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Abstract: In this study, the compressive performance of sisal fiber-reinforced recycled aggregate
concrete (SFRAC) composite, confined with jute fiber-reinforced polymer (JFRP) tube (the structure
was termed as JFRP–SFRAC) was assessed. A total of 36 cylindrical specimens were tested under
uniaxial compression. Three major experimental variables were investigated: (1) the compressive
strength of concrete core (i.e., 25.0 MPa and 32.5 MPa), (2) jute fiber orientation angle with respect to
the hoop direction of a JFRP tube (i.e., β = 0◦, 30◦ and 45◦), and (3) the reinforcement of sisal fiber
(i.e., 0% and 0.3% by mass of cement). This study revealed that the prefabricated JFRP tube resulted
in a significant enhancement of the compressive strength and deformation ability of RAC and SFRAC.
The enhancements in strength and ultimate strain of the composite columns were more pronounced
for concrete with a higher strength. The strength and ultimate strain of JFRP-confined specimens
decreased with an increase in fiber orientation angle β from 0◦ to 45◦. The sisal fiber reinforcement
effectively improved the integrity of the RAC and reduced the propagation of cracks in RAC. The
stress–strain behaviors of JFRP–RAC and JFRP–SFRAC were predicted by the Lam and Teng’s model
with the revised ultimate condition equations.

Keywords: recycled aggregate concrete (RAC); jute FRP (JFRP); sisal fiber reinforcement; confined
concrete; compressive behavior; theoretical models

1. Introduction

During the last decades, the circular economy and sustainable development have
aroused growing global consciousness of green urban construction, waste management
and the conservation of natural resources. The global construction industry generates an
average of 40% of the total waste each year and occupies large volumes of landfills. It is
predicted that up to 3 billion tons of construction and demolition wastes (CDWs) were
produced in China before 2020. Some countries such as Japan and Germany recycled up
to 80% of CDWs, while many other countries have recycled 20–40% of CDWs according
to the statistical results up to the year 2018, e.g., 40% for China, 30% for Canada, 28% for
Switzerland and 32% for Thailand [1–3].

By far, recycled aggregate concrete (RAC) technology has been considered the most
effective measure in the Waste-to-Energy industry. The aggregates within RAC are pro-
duced from CDWs after screening and crushing processes. A certain number of studies
have declared that natural defects exist in recycled aggregates as particle shape defects
and micro-cracks, which lead to the high-water absorption and crushing index of recycled
aggregates [1,4,5]. Some consistent research conclusions were reached that the recycled
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concrete exhibited lower strength than ordinary concrete [4], and recycled aggregates
caused more significant shrinkage and water absorption in the resulting concrete [1,6]. It
is worthy to note that the adopted recycled aggregates were resulted from broad sources,
e.g., demolished concrete [7–9], bricks [10–14], and ceramic tile [15], and the uncertainty
surrounding the sources of recycle aggregates could cause variability in the resulting
concrete. Some existing scholarly works concluded that: (1) the compressive strength
of recycled concrete was 37% or more lower than that of ordinary concrete, and the ad-
hered mortar had an adverse influence on the concrete’s strength [16], (2) the replacement
ratios of recycled coarse aggregates within 25% or recycled fine aggregates within 30%
rarely exhibited inferior effects on the strength and durability of the resulting concrete [17],
(3) the recycled concrete failed in shear mode with a larger peak strain, but the ductility of
recycled concrete was decreased compared with ordinary concrete [17].

Considering the above demerits of RAC, appropriate measures have been undertaken
to improve the performance of recycled concrete, such as the application of fiber-reinforced
polymers (FRP). The FRP jackets served as an external confinement device and created
tri-axial compressive condition to enhance the strength and ductility of confined concrete.
Research on FRPs used in recycled concrete confinement have reported considerable im-
provements in the performance of recycled concrete [18,19]. Teng et al. revealed that the
strength and ultimate strain of recycled concrete with sufficient FRP confinement were com-
parable to confined ordinary concrete [20]. Studies also found that the outer confinement
of FRP could weaken the effect of replacement percentages or uncertain sources of recycled
aggregates on the quality of the resulting concrete [21–24]. However, synthetic FRP also has
the drawbacks of brittleness, non-degradation, and high cost [25,26]. Alternative natural
fibers have emerged with growing attention due to their low cost and environmentally
friendly features, e.g., flax fibers and coir fibers [26]. Furthermore, some natural fibers
exhibited comparable strength and modulus to those of glass fibers [25]. For instance,
flax fiber has been used to replace glass fibers as energy absorbers for automotive engi-
neering [25], strengthening the concrete material [27]. Through the experimental studies
of flax FRP-confined, coir fiber-reinforced concrete, Yan et al. [27] found that the fiber
orientation of an FFRP tube determined the failure modes of the composite columns, and
the naturally interfacial bonded specimens presented the largest confinement effectiveness.
Ardanuy et al. declared that the sisal strands are the most common fiber used in cement
paste, since the fiber could improve the durability of cellulose cement composites by poz-
zolanic addition or hornification treatments [28]. Silva et al. reduced the potential aging
of sisal fiber-reinforced cement composites by lowering the content of Portland cement
and Calcium Hydroxide, and confirmed that the sisal fibers were effective in bridging
and arresting the cracks of the composite system [29]. Tara et al. demonstrated that the
confinement performance of sisal FRP and JFRP was of comparable magnitude to glass FRP
confinement characteristics [30], and the durability on normal water and thermal aging
of JFRP behaved similarly to artificial FRP [31]. Our former experimental study on the
performance of JFRP tube-confined, sisal fiber-reinforced normal concrete found that the
JFRP tube presented a significant confinement effect on the core concrete, and sisal fiber
inclusion improved the efficiency of confinement [32].

Research on FRP tube-confined natural aggregate concrete has shown that the fiber ori-
entation has considerable influence on the performance of the confinement
system [33–35]. Sadeghian et al. [33] stated that the strength, ductility and ruptured plane
of carbon FRP-confined concrete strongly depended on the fiber orientation of the FRP tube.
Arunothayan et al. [34] adopted 3D concrete printing technology for the ultra-high-strength
concrete and investigated the influence of fiber orientation. The study found that a high
fiber volume ratio would significantly enhance the fiber alignment parallel to the printing
direction. Au et al. [35] concluded that FRP-confined concrete with fiber oriented at the
hoop direction presented brittle failures, whilst FRP-confined concrete with fiber oriented
at directions except for the hoop direction presented ductile failure attributed to the fiber
reorientation mechanism.
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In this study, the compressive performance of JFRP-confined sisal fiber-reinforced
RAC containing recycled clay brick aggregates (termed as JFRP–SFRAC) was investigated.
The combined use of natural fibers from agricultural waste and recycled aggregates from
CDWs would be beneficial for the sustainable development of constructional industry and
lower carbon emissions. The influence of jute fiber orientation (i.e., fiber oriented at angle
β = 0◦, 30◦ and 45◦ with respect to the hoop direction) was investigated. Besides this, the
effects of the compressive strength of internal RAC and the sisal fiber-reinforcement on the
axial compressive behaviour of JFRP–SFRAC were studied.

2. Experimental Works
2.1. Material Properties
2.1.1. Sisal Fiber, RAs and RAC

The contents and proportions in RA mixtures are changeable due to the diversity of
sources and constitutes of construction and demolition wastes. The RAs used in this study
contained about 70% mass content of RAs from clay brick waste and 30% mass content of
RAs from concrete waste, as shown in Figure 1a. The constituents and contents of RAs were
tested and reported by the manufacture. The physical properties of all types of aggregates
were listed in Table 1. The P.O. 42.5R cement was used in the RAC. The physical properties
of cement are given in Table 2. The compressive and flexural strength of cement were tested
in the study and are given in Table 3.
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Table 1. Physical properties of aggregates used in the tests.

Type of
Aggregates

Diameter
(mm)

Density
(kg/m3)

Water
Absorption (%)

Moisture
Content (%)

Crushing
Index (%)

Fine aggregate 0.35–0.50 1480 5.62 3.07 -
Natural coarse

aggregates 5–10 1594 4.37 0.29 12.70

Recycled coarse
aggregates ≤10 1216 12.00 6.81 50.90

Table 2. Physical properties of P.O. 42.5R cement used in the study.

Index SO3 MgO Loss on
Ignition

Alkali
Content Fineness

Initial
Setting
Time

Final
Setting
Time

Stability

Value 3.06% 1.67% 2.55% 0.57%
80 mm
residue:
6.37%

1.82 h 6.43 h
Rex

expansion
3.7 mm
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Table 3. The tested mechanical properties of P.O. 42.5R cement used in the study.

Items
Compressive Strength (MPa) Flexural Strength (MPa)

3 d 28 d 3 d 28 d

Value 23.4 46.7 4.3 6.9

Based on the earlier studies on JFRP-confined SFPC [32], the SFRAC specimens in-
corporated sisal fibers weighted at 0.3% of cement mass. The length of the sisal fiber was
around 28–35 mm as shown in Figure 1b. The tensile strength, elastic modulus and ultimate
strain of the sisal fiber were 363 MPa, 9.0 GPa and 2.2% respectively according to the
manufacturer.

Three groups of unconfined RAC and SFRAC cubic specimens with a size of
150× 150× 150 mm3 were pre-tested under uniaxial compression according to GB/T50081-
2002 [36]. Each group (i.e., RAC-a, RAC-b, and SFRAC-b) included six identical cubic
specimens and the mix proportions of concrete are presented in Table 3. The average
tested compressive strength of category RAC-a, RAC-b and SFRAC-b cubic specimens
were 25.0 MPa, 32.5 MPa and 33.5 MPa, respectively. Hence, the mix proportions of RAC
in Table 4 were used in the following axial compressive experiments of JFRP–RAC and
JFRP–SFRAC.

Table 4. Mix proportions of RAC and SFRAC.

No. ω/c Water
(kg/m3)

Cement
(kg/m3)

Fine
Natural

Aggregate
(kg/m3)

Coarse
Natural

Aggregate
(kg/m3)

Recycled
Coarse

Aggregate
(kg/m3)

Replacement
Percentage

of RAs

Sisal Fiber
Content

(%)

RAC-a 0.55 260.4 473.5 633.7 403.3 748.9 65% -
RAC-b 0.40 260.4 651.1 570.7 363.2 674.5 65% -

SFRAC-b 0.40 260.4 651.1 570.7 363.2 674.5 65% 0.3

2.1.2. JFRP Composites

Bidirectional woven jute fabric with a density of 360 g/m2 was used for the fabrication
of the JFRP tube as shown in Figure 1c. The JN-C3P epoxy, which consisted of A reagent
and B reagent, was used as the matrix of JFRP in this study. The mix proportion of the
epoxy was A reagent:B reagent = 5:2. The JFRP laminates were manufactured by dipping
the jute fabric into the epoxy and curing at room temperature for 7 days. Tensile tests were
conducted on the JFRP laminates to obtain the tensile properties of the JFRP according
to ASTM D3039 [37]. The cutting approaches to the jute fabric with 30◦ and 45◦ fiber
orientation are shown in Figure 2, respectively. The tensile stress–strain behavior of JFRP
laminates with different jute fiber orientations is given in Figure 3 and the JFRP composite
presented the linear elastic characters. The average tested results and the corresponding
standard deviations (SD) of the JFRP laminate tensile tests are listed in Table 5. The tensile
strength and strain of JFRP laminates reduced with an increase in the orientation angle β

from 0◦ to 45◦. The mechanical properties of different kinds of jute fiber and sisal fiber on
the warp direction (i.e., 0◦) and weft direction (i.e., 90◦) were studied by Codispoti et al. [38],
and similar linear-elastic stress–strain behaviors were obtained in their studies. Besides,
both the warp direction (i.e., 0◦) and weft direction (i.e., 90◦) of jute fiber might exhibit
similar mechanical properties due to the bidirectional woven characters of jute fabric, and
the tensile strength of JFRP laminates would reach their highest when the orientation angle
β was 0◦ or 90◦ and would reduce when β was in between.
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Table 5. Mechanical properties of JFRP laminates.

Type of
FRP

Orientation
of Fibers β

Thickness of
FRP Laminate

tfrp (mm)

Elastic
Modulus

(GPa)

Tensile
Strength

f frp (MPa)
SD Tensile

Strain (%) SD
Price of Fiber
Fabric per m2

(US)

JFRP 1 0◦ 3.9 2.67 93.16 1.49 3.49 0.17
$0.4JFRP 1 30◦ 3.9 2.43 80.92 0.88 3.33 0.06

JFRP 1 45◦ 3.9 2.21 71.61 1.12 3.24 0.03
1 Five replications were tested for each type of FRP.

2.2. Specimen Preparation

The hand lay-up approach was used for JFRP tube prefabrication and the prefabricated
JFRP tubes are shown in Figure 4. Figure 4a shows the A reagent and B reagent of the
epoxy. The overlapping length of the JFRP tubes was a quarter of the circumference of the
cylinders. The concrete was cast into the JFRP tubes after the tubes were cured for 7 days.
All the specimens were maintained in the standard curing room for 28 days. For SFRAC,
the sisal fibers were firstly mixed with dry aggregates, considering the agglomeration trend
of short sisal fibers. The agglomeration of sisal fibers would lead to nonuniform dispersion
and stress concentration in the resulting concrete.
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2.3. Test Matrix

A total of 36 composite columns (i.e., 18 JFRP–RAC cylinders, 9 JFRP–SFRAC cylinders,
3 unconfined SFRAC and 6 unconfined RAC cylinders) were constructed for the uniaxial
compression tests. The size of all specimens was diameter× height = 150 mm× 300 mm. The
tested variables included: (1) the inclusion of sisal fiber in RAC (i.e., 0% and 0.3% by mass
of cement according to ref. [31]); (2) the compressive strength of the plain RAC (i.e., 25.0 and
32.5 MPa); and (3) the jute fiber orientation of the JFRP tube (i.e., the fiber oriented at β = 0◦,
30◦ and 45◦). The 36 specimens in total were divided into 12 groups (i.e., 3 identical specimens
were tested for each group) and a code was given for each group, as shown in Table 6.
In Table 6, “RAC” denotes the recycled aggregate concrete, “SFRAC” denotes the sisal
fiber-reinforced RAC, “JFRP–RAC” denotes the JFRP tube-confined RAC, “JFRP–SFRAC”
denotes the JFRP tube-confined SFRAC, “a” and “b” indicate the compressive strength of
the inner RAC as 25.0 MPa and 32.5 MPa respectively, and “0”, “30” and “45” denote the
jute fiber orientations of 0◦, 30◦ and 45◦ in the JFRP tube, respectively. For example, the
specimen JFRP–SFRAC-b30 represents the specimen of JFRP tube-confined SFRAC, with a
jute fiber orientation of 30◦, sisal fiber mass content of 0.3% and compressive strength of
the internal untreated RAC of 32.5 MPa.

Table 6. Test matrix of cylindrical specimens in this study.

Sample Number of
JFRP Layers

Orientation of
Jute Fibers β (◦)

Untreated RAC
Strength (MPa)

Sisal Fiber
Mass Content

RAC-a - - 25.0 -
JFRP–RAC-a0 6 0 25.0 -

JFRP–RAC-a30 6 30 25.0 -
JFRP–RAC-a45 6 45 25.0 -

RAC-b - - 32.5 -
JFRP–RAC-b0 6 0 32.5 -

JFRP–RAC-b30 6 30 32.5 -
JFRP–RAC-b45 6 45 32.5 -

SFRAC-b - - 33.5 0.3%
JFRP–SFRAC-b0 6 0 33.5 0.3%
JFRP–SFRAC-b30 6 30 33.5 0.3%
JFRP–SFRAC-b45 6 45 33.5 0.3%

2.4. Test Setup

Monotonic axial compression on all the specimens was realized by using an MTS
testing machine with capacity of 2000 kN as shown in Figure 5a. Rigid steel plates were
set on both ends of the cylinders to ensure uniformly distributed loading conditions. The
loading procedure was displacement-controlled at a rate of 0.2 mm/min. The longitudinal
and hoop strains of the JFRP tube were tested with four evenly distributed straingauges
respectively as shown in Figure 5. Considering the influence of the overlap zone, a pair of
longitudinal and hoop strain gauges was set in the overlap zone for the potential unconformity
of strain in the overlap zone. Two extra longitudinal strain gauges were mounted on both ends
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of cylinders to measure the longitudinal deformation feature of the entire cylinders (i.e., SG9
and SG10). The longitudinal deformation was also measured by linear variable differential
transformers (LVDTs) which were uniformly placed around the cylinders.
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3. Test Results and Discussion
3.1. Failure Modes

The failure modes of each kind of specimens are shown in Figure 6. To show the failure
modes of the inner concrete in JFRP jackets, the concrete cylinders were stripped off and
shown in Figure 6f,h. The cracking patterns and failure mechanisms for JFRP–RAC and
JFRP–SFRAC composite columns were compared. The loading process was carried out from
the axial stress σ = 0 to σ = fco and stopped at σ = 0.2fco in the descending stage. The surface
cracks in unconfined RAC appeared until the axial stress reached σ > 0.4fco and developed
with cover concrete flaked off. The failure mode of unconfined RAC cylinders exhibited
several thorough longitudinal cracks and flaked off bulk concrete rubble, as illustrated in
Figure 6a. Compared with unconfined RAC categories, fewer and narrower longitudinal
cracks in SFRAC specimens were observed, and the integrity of the cover concrete was
maintained better as shown in Figure 6b. For unconfined SFRAC specimens, the serrated
cracks were observed instead of linear cracks of unconfined RAC specimens due to the
good tensile property of sisal fiber which limited the lateral expansion of concrete.

For the JFRP–RAC specimens, no obvious damage was observed until the axial stress
σ reached 0.9fct, when a tearing sound was heard. All JFRP–RAC specimens ruptured
with one single longitudinal thorough crack of the outer JFRP tube with a width of around
1.1–1.3 cm, and the inner concrete was crushed thoroughly with several short longitudinal
cracks as shown in Figure 6c–f. Due to the extra JFRP strengthening at the ends of specimens,
the core concrete in the middle of the specimens crushed roughly which formed the inverted
cone ruptured planes. The angle α between the longitudinal thorough crack of the JFRP
tube and the vertical direction was defined to describe the influence of different jute fiber
orientations of angle β on the failure modes. For jute fiber oriented at β = 0◦, 30◦ and
45◦, the angles α were approximately equal to 0◦, 15◦ and 25◦, respectively, as shown in
Figure 6c–e. For JFRP–SFRAC with jute fiber oriented at 0◦, a similar failure mode was
observed in which the outer JFRP tube failed with one single vertical thorough crack, as
shown in Figure 6g. The SFRAC core in SFRAC–JFRP specimens ruptured with limited
thorough longitudinal cracks and the failed plane tended to be more integrated due to
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the bridging effect of sisal fiber compared with the RAC core in RAC–JFRP specimens, as
shown in Figure 6h. Compared to the study of K. Madhavi et al. [39] on the compressive
behavior of concrete cylinders wrapped with jute fiber composites, the jute-polyester-
wrapped cylinders experienced cohesive failure by crushing of the concrete. The reason for
the different failure modes could be the smaller confinement stiffness of JFRP than that in
this paper, or that the confinement effect in JFRP-wrapped concrete is not as significant as
that in JFRP tube-encased concrete used in this paper. For the studies on the compressive
behavior of concrete filled with flax FRP tube cylinders, e.g., Bai et al. [40], their failure
modes were similar to that of JFRP-confined RAC in this paper.
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3.2. Compressive Stress–Strain Behavior and Ultimate Condition
3.2.1. Axial Stress–Strain Curves

Figure 7 shows the axial stress–strain responses of JFRP–RAC and JFRP–SFRAC. The
JFRP–RAC and JFRP–SFRAC cylinders with different orientations of jute fiber presented
similar axial stress–strain curves. The stress–strain responses of both JFRP–RAC and
JFRP–SFRAC specimens could be characterized as three stages: the initial linear steep
ascending stage, the second placid non-linear ascending stage until the peak stress, and
the third non-linear slowly descending stage. The absolute value of the slopes of the third
descending stage increased with an increase in angle β of the fiber orientation. For each
axial stress–strain curve of the specimens, one extension cord of the final descending stage
to predict the trend of the axial stress–strain curves were added, as shown in Figure 7a–c.
The descending stages would develop smoothly along the extension cords. Then, the
extended stress–strain curves of the JFRP–RAC specimens were compared with those of
the JFRP–SFRAC specimens, as shown in Figure 7d. Due to the bridging effect of sisal fiber
reinforcement in the core SFRAC, the sisal fiber tended to retard the lateral expansion of
core concrete and limit the cracking or crushing of the inner concrete. Both the second
stage (i.e., the placid non-linear ascending stage until the peak stress point) and third stage
(i.e., the descending stage following the peak stress point) of JFRP–SFRAC specimens were
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extended compared to those of JFRP–RAC specimens, which exhibited a more significant
ductile failing process.
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Figure 7. The axial stress–strain relationships of JFRP–RAC and JFRP–SFRAC: (a) JFRP–RAC with
different orientations of jute fibers (fco = 25.0 MPa); (b) JFRP–RAC with different orientations of jute
fibers (fco = 32.5 MPa); (c) JFRP–SFRAC with different orientations of jute fibers (fco = 33.5 MPa);
(d) axial stress–strain of JFRP–RAC vs. JFRP–SFRAC.

Figure 8 shows the simplified axial stress–strain curves for JFRP–RAC and
JFRP–SFRAC specimens. Two key points were drawn to determine the feature of this
response, i.e., the top stress point (TP) corresponding to the peak stress (i.e., peak axial
compressive stress fct and corresponding axial strain εct) and the ultimate condition point
(UP) at the end of the curves (i.e., ultimate axial strain εcu and corresponding axial stress
fcu). The JFRP-confined RAC and SFRAC specimens featured a stress–strain response
of weak confinement. The weak confinement is described by a small confinement ratio:
fl/ fco ≤ 1, where the lateral confining pressure fl was calculated as fl = 2 f f rpt f rp/d, the
f f rp and t f rp were the tensile strength and thickness of FRP, respectively, and d is the diam-
eter of cylindrical specimens. The strong confinement is described by a large confinement
ratio: fl/ fco > 1. For strong confinement of FRP-confined concrete, the axial stress–strain
curves perform as a bilinear ascending shape, and the compressive strength (TP point) and
the ultimate axial strain (UP point) would be reached at the same point that represents
the rupture of the confinement outside. For the weak confinement, the axial stress–strain
curves generally consist of two ascending stages followed by one descending stage, and
the compressive strength would be reached before the rupture of the jacket. The weak
confinement could also be sufficient confinement as long as the axial stress at UP point
was larger than the compressive strength of unconfined concrete [40]. Thus, based on the
criteria of confinement level discussed here, it can be concluded that the confinement of
JFRP on the RAC and SFRAC was effective, as shown in Figure 7. The possible reasons
for the resulting weak confinement of JFRP might be that: (1) the relatively lower tensile
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strength and larger ultimate strain of jute fiber induced the post-peak stage of stress–strain
curves, (2) the thicker JFRP tube caused the lower expanding rate of the core concrete,
(3) the relatively limited improvement of JFRP on the compressive strength of RAC leads to
the ductile failing process of the composite columns.
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3.2.2. Lateral Strain–Axial Strain Relation

The lateral strain–axial strain relationships of JFRP–RAC and JFRP–SFRAC were given
in Figure 9. Both categories of JFRP–RAC and JFRP–SFRAC specimens exhibited similar
lateral strain–axial strain ε l–εc responses. The lateral–axial strain developed linearly with
implicit lateral deformation at the first stage. The confinement of the JFRP tube was not
activated and the inner concrete carried most loading at the first stage until reaching the
peak strength of the unconfined concrete. At the second stage, the lateral strains increased
apparently with the cracking of the inner concrete and expansion of the JFRP tube. By
comparing the tested groups of JFRP–RAC and JFRP–SFRAC with different fiber orientation
angles of β = 0◦, 30◦ and 45◦, the lateral strain–axial strain curves terminated earlier with an
increase in β (see Figure 9a,b). This could be attributed to the reduced lateral strains caused
by the angle between the fiber orientation and force direction. As shown in Figure 9c,
the lateral strains of JFRP–SFRAC were similar to or tended to be smaller than those of
JFRP–RAC specimens at the same axial strain points in the initial stage, where the JFRP
confinement had not been activated and the lateral expansion was invisible. The later
lateral strain of JFRP–SFRAC developed slower than that of the JFRP–RAC specimens.
The reason was that the sisal fiber in RAC could restrain the lateral expansion of RAC by
maintaining the integrity of inner concrete due to the bridging effect, and by preventing
the inner concrete from cracking or crushing.

3.3. Compressive Strength and Ultimate Strains

The tested results are summarized in Table 7, where fco and εco denote the compressive
strength and corresponding ultimate strain of the RAC or SFRAC respectively, fct and
εct denote the peak compressive stress and corresponding axial strain of the JFRP–RAC
and JFRP–SFRAC specimens (TP point) respectively, εcu and fcu denote the ultimate strain
and corresponding stress (UP point) respectively, and εh,rup denotes the lateral ruptured
strain of JFRP tube at UP point. The strength ratio γincre

f was defined as fct/ fco to evaluate
the confinement performance of the JFRP tube on the inner concrete, and the ductility
index γincre

ε was defined as εcu/εco to evaluate the ductility and deformation ability of the
specimens.
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Table 7. The compressive properties of the specimens.

Specimen
Group

fco
(MPa) εco (%) fct

(MPa) SD γincre
f εct (%) fcu

(MPa) fcu/f co εcu (%) γincre
ε εh,rup (%)

JFRP–RAC-a0 25.0 0.22 41.9 1.7 1.67 1.59 39.8 1.59 2.10 9.55 1.66
JFRP–RAC-a30 25.0 0.22 40.2 1.6 1.61 1.30 36.9 1.47 1.99 9.05 1.70
JFRP–RAC-a45 25.0 0.22 36.5 1.6 1.46 1.18 30.2 1.21 1.79 8.14 1.83
JFRP–RAC-b0 32.5 0.21 44.9 1.7 1.38 1.57 40.2 1.24 2.23 10.62 1.68
JFRP–RAC-b30 32.5 0.21 43.6 1.7 1.34 1.38 39.4 1.22 2.06 9.81 1.71
JFRP–RAC-b45 32.5 0.21 42.0 1.7 1.29 1.27 35.8 1.10 1.87 8.91 1.86

JFRP–SFRAC-b0 33.5 0.28 45.4 2.0 1.36 1.71 39.8 1.19 2.37 8.46 1.72
JFRP–SFRAC-b30 33.5 0.28 44.0 2.1 1.31 1.53 39.6 1.18 2.21 7.89 1.86
JFRP–SFRAC-b45 33.5 0.28 42.9 1.6 1.28 1.47 35.9 1.07 2.01 7.18 1.96

3.3.1. Strength Ratio

The strength enhancement ratio γincre
f = fct/ fco was used to quantitatively describe

the effect of the composites on the strength improvement of RAC. The condition of
2 > γincre

f > 1 indicated that the confinement of the FRP tube on the concrete is effec-

tive, and the condition of γincre
f ≥ 2 indicated the strong confinement of the FRP tube on the

concrete. It could be concluded that the confinement of JFRP tube in the study presented
effective confinement on RAC and SFRAC. Besides, the condition that the stress of UP
point fcu exceeded the strength of unconfinement concrete fco also indicated the effective
confinement of JFRP on the RAC and SFRAC in the study [41]. The axial strength enhance-
ment ratios γincre

f decreased with an increase in the compressive strength of inner concrete.
An increase in the compressive strength of plain RAC lead to limited promotion on the
stress both at TP and UP point of JFRP–RAC and JFRP–SFRAC specimens. The increment
of compressive strength between unconfined concrete specimens RAC-a ( fco = 25 MPa)
and RAC-b ( fco = 32.5 MPa) was 7.5 MPa, but the increments of compressive strength
between JFRP–RAC-a0 and JFRP–RAC-b0 specimens, JFRP–RAC-a30 and JFRP–RAC-b30
specimens, JFRP–RAC-a45 and JFRP–RAC-b45 specimens were 3.0 MPa, 3.4 MPa and
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5.5 MPa, respectively. Based on this, the outer JFRP confinement could be considered one
effective way to alleviate the inferior influence of the ingredient complexity of recycled
aggregates on the mechanical properties and quality of the resulting concrete. The strength
ratios γincre

f of specimens with different fiber orientations of angle β = 0◦, 30◦ and 45◦

decreased in sequence. Both the peak stress fct at TP point and the ultimate stress fcu at the
UP point decreased with an increase of the angle β. The admixture of sisal fiber in RAC
slightly improved the compressive strength, i.e., the addition of sisal fiber increased the
compressive strength from around 0.4 MPa to 1.0 Mpa by comparing the JFRP–RAC-b and
JFRP–SFRAC-b specimens.

3.3.2. Ductility Ratio

The ductility ratio γincre
ε was defined as the ratio of ultimate axial strain of confined and

unconfined specimens εcu/εco to evaluate the ductility level of JFRP–RAC and JFRP–SFRAC
composite columns. The use of the JFRP tube improved the ductility of the RAC significantly,
in that the ductility ratio γincre

ε ranged from 7.18 to 10.62 as shown in Table 5. The JFRP–RAC-
b specimens with higher compressive strength of the inner RAC presented larger ductility
ratios than those of JFRP–RAC-a specimens. The inclusion of sisal fiber in JFRP–SFRAC-b
specimens led to the reduced ductility ratios of the composite columns, such that the sisal fiber
reinforcement had effectively limited the propagation of the cracking of RAC. The ductility
ratio γincre

ε and ultimate axial strain of JFRP–RAC and JFRP–SFRAC specimens with different
fiber orientations decreased with an increase in angle β, while the hoop strain εh,rup increased
with an increase in angle β. It could be concluded that the JFRP tube with fiber oriented at
the hoop direction presented the most significant strength improvement and deformation
confinement on the RAC.

4. Theoretical Models
4.1. Ultimate Condition Equations

Numerous predicted stress–strain models have been developed for traditional
FRP-confined circular concrete columns [41,42]. As mentioned in Section 3.2.1, the
stress–strain response and the ultimate condition are significantly influenced by the con-
finement stiffness of FRP and whether sufficient confinement is achieved. The peak axial
stress and the ultimate strain equations were given in the literature [41]. Most existing peak
axial stress equations were based on the estimated the lateral confining pressure of FRP,
fl . Most research on FRP-confined concrete has demonstrated that the confinement stiffness
of the FRP jacket affects both the strength and the ultimate axial strain of FRP-confined
concrete [40]. It is interesting to note that the confinement stiffness of the FRP jacket also
affects the type of stress–strain behavior [42]. The early peak axial stress models of Mir-
miran and Shahawy [43], Spoelstra and Monti [44], Fam and Rizkalla [45] and Chun and
Park [46] used the “five parameters” multiaxial failure surface proposed by Willam and
Warnke as Equation (1). Teng et al. proposed equations to define the peak axial stress for
sufficiently and insufficiently confined concrete as Equation (2a,b) [47]. The linear func-
tion Equation (2a) was employed for sufficiently confined concrete. A minimum value of
fl/ fco = 0.07 for sufficiently confined concrete was suggested by Spoelstra and Monti [44].
The axial strain model at peak axial stress mostly employed the equation proposed by
Richart et al. [48] as Equation (3). Lam and Teng proposed Equation (4a,b) to predict the
ultimate axial strain of FRP-confined concrete [47].

The comparison between the predicted values and the tested values of compressive
strength and ultimate strain of JFRP–RAC and JFRP–SFRAC is shown in Figures 10 and 11.
Both Equation (1) and Equation (2) overestimated the compressive strength of JFRP–RAC
and JFRP–SFRAC. The Equations (3) and (4) were used to predict the axial strain at peak
stress and ultimate strain, respectively. The predicted results of axial strain were shown in
Figure 11a. The Equation (3) underestimated the axial strain of JFRP–RAC and JFRP–SFRAC
at peak stress, and Equation (4) performed relatively well in the prediction of ultimate strain.
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Due to the deviation of the prediction, the revised strength model and axial strain models
were given by regressed analysis of the tested results as Figures 10b and 11b,c, respectively.

fct

fco
= 2.254

√
1 + 7.94

fl
fco
− 2

fl
fco
− 1.254 (1)

fct

fco
= 1 + 3.3

fl
fco

for sufficiently confined concrete (2a)

fct

fco
= 1 for insufficiently confined concrete (2b)

εct = εco[1 + 5(
fcc

fco
− 1)] (3)

εcu

εco
= 1.75 + 6.5ρ0.8

K ρ1.45
ε (4a)

ρK = 2E f t f /( fco/εco)d, ρε = εh,rup/εco (4b)

Figure 10. Strength models: (a) comparison of predicted strength and tested strength and (b) regressed
analysis of revised strength model.

4.2. Stress–Strain Model

Based on the discussion on the ultimate condition equations, Lam and Teng’s stress–strain
model was used in the prediction of the stress–strain response of JFRP–RAC and JFRP–SFRAC
as Equation (5a,b) [47]. It should be noted that Lam and Teng’s model was based on the
assumption that the stress–strain curves consist of an initial parabolic stage and a second
linear stage. The predicted axial stress–strain curves of typical specimens JFRP–RAC-a0,
JFRP–RAC-b0 and JFRP–RAC-b30 are shown in Figure 12. The trend of predicted axial
stress–strain behavior was exhibited as some typical points. The predictions of axial
stress–strain behavior were in good agreement with the test results. Based on the revised
ultimate condition equations, the stress–strain models performed well for JFRP–RAC and
JFRP–SFRAC in the current format.

fc = Ecεc −
(Ec − E2)

2

4 fco
ε2

c for 0 ≤ εc < εt (5a)

fc = fco + E2εc for εt ≤ εc < εcu (5b)
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Figure 11. Strain models: (a) comparison of predicted strain and tested strain, (b) regressed analysis
of axial strain model at peak stress and (c) regressed analysis of ultimate strain model.

4.3. Lateral-to-Axial Strain Model

The lateral-to-axial strain equation as Equation (6) [49], which is applicable to uncon-
fined, actively confined and FRP confined concrete, was applied in the study and also
compared with the tested results. It is evident that Equation (6) of the lateral-to-axial
strain model exhibited the two-stage features of lateral-axial strain of JFRP–RAC and
JFRP–SFRAC. The predicted lateral-to-axial strain curves consisted of an initial linear stage
and a second non-linear stage. The equation slightly overestimated the lateral strain of
specimens with the same axial strain as shown in Figure 13.

εcc

εco
= 0.85

(
1 + 8

fl
fco

)
{
[

1 + 0.75
(
−εh
εco

)]0.7
− exp[−7

(
−εh
εco

)
]} (6)

Based on the comparison of the lateral-axial strain response between the predicted
values and tested values, the coefficient ksn is applied to revise the Equation (7) by regressed
analysis. The coefficient ksn was applied in the lateral-axial strain model and determined
as 0.97 by regressed analysis based on the tested data, where εh denotes the lateral strain of
outer FRP tube.

εcc

εco
=

(
0.85 + 8.85

fl
fco

)
ksn{

[
1 + 0.75

(
−εh
εco

)]0.7
− exp[−7

(
−εh
εco

)
]} (7)
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5. Conclusions

In this study, the experimental investigation and theoretical analysis of JFRP tube-
confined RAC and SFRAC under axial compression were conducted. Overall, jute FRP
confinement and sisal fiber reinforcement have an active effect on the strength and ductility
improvement of RAC. The tests and discussion of the reinforcing mechanism and micro-
structure on the composite confined RAC cylinders would be further conducted. The
following conclusions were drawn:

(1) The confinement of JFRP increased the compressive strength of RAC by 28~68%.
The compressive strength of JFRP-confined specimens with 0◦, 30◦ and 45◦ jute fiber
orientations decreased in sequence. The reinforcement of sisal fiber slightly increased
the compressive strength of the RAC.

(2) JFRP increased the ultimate strain of RAC and SFRAC by around 6.18 to 9.62 times.
The ultimate strain of confined specimens with 0◦, 30◦ and 45◦ jute fiber orientations
decreased slightly in sequence. The sisal fiber reinforcement in RAC increased the
ultimate strain of the composite columns.

(3) JFRP confinement was regarded as weak confinement, but the JFRP presented effec-
tive confinement because the ultimate strength fcu was larger than the compressive
strength of unconfined concrete fco.

(4) The sisal fiber reinforcement slowed down the development of the lateral dilation of
RAC by reducing the propagation of cracks in the concrete due to the bridging effect.

(5) The ultimate condition equations of FRP confined natural aggregate concrete exhibited
deviation in prediction of the ultimate conditions of JFRP–RAC and JFRP–SFRAC. The
predicted stress–strain behavior by Lam and Teng’s model with the revised ultimate
condition equations demonstrated good agreement with the tested results.
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(6) The predicted lateral–axial strain model used in the study presented a slight overesti-
mation of the dilation of JFRP–RAC, and the coefficient ksn was considered to revise
the overestimation by regression analysis.
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