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1. K-Means 
K-means is a typical algorithm of clustering. It is an unsupervised learning method 

whose purpose is to divide data into meaningful or useful clusters1,2. It was proposed by 
James in 1967. The basic procedure can be divided into the following parts: First, 
determine the number of clusters and select k initial centroids. Then calculate the distance 
between all samples and these k centroids, divide the samples according to the distance, 
and calculate the new centroid of each cluster. At last, iterate the steps above until the 
centroids no longer changes. 

In this article, we use Euclidean distance to represent the distance from the sample 
point to the centroid of the cluster where it belongs. The Euclidean distance is described 
as 𝑑 𝑥, 𝜇 = ∑ 𝑥 − 𝜇       (1) 

where 𝑥 is a data point in cluster 𝐶 , 𝜇 is the centroid of the cluster, n is the number of 
features in each data points. The cluster sum of squares (CSS) of the distances from all 
sample points to the centroid is described as 𝐶𝑆𝑆 = ∑ ∑ 𝑥 − 𝜇     (2) 

where m is the number of clusters. Eq. (2) is also called inertia. The total inertia is the sum 
of all the CSSs. It can be seen as the “loss function” of a K-means model because the 
problem is converted into finding the centroids that minimizes the total inertia. 

Since it is as unsupervised learning algorithm, the real labels of the samples are 
unknown. So, the Silhouette Coefficient (SC) is chosen as the evaluation index of K-means. 
It is also used to select the best number of clusters. The SC value of one single sample is 
defined as 𝑆𝐶 = ,     (3) 

where a is the average distance between the data point and all other points in the same 
cluster, b is the average distance between the data point and all points in the nearest cluster. 

Before SMOTE interpolation, cluster analysis of imbalanced data set is required. This 
study chooses K-means as the cluster algorithm. The key parameter K (the number of 
clusters) in K-means is determined by repetitive experiments with different K values. 
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After each iteration, the distribution of the Silhouette Coefficient and the scatter plot of 
the data set are plotted in Figure S1, Figure S2, Figure S3 and Figure S4. 

 
Figure S1. Distribution of the Silhouette Coefficient of each sample and the scatter plot for various 
clusters when K = 2.  

 
Figure S2. Distribution of the Silhouette Coefficient of each sample and the scatter plot for various 
clusters when K = 3.  

 
Figure S3. Distribution of the Silhouette Coefficient of each sample and the scatter plot for various 
clusters when K = 4.  
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Figure S4. Distribution of the Silhouette Coefficient of each sample and the scatter plot for various 
clusters when K = 5.  

The Silhouette Coefficient plots show the SC score of each sample when the different 
number of clusters are chosen. Different color means different clusters. Generally 
speaking, if the SC score of a sample is close to 1, it means that the distance between the 
sample and the centroid of its cluster is short, and at the mean time far from other clusters’ 
centroids. When K=2, the corresponding average SC score reaches the maximum value 
0.488. So, the entire data set will be divided into two clusters. 
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