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Abstract: pncB1 and pncB2 are two putative nicotinic acid phosphoribosyltransferases, playing a role
in cofactor salvage and drug resistance in Mycobacterium tuberculosis. Mutations have been reported
in first- and second-line drug targets, causing resistance. However, pncB1 and pncB2 mutational data
are not available, and neither of their mutation effects have been investigated in protein structures.
The current study has been designed to investigate mutations and also their effects on pncB1 and pncB2
structures. A total of 287 whole-genome sequenced data of drug-resistant Mycobacterium tuberculosis
isolates from Khyber Pakhtunkhwa of Pakistan were retrieved (BioSample PRJEB32684, ERR2510337-
ERR2510445, ERR2510546-ERR2510645) from NCBI. The genomic data were analyzed for pncB1
and pncB2 mutations using PhyResSE. All the samples harbored numerous synonymous and non-
synonymous mutations in pncB1 and pncB2 except one. Mutations Pro447Ser, Arg286Arg, Gly127Ser,
and delTCAGGCCG1499213>1499220 in pncB1 are novel and have not been reported in literature
and TB databases. The most common non-synonymous mutations exhibited stabilizing effects on the
pncB1 structure. Moreover, 36 out of 287 samples harbored two non-synonymous and 34 synonymous
mutations in pncB2 among which the most common was Phe204Phe (TTT/TTC), present in 8 samples,
which may have an important effect on the usage of specific codons that may increase the gene
expression level or protein folding effect. Mutations Ser120Leu and Pro447Ser, which are present
in the loop region, exhibited a gain in flexibility in the surrounding residues while Gly429Ala and
Gly127Ser also demonstrated stabilizing effects on the protein structure. Inhibitors designed based on
the most common pncB1 and pncB2 mutants may be a more useful strategy in high-burden countries.
More studies are needed to elucidate the effect of synonymous mutations on organism phenotype.

Keywords: pncB1; mutations; TB; drug resistant; Mycobacterium tuberculosis

1. Introduction

Over recent years, the misuse and irregular intaking of antibiotics in tuberculosis
(TB) treatment caused the emergence of resistant MTB [1–4]. Although several of studies
explored potent anti-tuberculosis targets [5,6], the molecular modifications in the core
structure of proteins have significantly enhanced its antimicrobial characteristics [7].
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Although genes encoding NAD salvage-specific enzymes are present, de novo synthe-
sis of MTB NAD can only show up-regulation of the salvage pathway genes under hypoxia.
In cofactor salvage, the two putative nicotinic acid phosphoribosyltransferases, pncB1 and
pncB2, play an important role. NAD starvation of the de novo pathway mutant shows
a bactericidal effect. Inhibitors against NAD synthetase common to recycling pathways
and also de novo synthesis exhibited the same bactericidal effect against nonreplicating
and actively growing MTB isolates. These investigations highlighted the role of pncB1 and
PncB2 in the universal pathway and as potential targets for active latent TB [8].

Preiss-Handler is a recycling pathway present in a variety of microbes containing
nicotinate phosphoribosyltransferases (pncB) and the universal pathway enzymes, nadD
(nicotinic acid mononucleotide adenylyltransferase) and nadE (NAD synthetase) [9]. pncB1
appears to play a role in basal NAD levels, whereas pncB2 is regulated in vivo growth and
hypoxia [8]. The occurrence of two genes of pncB in the MTB genome is an interesting
mystery as M. leprae lacks pncB genes and has lost these components of the recycling
pathway during extensive deletion. M. smegmatis encodes only one pncB in the genome.

pncB2 plays an important role in the adaptation to nonreplicating persistence including
hypoxia [10], nitric oxide [11], and starvation [12]. The up-regulation of the pncB2 gene
expression throughout hypoxia and enhanced salvage pathway activity confirms the im-
portant role of NAD salvage in human granulomas. In fact, pncB2 also reportedly remains
a member of the DosR regulon [11]. In our previous study [13], we reported mutations
in pncB1 and pncB2; however, the studied samples were very few and the details of the
relationships in the mutations were not studied.

Here, in the current investigation, whole-genome sequences of drug-resistant MTB
isolates were analyzed to observe the frequency of mutations in pncB1 and pncB2 genes.
The mutations’ frequency and their possible effects on protein structure from experimentally
determined whole-genome sequences submitted to the NCBI were also determined in all
amino acid positions of pncB1 and pncB2 proteins.

2. Materials and Methods
2.1. Whole-Genome Sequence Data Retrieval

Seventy-eight drug-resistant WGS from the same geography in FASTQ format were
downloaded from the NCBI genome (ERX3360434-ERX3360514, ERR2510337-ERR2510445,
ERR2510546-ERR2510645) to analyze the genomic variation in pncB1 and pncB2. According
to the laboratory information, random samples were collected from 25 districts of KPK.
All the samples were subjected to genomic reprocessing.

2.2. Whole-Genome Sequence Analysis

The quality of the sequence was checked with FASTQC to trim the low-quality raw
reads and the genome was mapped against the reference strain H37rv (NC_000962.3) [14]
using PhyResSE, a reliable and simple server for Mycobacterium tuberculosis WGS analysis.
Genomic data of Illumina Next-Generation Sequencing and Ion Torrent were analyzed
in paired or single-end reads. PhyResSE applied methods from FastQC, BWA, SAMtools,
and QualiMap. In-depth QC was performed and applied mapping performance and
reports of antibiotic resistance, lineage, and mutations were generated in VCF and CSV file
format [15].

2.3. Structure Modeling of pncB1

The crystal structure of nicotinate phosphoribosyltransferases (pncB1) is not available
in Protein Data Bank (PDB), a database containing the three-dimensional structures of pro-
teins and nucleic acids [16]. Therefore, the 3D structure was retrieved from the AlphaFold
structure database (P9WJI9) [17].
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2.4. Ramachandran Plot of pncB1 Modelled Structure

To validate the protein structures, the Ramachandran plot is one of the most important
tools, showing the ϕ/ψ angles mapping pairs of the polypeptide backbone in the form
of “allowed” or expected values. The modeled structure was subjected to PROCHECK to
validate that the amino acids residues have modelled correctly. Ramachandran plot outliers
have been considered as the standard of protein structure analysis [18,19]. The modeled
structure of pncB1 was also validated using a protein structure analysis (ProSA) server [20]
to predict the z score available online.

2.5. Mutations Effect on pncB1 Stability

To check whether the non-synonymous mutations have any effect on pncB1 protein
stability and flexibility, a point mutation was created in the specific position in the DynaMut
server and the mutant was subject to the DynaMut server [21]. The server is very useful
to infer the substitution effects on protein structure stability, using vibrational entropy
changes in wild type and mutants. The server uses graph-based signatures to measure
the impact of a mutation on the structure. This approach is performing well with accurate
prediction (p-value < 0.001).

2.6. Secondary Structure Prediction of Wild Type and Mutant

Secondary structures of wild type and mutants have been predicted using the PSIPRED
server that allows the users to submit the sequence. The server is highly accurate for protein
secondary structure prediction [22]. To evaluate the performance, PSIPRED used a stringent
validation approach achieving an average Q3 score of 76.5% which is the highest-level
accuracy for any methods published to date.

3. Results

Among the 287 WGS, 230 harbored mutations in pncB1, 36 contain mutations in
pncB2 and 21 samples remained wild type for both of these gene mutations (Supplemen-
tary Files S1 and S2, Supplementary Materials). These samples harbor mutations either
in pncB1 or pncB2 (Supplementary Files S1), among which the most common detected in
pncB1 are Pro447Ser (ccg/Tcg), Gly429Ala (ggc/gCc) and eight nucleotide deletions at
genomic position 1499213–1499220 (Table 1). Mutations Pro447Ser, Arg286Arg, Gly127Ser,
and delTCAGGCCG 1499213>1499220 in pncB1 are novel and have not been reported in
literature and TB databases including GMTV. Very few samples harbor mutations in other
locations of the protein, i.e., Ser120Leu (tca/tTa), Arg286Arg (cgg/cgC), and Gly127Ser
(ggc/Agc).

Table 1. Mutations in pncB1 gene of Mycobacterium tuberculosis.

Position Nucleotide
Change

Type of
Mutation Amino Acid Change

1499213 T Del * GAP

1499214 C Del GAP

1499215 A Del GAP

1499216 G Del GAP

1499217 G Del GAP

1499218 C Del GAP

1499219 C Del GAP

1499220 G Del GAP

1499221 G SNP A * Pro447Ser (ccg/Tcg)

1499274 C SNP G Gly429Ala (ggc/gCc)

1500201 G SNP A Ser120Leu (tca/tTa)

1499702 C SNP G * Arg286Arg (cgg/cgC)

1500181 C SNP T * Gly127Ser (ggc/Agc)
* Novel.
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In total, 36 out of 287 samples harbored 34 synonymous and two non-synonymous
mutations in pncB2 (Table 2). The most common mutation found was Phe204Phe (ttt/ttC),
present in eight genomic samples. Although all these mutations were synonymous, such ge-
nomic isolates still need further validation for phenotypic effect. Mutations Ala323Val
(gcg/gTg) and Phe286Val (ttc/Gtc) were also novel.

Table 2. Mutations detected in pncB2 gene of Mycobacterium tuberculosis isolates.

Sample Position Wild Type Mutant Amino Acid Change

737 666631 A G Phe204Phe (ttt/ttC)
741 666631 A G Phe204Phe (ttt/ttC)
752 666742 C T Ala167Ala (gcg/gcA)
754 666631 A G Phe204Phe (ttt/ttC)
767 666631 A G Phe204Phe (ttt/ttC)
770 666631 A G Phe204Phe (ttt/ttC)
790 666631 A G Phe204Phe (ttt/ttC)
797 666742 C T Ala167Ala (gcg/gcA)
801 666631 A G Phe204Phe (ttt/ttC)
802 666631 A G Phe204Phe (ttt/ttC)

* ERR2510337 666275 G A # Ala323Val (gcg/gTg)
* ERR2510358 666387 A C # Phe286Val (ttc/Gtc)

* Supplementary file S2, # Novel.

Ramachandran plot of modeled pncB1 seems highly accurate with 93% (347 amino
acids) in the favorable region and 6.5% (24 residues) in the allowed region (Figure 1).
The mutation effect was predicted on the modeled structure of pncB1 through the Dyna-
Mut server.
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Figure 1. Ramachandran plot of modeled structure nicotinate phosphoribosyltransferases.
Among 371 amino acids, 347 (93.5%) residues have been modeled in the favorable regions and
6.5% in the allowed region.

The most common non-synonymous mutations in pncB1 demonstrated a stabilizing
effect (Figure 2) which may be useful for MTB survival and growth in extreme conditions.
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According to flexibility analysis, the mutant Ser120Leu seems a little more flexible in some
amino acids but not in all locations. The remaining mutant showed very little rigidification
of amino acid residues in pncB1.
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Figure 2. Mutation effect on the pncB1 structure. The location of the mutations is encircled in blue.
These mutations are present in the loop regions. Mutations Ser120Leu and Pro447Ser are present in
the loop region and exhibited a gain in flexibility in the surrounding residues (red). Gly429Ala and
Gly127Ser also demonstrated stabilizing effects on the protein structure.

Both Ser120Leu and Pro447Ser mutations, which have been detected in the loop region
of pncB1, exhibited a gain in flexibility and stabilizing effect (∆0.351 kcal/mol). Mutation
Pro447Ser, in which a hydrophobic residue is mutated into polar amino acid, exhibiting a
stabilizing effect, is present in the loop region. This change exhibited a limited effect on the
surrounding amino acid residues.

Mutations at position S120L and G127S in pncB1 caused the histidine residues at
position 211 to be a part of the loop region when compared with the wild type (Figure 3).
Similarly, arginine at position 305 which is a part of the loop (circled blue) in WT, G127S,
and G429A (Figure 4), changed into a helix in mutants S120L and P447S. Structure valida-
tions of pncB1 has been shown in Figure 5, showing a Z score −9.44.
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Figure 3. Secondary structure of wild type (WT) and mutant pncB1 protein. Secondary structure
was predicted using the PSIPRED server. The position of the mutations is shown with a green circle.
Residues with black circles changed into loop mutants when compared with WT.
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Figure 5. pncB1 model validation. (A) AlphaFold per-residue confidence score (pLDDT). (B) The
color at position (x, y) indicates AlphaFold’s expected position error at residue x, when the predicted
and true structures are aligned on residue y. (C) ProsA validation modeled pncB1 (Z-score −9.44).

4. Discussion

The roles of pncB1 and pncB2 are obvious in the NAD synthetase pathway and the
antimicrobial activity of potential inhibitors against pncB1 and pncB2 of MTB isolates may
have a therapeutic effect on the treatment of non-replicating isolates in latent TB. However,
designing inhibitors based on pncB1 and pncB2, the most common mutants circulating
in the field, may be a more useful strategy in high-burden countries. In our previous
study [13], we reported mutations in pncB1 and pncB2; however, comprehensive details of
the relationships in the mutations were not studied. In a recent study, pncB1 was linked
with pyrazinamide (PZA) resistance through the analysis of lineage 1 and lineage 3 where
the epistatic effect of pncB1 and pncB2 with pncA was detected, especially with lineage 4 [23].
Whereas evidence suggests that the epistatic relationship with pncA is weaker than pncB2.
In the current study samples, a majority have pncA mutations (Supplementary Files S1)
also harboring mutations in pncB1 or pncB2.

Although synonymous mutations are commonly considered to be without phenotypic
effect, there is growing evidence that these mutations may affect gene expression and
protein folding, ultimately providing an adoptive favor to the organism [24–27]. In very
few cases, the mechanisms of synonymous mutations on organism phenotypic effect
have been illuminated. Zwart et al. identified 10 synonymous mutations in TEM-1 β-
lactamase which increased the Escherichia coli resistance to cefotaxime [24]. Moreover,
synonymous mutations may have an important effect as the application of specific codons
may increase the transgene expression by 1000-fold [28]. Codon usage may be different even
within a single gene. Synonymous mutations at some particular locations may have some
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experience selection because they interrupt motifs of proteins that are recognized by post
and pre-transcriptional regulatory mechanisms, which happens in microRNAs that require
ribosomal pausing sites for proper folding or modification processes in ubiquitin [29].

Predicting the effect of mutations on thermodynamic stability (∆∆G) might be im-
portant in protein science. To gain functional insight into the amino acid substitution and
its effect on protein function, molecular dynamic simulation in combination with bioin-
formatics tools might be important for initial observations [30]. All the non-synonymous
mutations in pncB1 exhibited a stabilizing effect (Figure 1) which may be in favor of bacterial
growth and survival in extreme conditions. However, this effect needs further validation
through laboratory mutant experiments for a better understanding of the effect on MTB
growth and survival.

5. Conclusions

All the drug-resistant samples harbored mutations in pncB1 or pncB2. Mutations at
position Pro447Ser, Arg286Arg, Gly127Ser, and delTCAGGCCG 1499213>1499220 were
novel in pncB1. The non-synonymous mutations exhibited stabilizing effects on the pncB1
structure. Mutations detected in pncB2 were all synonymous except one, which may in-
crease the gene expression level or protein folding effect. However, further studies are
needed to elucidate the effect of these synonymous mutations on organism phenotype.
The presence of mutations in pncB1 and pncB2 of all drug-resistant isolates may be linked
with phenotypic drug susceptibility testing with a large number of genomic isolates for
a better understanding of the phenomena of associations among mutations in genes. In-
hibitors based on the most common pncB1 and pncB2 mutants may be useful in high TB
burden countries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14081623/s1, Supplementary files S1: Mutational data
of retrieved files (ERX3360434-ERX3360514, ERR2510337-ERR2510445, ERR2510546-ERR2510645);
Supplementary file S2: Mutations in pncB1 and pncB2.
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