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Abstract: Fluorescent cellulose nanofibers (FCNFs), with a high yield, were prepared via one-pot
hydrolysis and the grafting reaction of cellulose with thiazolipyridine carboxylic acid (TPCA). The
hydrolysis and Fischer esterification of cellulose were conducted under microwave-hydrothermal
conditions; meanwhile, TPCA formation was induced by the dehydration reaction between L-cysteine
and citric acid. The effects of the reaction temperature and reaction time on the yield and performance
of FCNF were investigated. The morphology and size, surface chemical property, crystal structure,
thermostability, and fluorescent performance of FCNF were characterized. The results revealed that
the yield of FCNF reached 73.2% under a microwave power of 500 W, reaction temperature of 110 ◦C,
and reaction time of 5 h. The FCNF obtained presents a short rod-like morphology. The crystallinity
of the FCNFs is 80%, and their thermal stability did not decline significantly. Additionally, the
fluorescent performance of the FCNFs is excellent, which results in them having good sensitivity to
chloride ions. The good fluorescent performance and significant responsiveness to chloride ions of
FCNFs lead to them having broad prospects in bio-labeling, biosensing, information storage, chloride
ion detection, among others.

Keywords: fluorescent cellulose nanofibers; high yield; one-pot; green preparation; chloride ion
detection

1. Introduction

As one of the representative products of cellulose-based nanomaterials, cellulose
nanofibers (CNFs) have gained wide attention from researchers, due to their unique proper-
ties. Compared with native cellulose or microcrystalline cellulose, CNF has been recognized
to possess numerous merits, such as a high specific surface area, high crystallinity, high
purity, high Young’s modulus, biodegradability, easy functional modification, and good
biocompatibility, as well as being natural and renewable [1–3]. In addition, nanocellulose ex-
hibits nano-particle specificity, due to its nano effect, so it has broader application prospects
in the fields of optoelectronic materials, sensing devices, and smart materials [4–12]. By
means of functional modification, more functional cellulose-based nanomaterials can be
designed, that is, nanocellulose can be used as a raw material to prepare fine chemi-
cals and composite materials with special functions [13–16]. Therefore, how to prepare
nanocellulose-based functional materials by a green and efficient method is a critical issue
in the application field of nanocellulose, which is of great research significance to realize
the high-value utilization of cellulose-based materials.

There are abundant hydroxyl groups in cellulose chains to provide many reactive sites
for incorporating fluorophores into the cellulose backbone, resulting in diverse cellulose-
based fluorescent nanomaterials [17,18]. The strategies for fabricating fluorescent nanocel-
lulose mainly include chemical methods and physical adsorption. Compared with chemical
modifications, physical adsorption has the advantages of simplicity, time saving, and main-
taining the nanocellulose nature, due to the absence of solvent exchange. However, its
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application is limited by the properties of fluorophores and the low structural stability
of the product. Accordingly, the drawbacks to chemical methods are the cumbersome
processes associated with the separation of hydrolysis and modification, and environmen-
tally unfriendly preparation, with the extensive use of organic solvents and large energy
consumption. Chemical methods mainly involve carbodiimide coupling chemistry, Fischer–
Speier esterification reactions, and stepwise activation functionalization [19–22]. Among
these, the Fischer–Speier esterification reaction is regarded as the most facile method, with
a high modification density, good dispersion stability, and retention of the cellulose physi-
cal structure, although the low yield of product is still a major shortcoming. Herein, the
intervention of mechanochemistry aims to improve the yield of fluorescent nanocellulose,
simplify the process, and reduce the energy consumption for fabrication.

It was found that the dehydration reaction of citric acid and L-cysteine can take place
at high temperature to form the conjugated structure of thiazolipyridine carboxylic acid
(TPCA), which has good fluorescence properties and biocompatibility. The main spectral
transition of TPCA is derived from the conjugated 2-pyridone structure, resulting in the
bright fluorescence of TPCA-modified fluorescent materials [23–25]. At a certain pH value,
Cl- has a dynamic quenching ability for TPCA, because the electronegative elements of N
and -C=O in the TPCA structure are in an internal charge transfer state during excitation,
which is conducive to the resonance of the enol. Furthermore, this excited state enhances
the transition dipole moment of TPCA and the properties of sp3 on -C=O, increasing
its absorption and emission intensity, resulting in the loss of planarity and rigidity of
the conjugated 2-pyridone system, and causing out-of-plane vibrations to enter the non-
radiative relaxation channel, which is the critical principle of the fluorescence quenching
process of TPCA by chloride ions [26–31]. At present, TPCA-modified fluorescent materials
have been widely used in biological imaging, sensors, drug delivery, fluorescence detection,
and other fields [32–36].

In this study, the microwave-hydrothermal one-pot method was adopted to prepare
FCNF. Hydrolysis and Fischer esterification of cellulose occur with citric acid to form
cellulose nanofibers, which undergo a dehydration reaction with L-cysteine to form the
TPCA structure in situ simultaneously, endowing FCNF with fluorescence properties.
The whole preparation process is carried out in the aqueous phase and avoids the use of
organic solvents, so as to be environmentally friendly. Moreover, the separation steps of
the intermediate products and the generation of by-products are reduced by the one-pot
method, which is conducive to improving the yield of the target product, and provides a
new idea for the green and efficient preparation of fluorescent cellulose nanofibers. The
fluorescent properties, biodegradability, and biocompatibility of FCNF have exhibited a
broad range of application prospects in the fields of biomarkers, information storage, and
sensing detection.

2. Experimental
2.1. Materials

The cellulose was obtained from bleached eucalyptus kraft pulps (BEKP) with a kappa
number of 17 and an α-cellulose content greater than 94%, purchased from Fujian Nanping
Paper Mill, Fujian, China. Citric acid and L-cysteine were supplied by Shanghai Aladdin
Biochemical Technology Co., Ltd., Shanghai, China. All reagents were of analytical grade
and were used without further purification.

2.2. Preparation of Fluorescent Cellulose Nanofibers

First, 3 g of BEKP, 15 g of citric acid and 30 mL of deionized water were added to a
hydrothermal reactor, and the reaction was allowed to progress at 90–130 ◦C for 1 h with
a microwave power of 500 W. Then, 0.8 mol/L L-cysteine was added to the reactor for
2–6 h under the same microwave-hydrothermal reaction conditions. After cooling to room
temperature naturally, the product was centrifuged and washed with deionized water
repeatedly until the supernatant had no fluorescence absorption under UV–visible light.
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The light yellow suspension on the upper layer was collected, namely, FCNF. The effects
of temperature and reaction time on the yield and fluorescence properties of FCNF were
investigated, and the optimized reaction parameters were explored.

2.3. Transmission Electron Microscopy (TEM)

For TEM measurement of FCNF, 0.03% FCNF suspension was ultrasonically dispersed
for 20 min and the treated suspension was dropped on a carbon film-coated copper grid
and stained with 1.5% phosphotungstic acid. After drying, the morphology and size of
FCNFs were observed by a Hitachi-H7650 transmission electron microscope (Hitachi, Ltd.,
Tokyo, Japan) at an accelerated voltage of 100 kV.

2.4. Surface Chemical Structure

After freeze drying, FCNF powder was characterized by Fourier transform infrared
(FTIR) and 13C nuclear magnetic resonance (13C NMR). FTIR spectra were recorded on
a Nicolet 380 FTIR spectrometer (Thermo electron Instruments Co., Ltd., Madison, WI,
USA) in wave numbers ranging from 4000 cm−1 to 400 cm−1, with a resolution of 4 cm−1.
13C NMR spectra were collected at a magic angle spinning rate of 5 kHz, with a proton
resonance frequency of 125 MHz.

2.5. X-ray Diffraction (XRD)

The crystalline structure of FCNF was characterized by X-ray diffraction (Shimatzu
diffractometer, XRD 6100, Kyushu, Japan) with Cu Kα radiation at the wavelength 1.5406 Å.
The continuous scanning angle was 6–90◦ at a scan rate of 0.1 s−1. The crystallinity index
(CrI) of FCNF was calculated according to the following equation:

Cr I =
I200 − Iam

I200
× 100% (1)

where I200 is the intensity of the peak at 2θ about 22◦, representing the crystalline region
and amorphous region of cellulose. Iam is the intensity of the amorphous background at 2θ
about 18◦ [37].

2.6. Thermogravimetric Analyzer (TG)

The thermal stability of FCNF was characterized by a thermogravimetric analyzer
(NETZSCH STA 449 F3 Jupiter®, Selb, Germany) under heating from 25 ◦C to 700 ◦C at
10 ◦C min−1 with a flow N2 of 20 mL min−1 as the protecting gas.

2.7. Fluorescent Properties Test

Fluorescent spectra were measured by an RF-5301PC fluorescence spectrometer with
1.0 cm quartz cells at slits of 5/5 nm. The emission wavelength ranged from 300 nm to
650 nm, with a scanning frequency of 40 Hz at a rate of 240 nm min−1. After scanning three
times in parallel, the optimal excitation wavelength and emission wavelength of FNCF
were obtained.

2.8. Ionic Sensitivity Tests

After preparing 10 mM Na+, ClO4
−, Cl−, Li+, NO3

−, SO3
2−, OH−, K+, and Ca2+

solutions, 5 mL of the solutions was respectively dispersed in 4 mL of FCNF suspension
for the samples containing different ions. The sensitivity of FCNF to different ions was
analyzed by characterizing the fluorescence intensity of samples containing different ions,
as described in Section 2.8, and the correlation was shown as the following equation [38,39]:

I0/IH = K[X] + K[H+] + 1 (2)

where I0 is the fluorescence intensity in the absence of specified ions; IH is the fluorescence
intensity in the presence of specified ions. The ratio I0/IH represents the fluorescence
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quenching rate. K represents the sensitivity of FCNF to the specified ions. [X] and [H+]
are the concentrations of specified ions and hydrogen ions in the solution, respectively.
According to the formula, there is a linear relationship between I0/IH and [X] at a fixed pH
(i.e., the (K[H+] + 1) term becomes a constant). Moreover, the ionic sensitivity K of FCNF
can be obtained from the slope of the plot of I0/IH vs. [X].

3. Results and Discussion
3.1. Fluorescence Properties

It can be observed from the UV–vis spectra of FCNF and TPCA in Figure 1a that they
have similar absorption peaks, in which the peaks near 225 nm are attributed to the π→π*
transition and the wide absorption peaks near 360 nm are attributed to the n→π* transition
of the conjugate structure of TPCA [40,41]. This indicated that FCNF was successfully
surface grafted with TPCA groups. Figure 1b shows that the fluorescence intensity of FCNF
increased significantly as the excitation wavelength (320–360 nm) increased. When the
excitation wavelength exceeds 360 nm, the fluorescence intensity shows a decreasing trend.
Moreover, the maximum fluorescence intensity is at the excitation wavelength of 360 nm,
and the maximum fluorescence emission wavelength is always maintained at around
430 nm, indicating that FCNF has good fluorescence emission performance, independent
of the excitation wavelength.

Polymers 2022, 14, x FOR PEER REVIEW 4 of 13 
 

 

where I0 is the fluorescence intensity in the absence of specified ions; IH is the fluorescence 
intensity in the presence of specified ions. The ratio I0/IH represents the fluorescence 
quenching rate. K represents the sensitivity of FCNF to the specified ions. [X] and [H+] are 
the concentrations of specified ions and hydrogen ions in the solution, respectively. Ac-
cording to the formula, there is a linear relationship between I0/IH and [X] at a fixed pH 
(i.e., the (K[H+] + 1) term becomes a constant). Moreover, the ionic sensitivity K of FCNF 
can be obtained from the slope of the plot of I0/IH vs. [X]. 

3. Results and Discussion 
3.1. Fluorescence Properties 

It can be observed from the UV–vis spectra of FCNF and TPCA in Figure 1a that they 
have similar absorption peaks, in which the peaks near 225 nm are attributed to the π→π* 
transition and the wide absorption peaks near 360 nm are attributed to the n→π* transi-
tion of the conjugate structure of TPCA [40,41]. This indicated that FCNF was successfully 
surface grafted with TPCA groups. Figure 1b shows that the fluorescence intensity of 
FCNF increased significantly as the excitation wavelength (320–360 nm) increased. When 
the excitation wavelength exceeds 360 nm, the fluorescence intensity shows a decreasing 
trend. Moreover, the maximum fluorescence intensity is at the excitation wavelength of 
360 nm, and the maximum fluorescence emission wavelength is always maintained at 
around 430 nm, indicating that FCNF has good fluorescence emission performance, inde-
pendent of the excitation wavelength. 

  
Figure 1. UV–vis spectra of FCNF and TPCA (a) and the fluorescence emission spectra of FCNF (b). 

3.2. Effect of Reaction Temperature on Yield and Fluorescence Properties of FCNF 
As shown in Figure 2, the yield and fluorescence intensity of FCNF increased gradu-

ally as the reaction temperature increased from 90 °C to 110 °C, under the conditions of a 
reaction time of 5 h and microwave power of 500 W. The reason for this phenomenon is 
that the higher reaction temperature is conducive to the diffusion of citric acid into cellu-
lose and the acceleration of mass transfer, which promotes the hydrolysis of the amor-
phous region of cellulose, and the dehydration reaction of citric acid and L-cysteine, re-
sulting in a significant increase in the yield and fluorescence intensity of FCNF. When the 
reaction temperature increased to 110 °C, the yield of FCNF reached 73.2%, with the max-
imum fluorescence intensity. As the temperature continued to rise, the hydrolysis reaction 
of cellulose was intensified, resulting in the destruction of the crystalline region and ex-
cessive hydrolysis of the cellulose into glucose. In addition, the dehydration reaction of 
citric acid and L-cysteine was also violent with an increasing reaction temperature, lead-
ing to the production of by-products. Therefore, an excessively high reaction temperature 
reduced the yield and intensity of FCNF, and 110 °C was considered to be the optimal 
reaction temperature, owing to its maximum yield of FCNF in this experiment. 

Figure 1. UV–vis spectra of FCNF and TPCA (a) and the fluorescence emission spectra of FCNF (b).

3.2. Effect of Reaction Temperature on Yield and Fluorescence Properties of FCNF

As shown in Figure 2, the yield and fluorescence intensity of FCNF increased gradually
as the reaction temperature increased from 90 ◦C to 110 ◦C, under the conditions of a
reaction time of 5 h and microwave power of 500 W. The reason for this phenomenon is that
the higher reaction temperature is conducive to the diffusion of citric acid into cellulose
and the acceleration of mass transfer, which promotes the hydrolysis of the amorphous
region of cellulose, and the dehydration reaction of citric acid and L-cysteine, resulting in
a significant increase in the yield and fluorescence intensity of FCNF. When the reaction
temperature increased to 110 ◦C, the yield of FCNF reached 73.2%, with the maximum
fluorescence intensity. As the temperature continued to rise, the hydrolysis reaction of
cellulose was intensified, resulting in the destruction of the crystalline region and excessive
hydrolysis of the cellulose into glucose. In addition, the dehydration reaction of citric acid
and L-cysteine was also violent with an increasing reaction temperature, leading to the
production of by-products. Therefore, an excessively high reaction temperature reduced
the yield and intensity of FCNF, and 110 ◦C was considered to be the optimal reaction
temperature, owing to its maximum yield of FCNF in this experiment.
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3.3. Effect of Reaction Time on Yield and Fluorescence Properties of FCNF

Figure 3 shows that under a reaction temperature of 110 ◦C and microwave power of
500 W, the yield and fluorescence intensity of FCNF increased with the increase in reaction
time from 3 h to 5 h. This may be because at a certain reaction temperature, prolonging
the reaction time is conducive to the full hydrolysis of the cellulose amorphous region,
without destroying the crystallization region. In addition, it is conducive to the dehydration
reaction of citric acid and L-cysteine, which improves the graft rate of TPCA on the surface
of nanocellulose, resulting in an increase in the FCNF yield and fluorescence intensity. In
addition, the increase in reaction time can promote the dehydration reaction of citric acid
and L-cysteine, and improve the graft rate of TPCA on the nanocellulose surface. The
maximum yield of 73% and maximum fluorescence intensity of FNCF were achieved at 5 h.
When the reaction time exceeded 5 h, the yield decreased gradually and the fluorescence
intensity remained stable, with the color of FCNF deepening from light yellow to dark
yellow. The reduction in the yield is mainly due to the excessive hydrolysis of cellulose,
while the constant fluorescence intensity is attributed to the dynamic equilibrium of the
dehydration reaction of citric acid and L-cysteine within a certain time, leading to there
being no further increase in the graft rate with the prolonged reaction time.
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3.4. Morphology

The morphology of FCNF was observed by TEM imaging, as is shown in Figure 4.
As is shown in the images, short rod-like shapes, with a length of 200–300 nm, a diam-
eter of 10–20 nm, and an aspect ratio of 20–30, were observed. It was indicated that,
under microwave-hydrothermal conditions, cellulose was hydrolyzed by citric acid, the
supramolecular structure of cellulose was depolymerized, the amorphous region was de-
stroyed, and cellulose nanofibers (CNFs) were formed. Furthermore, FCNF was fabricated
by the dehydration reaction between CNF and TPCA. The short rod-like FCNF interweaves
into a network structure, which enables it to play a reinforcing role in the construction
of nanocomposites.
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3.5. FTIR

Obvious characteristic peaks of the cellulose I crystalline structure, belonging to
FCNF and BEKP, can be observed in Figure 5, at 1635, 1431, 1170, 1056, and 897 cm−1,
indicating that the conformation and skeletal structure of FCNF after hydrolysis and
Fischer esterification do not change, compared with BEKP [42]. The peak at 1431 cm−1

is attributed to the symmetric bending vibration of CH2, and represents the absorption
band of the crystalline region [43]. The absorption peaks at 1056 cm−1 and 1114 cm−1 can
be assigned to the C-O stretching vibration and skeletal vibration of the glucopyranose
ring, respectively. Compared with BEKP, the peak intensities at 1056 cm−1 and 1114 cm−1

increased, indicating an increase in the content of FCNF crystalline regions. The higher
intensity of the peak at 3417 cm−1 in the FCNF spectrum than that of BEKP is due to the
hydrolysis of the amorphous region, which exposes more hydroxyl groups. Differing from
BEKP, the new absorption peak at 1728 cm−1 of FNCF belongs to the stretching vibration of
C=O in the ester group [44], indicating that FCNF is formed by the simultaneous hydrolysis
and esterification of cellulose. Therefore, FCNF was successfully surface grafted with TPCA
groups and maintained the basic structural unit of cellulose.
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3.6. 13C NMR Analysis
13C NMR was used to determine the surface chemical structure of FNCF (Figure 6).

The spectra of FCNF and BEKP both displayed typical signals from the cellulose I crys-
talline structure, which are assigned as follows: C1 (104.1 ppm), C2/C3/C5 (71.7 ppm,
74.1 ppm), C4 (87.7 ppm), and C6 (64.2 ppm) peaks belong to carbons of the glucopyranose
rings in the crystalline regions [45], whereas C4 (82.7 ppm) and C6 (62.5 ppm) peaks are
attributed to the carbons of the glucopyranose rings in the disordered regions [46]. In the
spectrum of FNCF, the appearance of peaks at about 41.8 and 182.5 ppm are assigned to
the resonance absorption of carbons in citric acid [47,48], and the peaks at about 30.5 and
162.8 ppm are the contribution of carbons in the TPCA group, which indicated that the
TPCA group was successfully immobilized on FCNF by esterification with the hydroxyl
group of cellulose nanofibers.
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3.7. XRD

In the XRD spectra of FCNF and BEKP (Figure 7), the diffraction peaks at 2θ = 15.1◦,
16.3◦, 22.5◦, and 34.4◦ correspond to (1–10), (110), (200), and (004) planes of cellulose Iβ
crystals, respectively, indicating the preservation of the cellulose crystal structure during
one-pot preparation of FCNF [49]. The inherent crystal structure of FCNF remained stable
in the reaction, as an insignificant change occurs between the diffraction peaks of BEKP and
FNCF, but the enhancement of peak intensity at the (200) plane of FNCF implies a more
complete crystal structure of FNCF. The crystallinity of FCNF (80%) is significantly higher
than that of BEKP (64%), mainly due to the hydrolysis of the amorphous regions to form
FCNF with higher molecular regularity. In addition, the high crystallinity and nano size
effect of FNCF can effectively improve the mechanical performance of composites, and have
broad application potential in enhancing the properties of biomass nanocomposites [50].
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3.8. TG

It can be observed from the TG/DTG curves of FCNF in Figure 8 that the thermal
decomposition of FCNF consists of the following three stages: the evaporation of free water
on the surface of FCNF (<115 ◦C), the thermal decomposition of the glucopyranose ring,
resulting in a sharp decline (290–400 ◦C), and the carbonization of the remaining products
(>400 ◦C). As shown in the DTG curves of BEKP (Figure 8b), the onset temperature of
thermal decomposition and the temperature at the maximum weight loss rate are 307 ◦C
and 356 ◦C, respectively. Compared with BEKP, the thermal stability decreased with an
initial decomposition temperature of 297 ◦C and the temperature at the maximum weight
loss rate of 336 ◦C. The main reason for this is related to the introduction of the TPCA
group, whose -COOH can lead to the generation of glucuronic acid, and it will then be
sensitive to heat, so as to be thermally degraded at lower temperatures [51]. Additionally,
the smaller particle size of FCNF exposes a larger surface area and accelerates the thermal
decomposition of FCNF, resulting in a decrease in its thermal stability [52]. Moreover, the
thermal stability of FCNF is better than that of nanocellulose prepared by the traditional
sulfuric acid method and TEMPO oxidation method, which can be attributed to the higher
crystallinity and slower heat transfer rate of FCNF, thus improving its heat resistance to a
certain extent [53].
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3.9. Responsiveness of Chloride Ions

Fluorescence emission spectra of FCNF (Ex = 360 nm) were obtained by adding solu-
tions containing different ions in the same volume and concentration (1 mg/mL) into the
suspension of FCNF, with pH 2, as is shown in Figure 9a. The fluorescence intensity of the
solution containing Cl− is the lowest among them. Figure 9b shows that the fluorescence
quenching rate of Cl− on FNCF reached a maximum of 74.2% under a certain pH condition.
The sensitivity of FCNF to Cl− stems from the reduction in electrostatic repulsion of car-
boxyl and carbonyl groups during each continuous protonation process in their respective
pH regions, enabling the chlorine complex to form in the excited state, changing the nature
and rate of the nonradiative transition process that competes with the luminescence process,
stimulating the gradual quenching of chloride under acidic conditions [54,55]. To further
explore the effect of pH on the Cl− responsive properties of FCNFs, we designed a simple
experimental model. Figure 9c,d show the fluorescence emission spectra (Ex = 360 nm) of
FCNF, adding 1 mL Cl− solution with different concentrations at pH = 0.66 and pH = 0.3,
respectively. It can be observed from the figures that the fluorescence quenching rate of Cl−

on FCNF is accelerated with the decline in the pH value. Fitting the regression curve of
FCNF to the fluorescence quenching of the chloride ion was undertaken to more clearly and
intuitively reflect the influence of Cl− concentration and pH on the fluorescence quenching
of FCNF (Figure 9e). The result shows that the fluorescence quenching of FCNF by Cl−

responds linearly at the concentration of 0.2 M, and the fluorescence quenching efficiency
is higher at a lower pH, indicating that the fluorescence quenching behavior of FCNF is
attributed to the interaction of excited-state ions and chloride under acidic conditions,
which leads to partial charge transfer and spin–orbit coupling. Therefore, FCNF has high
sensitivity to Cl− under acidic conditions, and can be used for the quantitative analysis
and detection of Cl− content, which has potential application value in chemical sensing,
biosensing, and other fields.
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Figure 9. Ion response detection of FCNF. (a) The emission spectrum of FCNF solution with different
ions; (b) the change in fluorescence intensity before and after (Ex = 360 nm); the effect of chloride ion
concentration on the fluorescence intensity of FCNF when (c) pH = 0.66 and (d) pH = 0.3; (e) fitting
regression curve of FCNF to the fluorescence quenching of chloride ion.

4. Conclusions

Based on the principle of the microwave-hydrothermal reaction, FCNFs with a high
yield were prepared by the one-pot method in the aqueous phase, which avoided the
tedious separation process of intermediate products and the use of organic solvents. This
strategy improved the reaction efficiency and yield to realize the green, low-carbon and
efficient preparation of FCNF. The yield of FCNF reached 73.2% under the conditions of
a microwave power of 500 W, reaction temperature of 110 ◦C, and reaction time of 5 h. It
was found that FCNF has good dispersion stability in water, with a length of 200–300 nm, a
diameter of 10–20 nm, an aspect ratio of 20–30, and crystallinity of 80%. Furthermore, FCNF
has stable fluorescence performance and good sensitivity to Cl−, which can be used for the
quantitative detection of chloride ions, indicating that it has broad application prospects in
the fields of fluorescent labeling, biomedicine, sensing, and detection.
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