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Abstract: Surface damages usually occur in concrete structures. In order to restore the functions and
prolong the service life of concrete structures, their surface damages should be repaired in time. This
paper reviews the main requirements for repair materials for concrete structures and the most used
inorganic repair materials, such as cement-based materials, alkali-activated materials and polymer
modified inorganic repair materials. Moreover, techniques to characterize and even improve the
interfaces between these repair materials and concrete substrate are summarized. Cement-based
material has the advantages of good mechanical properties and consistency with concrete substrate
while having the problems of high shrinkage and low flexibility. Polymer modified materials were
found as having lower shrinkage and higher flexural strength. Increasing the roughness or humidity
of the surface, adding fibers and applying interfacial agents can improve the bond strength between
cement-based repair materials and concrete substrates. All of these repair materials and techniques
can help to build a good interfacial bonding, and mechanisms of how they improve the interface are
discussed in this article. These are of great importance in guaranteeing the effectiveness of the repair
of the concrete surface and to guide the research and development of new repair materials.

Keywords: repair; interfacial microstructure; bonding strength; concrete substrates

1. Introduction

Cement concrete is currently the most widely used civil engineering construction
material worldwide and has been applied in various civil infrastructures, such as roads,
bridges, ports and tunnels. Under the external loads and environmental impacts, concrete
structures are prone to be damaged, such as cracking and even spalling. In addition,
inappropriate selection of raw materials, incorrect mixture design and irregular construction
process may also cause damages to concrete, particularly regarding the cover protecting
the reinforcement bars. These damages not only reduce the durability of structures, but
also lead to structural unserviceability during service [1]. To solve these problems, it is
necessary to repair the concrete in time to restore the structures safety and function and to
extend their service life.

At present, there is a huge demand for concrete structure repair worldwide. The
investments on the repair and reinforcement of old constructions in the USA were estimated
at 90 billion dollars in 2016 [2]. In the Middle East Persian Gulf, the expenditure for repair
and maintenance in the construction field accounted for 2.6% of the total expenditure
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in 2011 [3]. In Europe, the budget for maintenance and repair has been close to half of
the European construction budget in recent years [4]. In China, the repair and retrofit
costs for infrastructure were estimated at 67 billion dollars in 2016 [5]. With the rapid
development of civil engineering in the early 21st century, many existing concrete structures
worldwide are facing the problem of “aging”. Therefore, demand for building restoration is
continually surging.

The effectiveness of surface repair is greatly dependent on the properties of the repair
materials and the interface between the repair and concrete substrate [6]. However, the
interface between repair materials and concrete substrate is usually a weak zone. There have
been various repair materials for concrete structures and plenty of researchers are focusing
on the factors that influence the interface and their mechanisms. However, the categories
and respective mechanisms are ambiguous, so that high quality concrete structures repair
is difficult to achieve. This paper provides a comprehensive review on the existing repair
materials and the methods for characterizing or improving the interface between the repair
and concrete substrate. Moreover, suggestions for prospective research are proposed.

2. Concrete Repair Materials

The effectiveness of repair systems mainly depends on the performances of the repair
materials. Usually, repair materials should have good mechanical performances, especially
high early mechanical strength, strong bonding with substrates and appropriate workability.
The China building materials industry standard (JC/T2381-2016) for repair formulates
the fundamental properties (see Table 1) [7]. The European standard (EN1504-3) for
repair specifies the relevant requirements for the properties of surface repair materials
(see Table 2) [8]. The compressive strength and bond strength are required to be at least
10 MPa and 0.8 MPa, respectively. The American standard (ASTM) for repair also stipulates
the relevant requirements for the properties of surface repair materials (see Table 3) [9].
A suitable repair material can effectively prolong the service life of deteriorated concrete
structures. At present, the materials for repairing concrete structures have been classified
into cement-based materials, polymer materials and polymer-modified mortar [10].

2.1. Cement-Based Repair Materials

Cement-based materials are the most widely used materials for repairing concrete
structures. These materials not only have a good compatibility with the substrate, but
also have advantages of good bonding with the substrate, high economic benefit and easy
operations for repair. The most used binders in cement-based repair materials are Portland
cement (PC), sulphoaluminate cement (SAC) and magnesium phosphate cement (MPC). In
addition, blending materials, such as fly ash, blast furnace slag and silica fume, are usually
used to modify the repair materials for better performance.

Table 1. China Building Materials Industry Standard (JC/T-2016) for the basic performance require-
ments for repair mortar [7].

Compressive Flexural Compressive Stretching Bond  Rate of Drying
Concrete Type Strength (MPa) Strength (MPa) Flexure Ratio Strength (MPa) Shrinkage (%)
28 Days 28 Days 28 Days 14 Days 28 Days
NF >20.0 >5.0 <4.0 >0.8 <01
NS >30.0 >6.0 <7.0 <1.0 o

NF: normal flexible repair mortar; NS: normal stiffness repair mortar.
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Table 2. European standard (EN1504-3) for performance requirements for cement-based structural
and non-structural repair products [8].

Requirement
Item Structural Non-Structural
Class R4 Class R3 Class R2 Class R1
Compressive Strength at 7 days >45 MPa >25 MPa >15 MPa >10 MPa
Chloride Ion Content <0.05% <0.05%
Adhesive Bond at 7days >2.0 MPa >1.5 MPa >(0.8 MPa

Max average crack width < 0.05 mm
No crack width > 0.1 mm

No delamination No requirement

Restrained shrinkage Expansion

>2.0 MPa >1.5MPa >0.8 MPa
Durability Carbonation Resistance :
< .
(not required if coated) dy < Control concrete C (0.45) Not required
Elastic Modulus >20 GPa >15 GPa Not required

Table 3. American standard (ASTM) for performance requirements for repair products [9].

Time 3h 1 Day 7 Days 28 Days
Compressive strength
min, MPa
R1 concrete or mortar 3.5 14 28 >28
R2 concrete or mortar 7.0 21 28 >28
R3 concrete or mortar 21 35 35 >35
Bond strength
min, MPa
R1, R2 and R3 concrete or mortar - 7 10 -
Length change, based on length at 3 h
max
allowable increase after 28 days in water —0.15%
R, R2 and R3 concrete or mortar allowable increase after 28 days in air +0.15%

B: The strength at 28 days shall be not less than the strength at 7 days.

Qian et al. [11] studied the fundamental properties of cementitious repair mortar and
found that the compressive strength of ordinary Portland cement mortar after 1 day curing
was 22 MPa and the setting time was over 180 min (see Table 4). In order to shorten the
curing time of the repair materials and rehabilitate the performances of concrete structures
as soon as possible, the cements used should have a fast hardening property. Compared
with ordinary Portland cement, fast-hardening cement has higher early strength because of
higher C3S and C3A content [12]. Cifuentes et al. [13] found that the compressive strength
of fast-hardening Portland cement concrete at 1 day could reach 42.8 MPa. Compared with
ordinary Portland cement, the setting time further decreases from 180 min to 28 min (see
Table 4). Therefore, the authors of this study believe that fast-hardening Portland cement is
more suitable for emergent repair work [11].
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Table 4. Properties of Ordinary Portland cement mortar and Rapid-Hardening cement mortar.

Mix Proportion Performance

Reference

Cement:Sand:Water:Reducer

Setting Compressive Strength ~ Flexural Bond Strength
Time/Min at 1 Days/MPa at 7 Days/MPa

[11]
[13]

1:1.5:0.25:0.01 >180 22 4.8
1:0.09:-:- 28 42.8 -

Sulphoaluminate cement is also a fast-hardening binder, of which the main mineral
components are C,S and 3Ca0-3A1,03-3CaSO,. Hydration products with a large amount
of crystalline water can not only provide a strong bonding capacity and shorten the setting
time for emergent repairs, but also effectively reduce the shrinkage [14]. Yu et al. [15]
studied the effect of ettringite on the performance of SAC repair mortar. They found
that ettringite seeds can remarkably accelerate the hydration of SAC and increase the
compressive strength. When the water-to-cement ratio was 0.28, the SAC mortar strength
reached 63 MPa at 1 day, higher than PC mortar, and the final setting time was about
12 min (see Table 5). Qian et al. [11] also reported that SAC mortar exhibited a better early
mechanical property than OPC mortar and MPC mortar. However, if the fine needle-like
and expansive ettringite was too concentrated and distributed unevenly, the strength of
SAC mortar at the later hydration period could decline, which may reduce the quality of
repair [16]. Meanwhile, the rapid hardening property of SAC leads to more shrinkage,
which may cause the development of cracks. Hajir et al. [17] found that the use of fiber
reinforced SAC mortar for the repair of concrete structures can mitigate the influence of
shrinkage. They reported that the crack widths in fiber reinforced SAC mortar are 60%
lower than the normal SAC mortar.

Table 5. Properties of Sulphoaluminate cement mortar as repair materials.

Mix Proportion Performance

Reference

Cement:Sand:Water:Reducer

Setting Compressive Strength  Flexural Bond Strength
Time/Min at 1 Days/MPa at 7 Days/MPa

[11]
[15]

1:1.5:0.25:0.01 15 50 7.8
1:-:0.3:- 27 40.2 -
1:-:0.28:- 12 63 -

Magnesium phosphate cement made by mixing the magnesia and phosphate with
some inert fillers in certain proportions is a new eco-friendly material because it consumes
less resources and energy during production than other traditional cements. Compared to
Portland cement mortar, MPC mortar features advantages of higher early strength, shorter
setting time, better bonding performance [18,19], lower shrinkage and better environmental
tolerance [20,21]. Qian et al. [11] found that the flexural bonding strength between MPC
mortar and concrete substrates was about 9 MPa, higher than OPC and SAC mortar, and
the setting time of MPC mortar was only 22 min at most, which can significantly shorten
the repair period (see Table 6).
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Table 6. Properties of Magnesium Phosphate mortar as repair materials.

Mix Proportion Performance
Reference . . . Compressive Strength at  Flexural Bond Strength at
Cement:Sand:Water Setting Time/Min 7 Days/MPa 7 Days/MPa
1:1.5:0.2 (M/P = 6) 11.25 61.8 9.1
[22] 1:1.5:0.2 (M/P = 8) 8 28 4
1:1.5:0.2 (M/P = 10) 7.25 37 4.6
[11] 1:1.5:0.12 22 33 43

Qiao et al. [22] studied MPC with different Mg/P ratio and found that the flexural
bonding strength between MPC and concrete substrates reached maximum with Mg/P
ratio of 6, and the concrete substrate was 9.1 MPa at 7 days (see Table 6), also much higher
than OPC and SAC. Recently, Monica et al. [23] developed an innovative repair mate-
rial by adding halloysite nanotubes (HNTs) into MPC mortar. It was illustrated that the
introduction of HNTs into MPC mortar can improve the consistency and the handling
properties of the mortar without affecting the setting time, which is significant, as the fast
hardening of MPC is one of the main advantages for concrete repair. Moreover, HNTs
can disperse in the MPC mortar and improve the compressive strength. The hydration
reaction of MPC is extremely exothermic, making it suitable for applications in cold weather
conditions [20,22]. However, when the MPC mortar is exposed to additional water, hydra-
tion product MgKPOy-6H,O dissolves and the porosity of the mortar increases, causing a
decrease in the mechanical strength. Therefore, MPC-based repair materials should not be
applied in moist or underwater environments [20].

In summary, cement-based materials with the properties of rapid hardening and high
early mechanical strength are more suitable for the concrete repair materials. However,
the effect of shrinkage of rapid hardening materials should be valued. Among the above
cement-based materials, MPC shows better early mechanical properties, shorter setting
time and lower shrinkage than PC and SAC.

2.2. Alkali-Activated Materials

Alkali-activated material (AAM) is an environmentally friendly repair material be-
cause it causes little pollution during production and it presents desirable characteristics,
such as high mechanical strength and resistance to chemical agents, better temperature
stability, improved abrasion resistance and good adhesion to concrete substrates [24]. There-
fore, it has good potential to be used for concrete repair [25]. AAMs are obtained from
the alkaline activation of silica (S5iO;) and alumina (Al,O3)-rich materials, such as fly ash
(FA), blast furnace slag (BFS) and metakaolin (MK) [26]. When AAM is applied to repair
concrete substrates, the Ca (OH), in the substrate will react with the SiO, and Al,O3 in
AAM to form calcium (natrium) silicoaluminate hydrate (C(N)ASH), thereby enhancing the
interfacial adhesion [27]. Nunes et al. [28] found that when 20% of MK was partially substi-
tuted by BFS, the repair performance was best; the compressive strength was higher than
50 MPa, and the tensile bond strength with concrete substrate exceeded 1.7 MPa (see
Table 7). Gomaa et al. [27] found the vertical bond strength between AAM and concrete
decreased with the increase in water content. The MK-based AAM featured good workabil-
ity. The fly ash concrete required the addition of a little expansion agent and plasticizer to
reduce the shrinkage of the fresh AAM and enhance its workability [29]. However, the main
problem of AAM mortar is the high shrinkage and cracking, which are many times higher
than in PC repair mortar. Mariana et al. [24] found that higher aggregate/binder ratio
(2.5/1.5), fiber reinforcement and better curing control (prevention of moist evaporation)
can significantly reduce shrinkage and cracking.
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Table 7. Properties of Alkali-Active Materials mortar as repair materials.

Mix Proportion

Performance

Reference MK (%):BFS (%) W/B 2 Compressive Strength Bond Strength at 7 Days/MPa
at 7 Days/MPa Flexural Bond Strength  Vertical Bond Stress
100:0 - 49.3 1.78 -
[28] 80:20 - 50 1.74 -
60:40 - 56.7 1.3 -
- 0.36 37 - 26
[27] - 0.39 33 - 23
- 0.54 34 - 24.5

2 B: Binder; which is either FA or OPC.

2.3. Polymer-Modified Mortar Repair Materials

Cement-based repair materials usually have problems of high shrinkage and low
flexibility. Therefore, modification of cement-based repair materials by using organic
materials has attracted lots of attention.

The epoxy-modified cement mortar (EC) has been widely studied for concrete re-
pair [30-32] due to its good compatibility with cement-based materials [33,34]. Saccani
et al. [35] studied the adhesion and durability of water-based epoxy resin-modified cement
mortar used to repair deteriorated concrete structures under high temperatures. The ex-
perimental results showed that the EC had good adhesion to the concrete substrate under
heating conditions and the mechanical stress caused by differential thermal expansion coef-
ficients. An aqueous epoxy resin was used to modify ordinary Portland cement with four
different dosages [36]. It was found that the flexural strength of Portland cement mortar
could be improved with epoxy resin reinforcement. It was found that when the epoxy resin
was 5% by weight of cement, the mortar has the highest mechanical strength and interfacial
bonding strength. (see Table 8). Ariffin et al. [37-39] studied the mechanical property of
epoxy resin—-modified cement mortar with different resin contents and found that that
the modified mortars with a resin content of 5% and 10% had compressive strengths of
33 MPa and 36 MPa, respectively, at 28 days. However, when the epoxy resin content
exceeded 10%, the mechanical properties of the modified mortar decreased with an increase
in the resin content (Figure 1). This can be attribute to the unhardened epoxy resin left in
polymer-modified mortars. The excessive epoxy resin inside the mortar probably hinder
the hydration and polymerization process. Wang et al. [40] found that the epoxy resin
can repair the damaged concrete structure by filling cracks. Due to the good mechanical
properties and adhesion of epoxy resin, it can restore the integrity of repaired concrete.

Table 8. Properties of the epoxy-modified cement mortar as repair materials.

Mix Proportion

Performance

Reference Cement:Sand:Water:Epoxy ~ Compressive Strength ~ Flexural Strength  Flexural Bond Strength
Resin at 7 Days/MPa at 7 Days/MPa at 28 Days/MPa
1:2:0.36:0.03 49 9.5 3.8
[36] 1:2:0.36:0.05 50 9.8 49
1:2:0.36:0.07 49.8 9.6 47

1:2:0.36:0.09 49.5 94 4.6
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Figure 1. The mechanical strength of epoxy mortar: (a) Relationship between compressive strength
and epoxy content for wet—dry curing; (b) Relationship between flexural strength and epoxy content
for wet curing and wet-dry curing [37]. (Adapted and reprinted with permission from ref. [37],
© 2015, Construction and Building Materials).

Asphalt mortar (AM) has been applied widely in repairing high-speed railways [41].
Minh et al. [42] studied the factors which influence rheology and hardening properties of
AM, such as asphalt-cement ratio, sand—cement ratio and the type and dosage of additive.
They developed an AM with high fluidity, rapid setting time and high strength which
can improve the stability and regularity of railway roads (see Table 9). Fang et al. [43]
found that the interaction between asphalt and cement can be attributed to both physical
and chemical actions. Normally, the physical actions of adsorption of asphalt on cement
surface and destabilization of asphalt emulsion hold a dominant position. However, when
there are more carboxylic acids components in the emulsion, the chemical action, such
as interaction with Ca?* and chemical bonding, should be taken in consideration. Liu
et al. [44] investigated the bonding mechanism between asphalt-modified SAC repair
mortar and concrete substrates. They found that the bond strength between the mortar and
substrate decreased with the increase in asphalt content when the asphalt-cement mass
ratio exceeded 0.5 (see Table 9), indicating that excessive asphalt had a negative effect on
the modified mortar. This can be attributed to the reduction in free water with the increase
in asphalt-cement mass ratio, which decreased the amount of Aft, and it is AFt that mainly
provides interfacial strength.

Wang et al. [45] studied the flow properties and mechanical properties of cement
mortars modified with styrene-butadiene emulsion. It was found that styrene-butadiene
emulsion had significant influence on the flexural strength of the cement repair mortar,
while it had little influence on the compressive strength. Kharazian et al. [46] found that
there is a decreasing trend in the air voids for samples with higher dosage of the copolymer
(optimizing at a dosage of 15%). It is further strengthened by the results of mechanical
analyses. Bureau et al. [47] found that the strain at rupture and ductility of the mortar
increased with the increase in polymer content. Li et al. [48] also utilized styrene-butadiene
emulsion-modified cement mortar as a repair material and found that the styrene-butadiene
emulsion not only boosted the cement mortar compactness by filling the pores, but also
prolonged the mortar setting time because of the retardation effect of polymers on cement
hydration. There are two aspects of this retardation effect: (1) The carboxyl groups on the
polymer complex calcium ions and (2) polymers are adsorbed on the cement surface and
delay the hydration.

In summary, polymer-modified mortar generally has high mechanical strength, excel-
lent durability and high bond strength with the substrates, but its setting time is usually
longer than that of the non-modified ones.
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Table 9. Properties of cement asphalt mortar as repair material.
Mix Proportion Performance
Reference  Cement:Sand:Water:Asphalt Unconfined Compressive Setting Flexural Bond
Emulsion Strength at 28 Days/MPa Time/Min Strength at 4 h/MPa
1:0.5:0.4:0.75 4.1 17 -
1:0.5:0.4:1 3.4 21 -
[42] 1:0.5:0.4:1.25 1.8 24 -
1:-:0.4:0.75 2.2 20 -
1:-:0.4:1 2.1 25 -
1:-:0.4:1.25 1.7 375 -
Sulphoaluminate fined . . 1 1bond
cement:sand:water-asphalt Unconfined compressive Setting Flexural bon
’ o strength at 28 days/MPa time/min strength at 4 h/MPa
emulsion
1:2.2:0.52:0 - - 2.65
1:2.2:0.52:0.1 - - 2.33
[44] 1:2.2:0.52:0.3 - - 2.12
1:2.2:0.52:0.5 - - 1.87
1:2.2:0.52:0.7 - - 0.99

3. Interface between Cement-Based Repair Materials and Concrete Substrate

A follow-up survey on a large number of existing concrete repair projects showed that
most of the repair materials cannot guarantee a long-term effective repair [49]. Among the
repair projects considered in the survey, over 90% failed to continue in service for 20 years,
and more than half of them were damaged again within 5 years [49]. The failure of repairs
in the short term was mainly attributed to the weak interfacial bonding between the repair
material and substrate [50].

According to the literature [51], the interface between the repair material and old
concrete is similar to the bond between cement paste and aggregates. Therefore, this
interface is called the “interfacial transition zone” [51]. The interface is an inherently weak
zone, in which the porosity is relatively high and the pore size is large [52]. After the repair
material is applied on the substrate surface, a certain incompatibility, inconsistent expansion
and shrinkage occur due to the difference in the composition of the two materials (see
Figure 2) [11,53,54]. These induce interfacial stress concentration effects and consequently
cause interface delamination [53].

A i 4 < 5
- P ‘ 4 .
<7 4 £

Figure 2. Schematic illustration of shrinkage of repair materials in patch repair [11]. (Adapted and
reprinted with permission from ref. [11], © 2014, Construction and Building Materials).



Polymers 2022, 14, 1485

9 of 25

Therefore, effective bonding is required to withstand the aforementioned stresses,
ensuring the integrity and functionality of repaired structures [54]. The interfacial bonding
between repair material and substrate is commonly believed to play an essential role in the
long-term effectiveness of the repair [55]. Consequently, the relevant interfacial property
and interface formed by the two materials have received increasing attention.

3.1. Bonding Strength between Cement-Based Repair Materials and Concrete Substrate

The bond strength between the cement-based repair material and the substrate can be
evaluated by means of various testing methods, such as shear bond strength testing (see
Figure 3), flexural bond strength testing (see Figure 4), pull-out bond strength testing (see
Figure 5) and split-pull bond strength testing (see Figure 6). Flexural bond strength testing
is the same as flexural strength testing except for the method of preparing the samples. It
can not only determine the flexural bond strength, but also show monolithic failure mode
of the repair interface through different fracture positions and sectional conditions [54]. In
shear bond strength testing, the samples are fixed and a load perpendicular to the interface
is applied. It can determine the shear resistance performance of the repair materials [55].
Pull-out bond strength testing is a direct method to determine the tensile strength. In this
test, a square steel block was bonded with the sample surface using epoxy glue, and a
vertical pull force was loaded until the interface broke. Split-pull bond strength testing is
an indirect tensile test. In this test, the applied force was parallel to the bond line interface
of the specimens, and the loading was applied steadily. Then, the split tensile strength
can be calculated through the maximum load and bond area. Albidah et al. [56] adopted a
core pulling testing method to determine the bond strength between geopolymer repair
mortar and old concretes (see Figure 7). In addition to studying the macroscopic mechanical
property of interfacial adhesion in concrete surface repair, some scholars have also proposed
new methods for testing the bond performance. When the flexural bond strength testing
was taken, at the same time, Qian et al. [11] also proposed a new bond performance testing
method (see Figure 8) to quantitatively evaluate the impermeability and interfacial bond
performance between the repair material and the concrete. The shear—tension strength was
determined in this test. A frustum hole was made in the substrate and repair mortar was
cast into the hole to approximate half height. When a force is exerted on the upper surface
of the frustum in the specimen, shear and tension stress will occur along the interface (see
Figure 8). The shear—tension strength can be calculated through the maximum force P.
Garbacz [57] adopted a nondestructive impact—echo technique to evaluate the interface
quality in a repaired system. For this method, a stress wave that can propagate in the
material and have a certain interface reflection was generated by a low-energy impact
steel ball and then was detected by piezo electric sensors after propagating through the
structure. Accordingly, the amplitude of the obtained spectral peak could be used to reflect
the interface bond strength in the repair system (see Figure 9).
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Figure 3. Tests for shear bond strength between repair materials and concrete substrate. (a) slant
shear test set-up for the composite specimen; (b) push-out test for the composite specimen (A, B:
preparation of samples; C: the damage mode; D: Schematic diagram of load force) [58]. (Adapted
and reprinted with permission from ref. [58], © 2012, Construction and Building Materials).

Figure 4. Tests for flexural bond strength between repair materials and concrete substrate [59].
(Adapted and reprinted with permission from ref. [59], © 2018, Construction and Building Materials).
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Figure 5. Tests for pull-put bond strength between repair materials and concrete substrate [59].
(Adapted and reprinted with permission from ref. [59], © 2018, Construction and Building Materials).

Figure 6. Tests for spilt bond strength between repair materials and concrete substrate. (a) cube
specimen; (b) cylinder specimen [60]. (Adapted and reprinted with permission from ref. [60], © 2017,
Construction and Building Materials).
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Figure 7. Tests for core pull-put bond strength between repair materials and concrete substrate [56].
(Adapted and reprinted with permission from ref. [56], © 2020, Journal of Materials Research
and Technology).

Figure 8. Tests for flexural bond strength between repair materials and concrete substrate [11].
(Adapted and reprinted with permission from ref. [11], © 2014, Construction and Building Materials).
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Figure 9. A nondestructive impact-echo technique to evaluate the interface quality in a repaired
system: (a) Scheme of the impact-echo method; (b) example of waveform (time-domain spectrum);
(c) corresponding frequency when defect in concrete is observed [57]. (Adapted and reprinted with
permission from ref. [57], © 2017, Construction and Building Materials).

Kim et al. [61] carried out pull-out bond strength tests to study the bond performance
of cement-based repair materials containing magnesium potassium phosphate for concrete
slab repair. Feng et al. [62] conducted split-pull bond strength tests and slant shear bond
strength tests to measure the tensile strength and the cohesion and friction components
between ultra-high performance concrete (UHPC) repair mortar and normal concrete (NC)
substrate. They found that using UHPC to repair the NC substrate led to better bonding
performance than NC. This can be demonstrated by the denser and more homogeneous
interfacial transition zone between UHPC and concrete substrate.

Through pull-out bond strength testing and double shear bond strength testing, Sadr-
momtazi et al. [63] determined the interfacial bond strength of concrete repair layers mod-
ified by styrene-butadiene resin-based and acrylic-based polymers, respectively. Zhang
et al. [64] conducted pull-out bond strength tests on polymer modified mortar repair and
drew a conclusion that the styrene—-acrylic copolymer improved the bond strength of the
adhesion layer. Julio et al. [65] performed slant shear bond strength tests and pull-out bond
strength tests on concrete repair specimens and found that sandblasting on concrete sub-
strate surfaces increased the bond strength between repair and substrate. Tayeh et al. [58]
adopted both split tensile and slant shear bond strength tests to study the bond strength
between ultra-high performance fiber concrete overlay (UHPFC) and NC substrate. He
found that the interfacial bond property of UHPFC and NC substrate performed greatest
when the NC substrate had a sand blasted surface because it can promote better adhesion,
superior interlocking and, probably, also create a conducive environment pozzolanic re-
action of silica fume to take place by increasing surface area. Gomaa et al. [27] adopted
oblique shear bond strength tests and pull-out bond strength tests to determine the bond
strength between the alkali-activated concrete and ordinary concrete structure. Then, they
could also intuitively infer the difference in the interface adhesion according to the failure
behavior of the repaired sample.

Through the flexural bond strength tests and the split bond strength tests method,
Karima et al. [60] investigated the bond strength and the failure mode of the interface
between a special concrete with 100% of limestone filler and concrete substrate. They found
that the special concrete had good adhesion to NC. Qin et al. [59] employed the flexural test-
ing method to evaluate the interfacial bond properties of different types of repair materials.
Bentz et al. [66] not only performed pull-out and shear bond strength tests, but also carried
out interfacial microstructure analysis and neutron photography observation (a technology
to display the internal structure of samples by using the attenuation of the neutron beam
penetration) to study the influence of the water saturation and surface roughness of the
substrates on the bond strength between repair materials and the substrates.

In summary, there are flexural bond strength tests to determine the bend resistance
and monolithic failure mode of the repair interface; shear bond strength tests, slant shear
tests and push-out tests to determine the shear resistance; and pull-out bond strength
tests, split-pull bond strength tests and core pull-put bond strength tests to determine
the tensile resistance. In addition, the nondestructive impact—echo technique provides a
non-destructive method to evaluate the adhesive property of repair interface.
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3.2. Characterization on the Interfacial Microstructure between Cement-Based Repair Materials
and Concrete Substrate

The interfacial microstructure affects the bond strength between repair materials and
substrate. Therefore, it is necessary to characterize their interfacial microstructure.

Zhou et al. [53] characterized the interfacial microstructure between ordinary cement-
based repair material and concrete substrate through scanning electron microscopy (SEM).
Combining mercury intrusion porosimeter tests and nonevaporating water tests, they
found that the moisture transport between cement mortar and substrate affected the
interface porosity and the interface bond strength. Through SEM analysis, Gomaa et al. [27]
found that a denser microstructure with more calcium aluminate silicate hydration product
existed in the interface between alkali-activated concrete and the concrete substrate than in
the interface with ordinary concrete. At the same time, Gomaa et al. [27] established the
laser triangulation method (which is used to accurately characterize the three-dimensional
profiles of the sample, see Figure 10) to quantify the surface roughness of the concrete
substrate and collect concrete interface morphology data for determining the relationship
between the fractal dimension of the interface and bond strength by using the fractal theory,
which was recently used to analyze pore structure of cement-based materials [67-70].

Qian et al. [11] used SEM and X-ray diffraction technology to study the interface
between MPC-based repair material and concrete substrate. They found that the weak
acid property brought by phosphate in the repair material induces “the etch” on the
substrate surface, so that the material could penetrate into irregular pores and react with the
hydration products of Portland cement. The interfacial bonding performance is improved
both due to the mechanical interlocking and chemical bonding (see Figures 11 and 12). It
can be seen that a higher M/P ratio results in a less condensed microstructure with the
formation of less struvite reaction products and more unreacted magnesia grains in the
substrate as well as the interfacial zone. Therefore, a loose microstructure appears, as
the insufficient hydrates cannot bond all the anhydrous grains. In contrast, the low M/P
ratio results in the formation of a continuous struvite phase which can bond the unreacted
magnesia grains in MPC mortar and the sand particles and hardened OPC paste in OPC
substrate together, acting as an adhesive [59]. Wang et al. [45] adopted SEM to characterize
the microstructure of the asphalt mortar—substrate interface. They demonstrated that the
high bond strength of such interface was mainly due to the mechanical interlocking between
asphalt mortar and substrate. Through mechanical testing and SEM observation, Zhang
et al. [71] found that the interfacial bond strength between ultra-high-performance concrete
(UHPC, as a repair material) and concrete substrate was high. The interface microstructure
and bond strength were greatly improved by calcium-silicate-hydrate (C-S-H) generated
by the secondary reaction between the silica fume in UHPC and the Ca(OH); in the old
concrete substrate. Pang et al. [72] used a digital reflective polarizing microscope and
SEM to characterize the microstructure of the interface between epoxy-modified mortar
and concrete, with nano-silica modified silane as the interfacial coupling agent. It was
found that the application of silane-based interfacial coupling agent significantly improved
the bond strength of the repair interface because of the reaction between silane and both
concrete and epoxy. Moreover, nano-silica modification mitigates the negative effect of
dealcoholization of siloxanes on the hydration of the cement.
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Figure 10. Laser triangulation method to quantified the surface roughness of concrete substrate to be

repaired. (a) Schematic diagram of laser triangulation ranging test apparatus; (b) Installation diagram

of laser triangulation ranging test apparatus; (c) 3D image of the concrete surface [67]. (Adapted and

reprinted with permission from ref. [67], © 2017, Construction and Building Materials).
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Figure 11. SEM micrograph of the microstructure of the interface (Magnification 500 x and 3000 x)
between old OPC substrate and different MPC matrices with different molar ratios of magnesia
and phosphate (7-day-old samples): (a) M/P =10; (b) M/P = 14 [59]. (Adapted and reprinted with
permission from ref. [59], © 2018, Construction and Building Materials).

Figure 12. Backscattered electron image and elemental maps of the interface between old OPC
substrate and MPC matrix, (M/P = 6) [59]. (Adapted and reprinted with permission from ref. [59],
© 2018, Construction and Building Materials).
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Sadowski et al. [73] employed a nanoindentation technique to study the microme-
chanical property of the heterogeneous layer of cement mortar and concrete substrate and
to determine the depth of the interfacial zone (see Figures 13 and 14). The regions where
indentation modulus (M) and hardness (H) fluctuate are the interface regions. When the
substrate has higher M and H values, the lowest values of M and H often appear in the
interface region close to the overlay, and the maximum values of M and H are obtained in
the near surface layer of the substrate, which can be attributed to the penetration of the
new cement paste of overlay into the substrate.
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Figure 13. Optical microscopy view of the surface of concrete specimens to be repair. Samples:
(a) after preliminary grinding (open pores appeared); (b) after the second immersion in epoxy resin in
a vacuum chamber; (c) after final grinding and polishing. The optical microscopy view of the surface:
(d) after preliminary grinding; (e) after final grinding and polishing [73]. (Adapted and reprinted
with permission from ref. [73], © 2019, Construction and Building Materials).
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Figure 14. Exemplary maps of indentation modulus (M) and hardness (H) within the interface
between cement mortar and concrete substrate [73]. (Adapted and reprinted with permission from
ref. [73], © 2019, Construction and Building Materials).
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3.3. Technologies for Improving Bond Strength between Cement-Based Repair Materials and
Concrete Substrates

The quality of repair is affected not only by the repair material but also by external
additives and the concrete substrate to be repaired [74]. Feng et al. [75] proposed that
an increase in roughness of the old concrete surface was beneficial to the shear bond
strength because of the boost of mechanical interlock. Yazdi et al. [76] applied different
surface removal techniques to make rough substrate surfaces and further studied their
effects on the bond strength and failure mode of the repair material-substrate interface.
The experimental results showed that sandblasting on the substrate surface had the most
significant improvement effect on the interface bond strength because of the increase in
roughness. Julio et al. [65] drew a similar conclusion. Lukovic et al. [77] found that the
water exchange between the substrate and the repair material had an important impact on
the interfacial bond property (see Figure 15). When the substrate was pre-saturated, the
interfacial bond strength was highest. Courard et al. [78] found that the water content in
concrete substrate could significantly affect the cement hydration and microstructure in the
repair system due to the moisture exchanged between the repair material and the substrate,
and then influenced the interfacial bond strength. The experimental results showed that
when the water saturation degree of the concrete substrate’s surface was between 50%
and 90%, the interfacial bond performance was best. However, Bentz et al. [66] found
that, according to slant shear bond strength tests and pull-out bond strength tests, the
bond strengths between the repair and substrate were similar with different humidity of
the substrate.

RH and temperature
measuring device

(b)

Figure 15. Sample for moisture exchange measurements; (a) two specimens are placed in a plastic
container pior to X-ray testing; (b) the X-ray system with the position of the sample and tem-
perature and RH sensors [77]. (Adapted and reprinted with permission from ref. [77], © 2015,
Materials (Basel)).

Zanotti et al. [79] studied the effect of steel fiber on the bond strength between cement-
based repair material and old concrete. The interface microstructure revealed that the
steel fiber in repair mortars can effectively improve the bond strength between the repair
material and concrete. As seen in Figures 16 and 17, due to the roughness of the substrate
surface, there are many concavities distributed on the interface. Steel fibers settled inside
the larger concavities and created a “dowel effect” as they intersected the shear/fracture
plane. Feng et al. [62] investigated the adhesion of the interface between concrete and
ultra-high-toughness cement-based repair composites. The cement-based repair composite
modified by steel fibers had an advantage of significant toughness over the ordinary cement-
based repair material. Liu et al. [80] found that a cement mortar, which was modified with a
small amount of polypropylene fiber/silica fume and used as a repair material for concrete
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structure, exhibited improved interfacial bond mechanical properties, which contributed
to both the anti-cracking effect from polypropylene fiber and densification reinforcement
action to the interfacial transition zones of both fiber-matrix and aggregate-cement paste
from silica fume.
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Figure 16. Effect of fiber on the shear bond strength between fiber reinforced concrete and concrete
substrate (substrate-repair shear bond strength: 5, plotted as a function of the fiber volume fraction
in the repair mortar; Vg, the bond plane inclination; «, the substrate treatment: sandblasted or “as
cast”; the type of fiber reinforcement: PVA or steel (13 mm) [79].) (Adapted and reprinted with
permission from ref. [79], © 2018, Construction and Building Materials).

Figure 17. Fracture surface of a sandblasted substrate where steel fibers are bound to repair mortar
after failure (a) and fiber-concrete details from optical microscope (b-e). [79]. (Adapted and reprinted
with permission from ref. [79], © 2018, Construction and Building Materials).

To improve the adhesion of the repair material and the concrete substrate, interfacial
agents have been applied to the substrate surface. Fahim et al. [81] studied the influence of
geopolymer cement slurry as an interfacial agent on the splitting strength between new
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and old concretes. They concluded that this interfacial agent significantly improved the
bond performance between repair material and substrate. Espeche et al. [82] believed that
the application of self-compacting micro-concrete made up of a common cementitious
mortar (cement, a mix of sand type fine aggregates, a superplasticizer admixture and
polymers) as the interfacial agent could reduce the shrinkage of new concrete and generate
C-5-H, calcium hydroxide and ettringite in the repaired surface of old concrete. Neves
et al. [83] covered a concrete surface with polymer as the interfacial agent and found that
the interaction between polymer and hardening cement mortar played a significant role
in increasing the interfacial bond strength. Through the bottom-up design for concrete
surface, Tatar et al. [84] found that surface functionalization by silane could significantly
improve the interfacial fracture energy and durability of cement repair. They suggested that
the cohesion between epoxy resin and substrate combined both mechanical interlocking
and chemical bonding to improve the interface durability [84]. Xiong et al. [85] found
that a silane coupling agent could effectively improve the microstructure of the interfacial
transition zone between repair material and old concrete and, consequently, enhance the
interfacial adhesion of the repaired layer. Pang et al. [72] applied nano-silica-modified
silane as an interfacial coupling agent (SCA) between epoxy-modified mortar and concrete
structure. They found that the interfacial agent could improve the bond strength and
toughness of the interface between epoxy-modified mortar and concrete structure (see
Figure 18).

Based on the literature review above, there are technologies being developed to
enhance the interfacial adhesion for concrete repair. Increasing the surface roughness of the
concrete substrate and using interfacial agents can improve the interfacial bond strength
between cement-based repair and concrete substrate under static loading [81].
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Figure 18. Nano-silica-modified silane as an interfacial coupling agent between epoxy-modified
mortar and concrete structure: (a) Mechanism of the catalytic effect of hydrothermally treated nano-
silica on SCA hydrolysis and condensation, (b) fine-grained effect and interfacial coupling effect of
SCA on portlandite, (c) damage schematic of the interface treated by different means [72]. (Adapted
and reprinted with permission from ref. [72], © 2018, ACS Applied Materials & Interfaces).
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4. Summary

In this paper, the main requirements for cement-based repair materials for concrete
structures were summarized. Mixtures and key properties of some cement-based repair
materials and alkali-activated repair materials were introduced.

According to the literature and application experience, the effectiveness of repair of
a concrete surface is mainly dependent on the interface between the repair materials and
concrete substrates. Therefore, the interfacial properties between cement-based materials
and concrete substrate were concentrated on in this review. A comprehensive overview of
the methods to evaluate their bond strengths was given. More importantly, characterization
of the microstructure of the interface between repair materials and concrete substrates and
the techniques to enhance their bond were summarized, as well. Based on the literature
review, it can be concluded that the increase in roughness on the substrate surface, the
use of polymer-based coupling agents on substrate surfaces and the use of fibers in repair
materials can enhance the bonding strength between cement-based repair materials and
concrete substrates. In addition, modification of cement-based repair materials with organic
materials can also improve their bonding properties with concrete substrates.

However, most of the studies on the bonding between repair materials and concrete
substrates were carried out under static loads. It must be emphasized that, in practice, con-
crete structures usually withstand not only static loads but also repeating loads. Meanwhile,
there are usually more pores and defects such as gaps and microcracks in the interfacial
zone between repair materials and concrete substrates, which causes stress concentration
to easily occur in the interface [62,86-88]. Therefore, even though the level of the repeating
load is much lower than the material strength, the stress concentration in the interface
would promote microcrack formation and propagation and, finally, cause failure. The lack
of studies on the fatigue resistance in the repair system for concrete could be a key reason
for the absence of durable cement-based repair materials for concrete structures. Insights
into the fatigue failure of the surface repair of concrete and methods to mitigate the interfa-
cial stress concentration under repeating loads are key issues in the future investigation for
developing durable repair of concrete.
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