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Abstract: In this study, a homologous series of novel liquid crystalline compounds bearing the bis-
azomethine central linkage (–CH=N-N=CH–), namely ((1E,1′E)-hydrazine-1,2-diylidenebis(methanylylidene))
bis(4,1-phenylene) dialkanoate (In), was synthesized, and the mesophase and thermal properties were
investigated theoretically and experimentally. The molecular structures of the prepared compounds
were determined using elemental analysis, NMR, and FT-IR spectroscopy. The mesophase transitions
were detected by differential scanning calorimetry (DSC), and the mesophases were identified using
polarized optical microscopy (POM). The results indicated that the derivative with the shortest length
(I5) was purely nematogenic, while the other homologues (I9 and I15) possessed SmC mesophases.
The optimal geometrical structures of the investigated group were derived theoretically. The esti-
mated results demonstrated that all homologues were mesomorphic, and their type depended on the
length of the terminal chains. Computations based on density functional theory (DFT) were used to
explain the experimental data. The calculated dipole moment, polarizability, thermal energy, and
molecular electrostatic potential all showed that it was possible to predict the mesophase type and
stability, which varied according to the size of the molecule.

Keywords: bis-azomethine liquid crystals; mesomorphic properties; geometrical structure; DFT

1. Introduction

Schiff bases are compounds that contain an azomethine group. They are produced
from condensation of the carbonyl group of aldehyde or ketone with primary amines.
Compared to the original aldehydes or ketones, they possess extra donor sites, thus enabling
them to be elastic and more flexible [1–4]. In addition, they display good physical and
chemical properties, including high surface area, purity, durability, and permeability.
Due to their importance to bioinorganic systems and their use in catalysis, anticorrosion,
and various industrial areas, Schiff bases have also gained significant attention among
chemists [5–10].

The terminal polar group has a significant effect on the mesomeric properties of
derivatives containing Schiff bases. Azo and azomethine are attractive connecting groups
for designing new mesomorphic structures because of their photoactivity under UV
irradiation [11–20]. The length of the liquid crystal molecular conjugation can be increased
to enhance birefringence. However, the photostability and solubility of LCs with high
birefringence should be considered [15]. The resulting mesomorphic properties of such
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molecules clearly reflect this aspect. Although there are changes in the polarity and orien-
tation of dipole moments, there is little change in the molecular structure. As a result, a
small change in molecular geometry enhances the optical properties, resulting in different
mesophase behavior. The molecules tend to align in a parallel pattern as the length of the
terminal substituent increases [19]. The twist–bend nematic and heliconical phases are
similarly influenced by the length of the terminal chains [20,21].

Interestingly, computational assumption for newly designed materials [22–27] has at-
tracted some attention. Stimulated information regarding the orbital energies of molecules
and molecular geometries of liquid crystalline molecules is necessary to give a wide range
of optical properties. Because of its higher performance and consistent computational
output, density functional theory (DFT) has lately emerged as a promising technique.
Many researchers have recently become interested in material design based on computa-
tional prediction [22–26,28–32]. The mutual interaction of several optical factors demands
stimulated information regarding molecular orbital energies and LC molecular geome-
tries. Furthermore, DFT is a strong tool that quickly provides insight into the properties
of molecules.

The goal of this research was to synthesize new bis-Schiff base liquid crystals with
two symmetrical terminal substituents to yield the homologous series ((1E,1′E)-hydrazine-
1,2-diylidenebis(methanylylidene))bis(4,1-phenylene) dialkanoate (In). All homologues
were designed to be symmetrical around the central linkage (–CH=N-N=CH–). The
phenyl moieties were coupled to the terminal by alkanoate chains containing 5, 9, and
15 carbons. Density functional theory (DFT) was used to analyze the experimental me-
somorphic properties in terms of predicted parameters as well as the impact of the
linking bis-azomethine (–CH=N-N=CH–) groups and terminal alkanoate chain length.
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Details and analyses of the synthesis of (A) [33] and In are given in Supplementary Materials.
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3. Results and Discussion
3.1. Chemistry

The bis-Schiff base In series was prepared in a two-step process. First, direct condensation
was carried out between 4-hydroxybenzaldehyde and hydrazine hydrate in molar ratio (2:1)
to afford diphenol (A), namely, 4,4′-((1E,1′E)-hydrazine-1,2-diylidenebis(methanylylidene))
diphenol. Then, subsequent esterification of the diphenol using acid chloride (hexanoyl
chloride, decanoyl chloride, and palmitoyl chloride) was conducted in the presence
of triethylamine/DMAP as base catalyst and dichloromethane as solvent to yield the
desired Schiff bases. Infrared spectrum of the In compounds exhibited bands in the
1750–1770 cm−1 region, which can be attributed to the absorption characteristic of carbonyl
ester stretching. In showed the characteristic infrared absorption bands for C=N stretching
at 1600–1650 cm−1. Moreover, as a prototype, the proton NMR (DMSO-d6) of I9 exhibited
a singlet at δ 8.65 ppm due to the existence of azomethine protons. The presence of the
aliphatic protons was confirmed by a group of signals in the 2.59–0.87 ppm range. The
13C-APT–NMR spectrum of I9 exhibited three quaternary carbons at δ 172, 153.03, and
131.59 ppm. The most deshielded peak (172 ppm) was due to the carbonyl group. The
other two peaks (153.03 and 131.59 ppm) were assigned to the ipso quaternary carbons
of the benzene rings of the homologue I9. This confirmed the same environment for the
carbons and protons for the symmetrical structure of I9.

3.2. Liquid Crystalline Investigations

The synthesized In series was investigated for its mesomorphic properties. Table 1
summarizes the results of the DSC experiments for transition temperatures and enthalpies.
The stability of the mesophases of the synthesized homologues was investigated using
DSC data from the second heating/cooling cycles. The second heating scan was utilized
to record all the thermal characteristics. Figure 1 shows the DSC thermogram of the
synthesized homologue I5 as an example. On heating, the homologues revealed two
endothermic peaks corresponding to the crystal-to-mesophase and mesophase-to-isotropic
transitions, whereas two reversed exothermic peaks were observed on cooling, as shown
in Figure 1. The DSC data was confirmed by the POM textures. POM image for the I5
derivative is represented in Figure 2. All homologues were shown to possess enantiotropic
monomorphic properties. The effect of the terminal alkyl chains on the mesomorphic
behavior of the formed homologues was evaluated using a graphical representation of DSC
temperature of transitions (Figure 3). Table 1 and Figure 3 reveal that the derivate with
the shortest alkyl chain (I5) exhibited pure nematic (N) phase, while the other two longer
homologues (I9 and I15) were smectogenic and possessed the SmC mesophases. Generally,
the mesomorphic behavior of any designed liquid crystalline molecular architecture is
determined by the type of linking spacers, the length of the terminal chains, and the size of
the attached substituents [34,35]. The melting transitions followed a random pattern, as
seen in Table 1 and Figure 3. The homologue I15 showed the lowest melting point (80.3 ◦C),
while the homologue I9 possessed the highest melting transition temperature (104.5 ◦C).

Table 1. Mesomorphic temperatures (◦C), enthalpy (∆H, kJ/mole), and entropy (∆S/R) of transition
for In compounds.

Comp. TCr–SmC ∆HCr–SmC TCr–N ∆HCr–N TSmC–I ∆HSmC–I TN–I ∆HN–I ∆S/R

I5 - - 95.1 47.3 - - 122.6 1.9 0.58
I9 104.5 42.1 - - 115.3 2.3 - - 0.71

I15 80.3 43.7 - - 118.5 2.1 - - 0.64

Transitions of crystal to smectic C = Cr–SmC; crystal to Nematic = Cr–N; smectic C to isotropic liquid = SmC–I;
nematic to isotropic liquid = N–I.
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The polarity and/or polarizability of the mesogenic core of the molecule plays the
most essential role in determining mesophase behavior. The homologue I5 exhibited the
highest mesophase stability (nematic stability = 122.6 ◦C), while the longer homologues I9
and I15 had smectic C stabilities of nearly 115.3 and 118.5 ◦C, respectively. As indicated by
the results, the temperature range of the formed mesophases depended on the molecular
anisotropy due to changes in the mesogenic core and geometry of terminal chains of the
molecule. The geometrical characteristics, such as dipole moment, polarizability, and
molecular shape of the produced In homologues, had a significant impact on molecular
association and led to enhanced formation of the N mesophase for the derivative with the
shortest chain (I5) and the SmC phases for the other longer homologues (I9 and I15).

Table 1 shows the normalized entropy changes (∆S/R) of the synthesized In com-
pounds. The entropy value of the N transition was small due to the short length of the alkyl
chain of compound I5, while the entropy of SmC transitions for both I9 and I15 derivatives
had higher magnitude than I5. These results are in accordance with previous findings [34].
In addition, the terminal alkyl chains play an important role in multiconformational changes
in the molecule [35].

3.3. Computational Calculations
3.3.1. Thermal and Geometrical Parameters

In the gas phase, the optimized molecular structures of the synthesized homologues (In)
were investigated by applying the DFT/B3LYP methods using the 6–31G (d,p) basis [36,37]
provided by GAUSSIAN 09W (Figure 4). The absence of imaginary frequency for all com-
pounds demonstrated the stability of the optimized structures. The results of calculations
revealed that all homologues were slightly linear, as shown in Figure 4. The magnitude of
any system’s thermodynamic dynamic parameters, as well as its energy, is proportional
to its length. This conclusion is supported by Table 2, which shows that the values of all
estimated parameters increased as the length of the terminal alkyl chain increased [38–44].
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Table 2. Estimated thermal parameters for the investigated In series.

Compound ZPE
(Kcal/Mol)

Thermal
Energy (Kcal/Mol)

Enthalpy
(Kcal/Mol)

Gibbs-Free Energy
(Kcal/Mol)

Entropy
(Cal mol.k)

I5 336.356 357.302 357.894 289.931 227.950
I9 479.617 507.397 507.990 422.723 285.985
I15 694.540 732.568 733.161 621.898 373.176

3.3.2. Frontier Molecular Orbitals (FMOs)

The molecular orbital analysis showed that the frontier molecular orbitals (FMO’s)
for the In series predominantly consisted of p atomic orbitals, which corresponded to the
π-bond of the two aromatic rings along with the π-bond of the linking azomethine groups,
as shown in Figure 5. This would suggest that electronic transitions of these compounds
was mainly of the π–π* type. Moreover, it was noticed that delocalization of the electron
density was present in HOMO orbitals, whereas the LUMO orbitals showed extended
delocalization on the carbonyl oxygen of the ester groups. Table 3 summarizes the resulting
energies and energy gaps for the examined In series. It was obvious that changing the
length of the alkanoyl group (hexanoyl to hexadecanoyl group) led to increase in the energy
of both HOMO and LUMO orbitals. Subsequently, the energy gaps (∆E) between FMO’s
levels remained almost constant. Thus, the chemical reactivity of the In series was quite
similar for all the homologues.

3.3.3. Molecular Electrostatic Potential (MEP)

The molecular electrostatic potential (MEP) is one of the most useful methods for
determining whether the examined molecules have inter- or intramolecular interactions.
The MEP of the current In series is shown in Figure 6. MEP measures how attractive (red)
or repulsive (blue) a proton placed at any position around the molecule is to any portion
of the molecule. The MEP results revealed that the attracting portion (red) accumulated
above the oxygen of acyl groups, indicating that these locations had a high electron density
but low electrostatic potential. On the other hand, the blue region around the methy-
lene groups and the adjacent phenyl hydrogen showed low electron density but strong
electrostatic potential.
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Table 3. Thermal energy parameters for the investigated In set.

Compound Total Energy (Ha) EHOMO (ev) EluMO
(ev) ∆E (ev) Dipole

Moment (D) IE (ev) EA (ev) Polarizability
Bohr3

I5 −1419.805 −6.158 −2.239 3.919 2.9783 6.158 2.239 389.71
I9 −1734.063 −6.155 −2.237 3.918 2.9384 6.155 2.237 486.30

I15 −2205.449 −6.154 −2.236 3.918 2.9489 6.154 2.236 628.59
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Figure 6. MEP estimated for the In series.

4. Conclusions

A novel bis-Schiff base homologues series, namely ((1E,1′E)-hydrazine-1,2-diylidenebis
(methanylylidene))bis(4,1-phenylene) dialkanoate (In), was synthesized and examined via
experimental and computational approaches. The thermal and mesomorphic proper-
ties were investigated using DSC and POM. All prepared compounds were found to be
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mesomorphic and possessing enantiotropic mesophases. The shortest homologue (I5)
exhibited pure N phase, while the other two homologues (I9 and I15) possessed purely
SmC mesophases. Computational DFT study indicated that their thermal properties were
length dependent.
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DSC cycles recorded from the second heating and cooling scan with heating rate 10 ◦C/min of
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