alumina shell
of Al particles can react with fluorine fragments forms AlF3, which is referred to as the
preignition reaction [32,34]. The fluorination of the Al2O3 shell exposes the Al core to
allow for enhanced reaction kinetics. The following reactions outline main process in this
temperature stage:

FPU→ CxHyOzFm+HF(g) (1)

Al2O3+CxFyOz → AlF3(s)+CO2(g) + · · · (2)

Al2O3+HF→ AlF3(s) + H2O(s) (3)
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As the temperature increased, an obvious mass loss peak was observed on the TG
curve accompanied by a weight loss of 3.4% in the temperature range of 860–990 ◦C. In
addition, the m/z = 20 curve shows a weak peak in the corresponding temperature range
(Figure 8d), indicating the emission of HF in this temperature range. These results were
similar to those attained by Riello et al. [35] in an AlF3 reaction mechanism study. The
hydroxyl groups present in the transition alumina combine with AlF3 in the temperature
range of 860–990 ◦C, by forming gaseous HF and AlOF, as shown in reaction (4). As
such, HF could react with the transition alumina by generating the same intermediate
compound AlOF as shown in reaction (5). Finally, the gaseous AlOF species nucleate and
grow α-Al2O3 at specific nucleation sites, releasing fluorine, as shown in reaction (6).

AlF3(s) + 3H2O(v) → AlOF(g) + 2HF(g) (4)

2HF(g) + Al2O3(s) → 2AlOF(g) + H2O(v) (5)

2AlOF(g) + H2O(v) → α−Al2O3(s) + 2HF(g) (6)
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Figure 9 shows the SEM and EDS images of the decomposition residue at 800 ◦C
and 1200 ◦C in under an argon atmosphere. The decomposed residue is spherical for
approximately 5 µm, maintaining the structure of raw Al. Element mapping results reveal
that the decomposition product at 800 ◦C has more F elements than that at 1200 ◦C, which
is consistent with the previous DSC-TG-MS analysis.
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To carry out a more in-depth analysis of Al oxidation by a gas phase product from the
decomposition of FPU, HPU/Al was prepared and compared with FPU/Al. The decompo-
sition of FPU/Al and HPU/Al was tested by TG-DSC with a heating rate of 10 ◦C/min
under an air atmosphere. As shown in Figure 10, the overall reaction processes of FPU/Al
and HPU/Al were completed in two stages in the temperature range of 100 ◦C–1200 ◦C.
The first stage in the temperature range of 100–550 ◦C corresponds to the decomposition
of PU. The DSC curve of FPU/Al in an air atmosphere is similar to that in an argon atmo-
sphere without any obvious change in enthalpy. Additionally, the mass loss of FPU/Al in
this temperature range is approximately 51 wt%, which is consistent with the composition
of the raw material. The first stage in the temperature range of 550–1200 ◦C corresponds
to the weight gain of Al during the oxidation process. Unlike the decomposition under
inert conditions, FPU/Al shows a steep exothermic peak in the DSC curve in the tempera-
ture range of 780–1035 ◦C due to the oxidation of Al. In contrast, the exothermic peak of
HPU/Al in this temperature range is milder. This result indicates that the Al in FPU/Al is
more active than that in HPU/Al since the strong oxidizing HF released by FPU during the
first stage can react with the alumina shell of Al. In addition, the weight gain of FPU/Al is
22.1% and that of HPU/Al is 14.6%, which can also be inferred to indicate that the reaction
of FPU/Al is more complete.

Figure 11 illustrates a schematic of the corresponding mechanism of a typical sup-
pressing agglomerate. From the DSC-TG-MS analysis, it was possible to detect the emission
of HF, CF2, CF3, CF2O, etc., vapor during the FPU decomposition. These high-active gases
react with Al directly to form AlF3. The AlF3 is in gaseous state during combustion due to
its low boiling point, which is conducive to preventing the accumulation of Al particles.
On the other hand, the generated AlF3 is an excellent catalyst in the gas-solid reaction
of transition alumina to the alpha alumina phase [35]. In this process, HF reacts with Al
to form AlF3, and AlF3 reacts with H2O to form AlOF, which is finally converted into
α-Al2O3 and releases HF. HF will participate in the next round of reaction. These gaseous
products are constantly transformed on the burning surface of Al and prevent the sticking
of Al particles.
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4. Conclusions

In this experimental study, FPU was prepared successfully for use as a potential binder
to reduce the agglomeration of Al particles in aluminized propellants. Of particular interest
are the mechanical, thermal decomposition and oxidation characteristics of FPU and its
effect on aluminized propellant agglomeration. Mechanical tests showed that the tensile
strength of the optimal FPU is 3.7 MPa and the breaking elongation is 412%. Thermal
decomposition analysis results showed that strong oxidizing fluorine fragments such as
HF, CF2, CF3 and CF2O are released during FPU decomposition. These oxidizing gases
react with Al to form AlF3. More importantly, the application of FPU binder to aluminized
propellant was found to efficiently reduce the agglomeration of Al particles. Since the AlF3
is easy to vaporize and the AlF3 acts by a gas-phase mechanism of transition alumina to
the alpha alumina phase. This work provides a new viewpoint regarding the fabrication of
FPU binders and their potential application in aluminized propellants.
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FPU fluorinated polyurethane
IPDI isophorone diisocyanate
BT 1,2,4-butanetriol
BDO 1,4-butanediol
HTPE hydroxyl-terminated polyether
HPU HTPE-based polyurethane
E10-H dialcohol terminated perfluoropolyether
E10-H-NCO NCO-terminated E10-H
TPB triphenylbismuth
AP ammonium perchlorate
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