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Abstract: Microporous organic polymers (MOPs) were prepared by condensation reactions from
substituent-group-free carbazole and pyrrole with 1,1′-ferrocenedicarboxaldehyde without adding
any catalysts. The resultant MOPs were insoluble in common solvent and characterized by FTIR, XPS,
TGA and SEM. An N2 adsorption test showed that the obtained polymers PFcMOP and CFcMOP
exhibited Brunauer–Emmett–Teller (BET) surface areas of 48 and 105 m2 g−1, respectively, and both
polymers possessed abundant micropores. The MOPs with a nitrogen and ferrocene unit could be
potentially applied in degrading dye with high efficiency.

Keywords: microporous polymers; ferrocenyl; photocatalyst; cationic dye

1. Introduction

Microporous organic polymers [1] consisting of light elements such as C, H, N, O etc.,
featuring tunable functionality and exceptionally high BET surface area, have received con-
siderable academic and industrial attention due to their promising applications in the field
of heterogeneous catalysis [2,3], chemical sensing [4,5], selective gas adsorption [6], dye ad-
sorption [7], light harvesting [8], drug delivery [9], electronic or photoluminescence devices,
and so on over the past decades. A large number of purely organic polymers with micro or
mesopores have been prepared, e.g., hypercrosslinked polymers (HCPs) [10–12], polymers
of intrinsic microporosity (PIMs) [13], conjugated microporous polymers (CMPs) [14,15],
porous aromatic frameworks (PAFs) [16] and covalent organic frameworks (COFs) [17].
Most of the MOPs possessed high BET surface areas and permanent porosity and showed
features of high chemical and hydrothermal stability and low density. In addition, it eased
the preparation with abundant candidate monomers and mature synthesis technology and
the related chemical reactions including Yamamoto couplings [18], Ullmann couplings [19],
Suzuki couplings [20], Sonogashira–Hagihara couplings [21], imide formation reactions [22]
and “click” chemistry [23] as well as various condensation polymerizations [24–28].

Dye molecules, which have been extensively utilized in various industries, have caused
tremendous environmental pollution due to the poor biodegradation of organic dyes [29].
Therefore, the treatment of dye wastewater is of great importance for the environmental
protection. To this end, a large number of catalysts, such as hydrogenated graphitic carbon
nitride [30], TiO2 [31], AC-TiO2 [32], CaBi2O4 [33], CaCO3/Ag2CO3/AgI/Ag compos-
ites [34], Ag@AgCl [35], Cu@MnO2 nanowires [36], etc., have been reported to decompose
organic dyes. In recent years, MOPs with light-responsive catalytic properties have at-
tracted numerous interest [37,38]. Yu et al. have reported serials of microporous polymers
photocatalyst (CMP-CSUs) via the oxidative coupling polymerization approach. They
reported that CMP-CSUs can be used to catalyze C-3 formylation and the thiocyanation of
indoles reactions and Ugi-type reaction [39,40]. Although significant progress toward pho-
toactive MOPs with light-harvesting and catalytic properties has already been achieved, few
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research studies were available on the direct use of MOPs for photocatalytically degrading
organic dye contaminant.

In this work, two hypercrosslinked polymer networks were synthesized by facile
catalyst-free polycondensation from substituent-group-free carbazole and pyrrole with
1,1′-ferrocenedicarboxaldehyde, using 1,4-dioxane as a reaction medium. The abundance
of carbazole, pyrrole and iron atoms in the polymeric skeleton enables us to examine the
photoactive catalysis property of the polymers toward dye molecules, and the cationic
methylene blue (MB) was used as a model dye. Notably, the as-prepared MOPs show
excellent chemical stability, and they could be used to degrade dye with high efficiency.

2. Results and Discussion

As shown in Scheme 1, the nitrogen-rich and ferrocene-based microporous polymers
networks were synthesized in 1,4-dioxane via one-step polycondensation at 220 ◦C from
substituent-group-free carbazole and pyrrole with 1,1′-ferrocenedi-carboxaldehyde without
adding any catalyst. The resultant solid polymers showed complete insolubility in any
organic solvent, for example, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and
N,N-dimethylformamide (DMF), suggesting the hypercrosslinked nature of polymers’
structures. The thermal stability was tested through the thermogravimetric analysis (TGA)
under inert atmosphere at temperature from 25 to 800 ◦C using a heating rate of 10 ◦C/min
(Figure S1, ESI†). A small loss of polymers weight was detected in the preliminary stage
ascribed to the residual solvents and the adsorbed moisture inside the pores. PFcMOP
began to be degenerated at 200 ◦C under nitrogen atmosphere, and the degeneration
temperature of carbazole-based CFcMOP reached 400 ◦C, suggesting that the formation of
a C-C covalent bond between the aldehyde group and benzene ring in carbazole was more
stable than in pyrrole. At temperature from 200 to 800 ◦C, the continuous weight loss of the
polymers was derived from the carbonization of MOPs attributed to the fact that TGA was
carried out under the atmosphere of nitrogen. The X-ray diffraction test exhibited that they
had amorphous morphology (Figure S2, ESI†). Like other microporous polymers, PFcMOP
consisted of loose agglomerates of tiny particles with a rough surface and irregular shape,
as investigated by SEM (Figure 1A,B). Interestingly, CFcMOP using carbazole as a connect
unit can form sphere-like particles (Figure 1C,D).
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Figure 1. SEM images of the two ferrocenyl microporous polymers networks for PFcMOP (A,B) and
CFcMOP (C,D).

The chemical connected structure of MOPs was determined by Fourier transform in-
frared spectroscopy (FTIR). As exhibited in the FTIR spectra (Figure 2), following the defor-
mation (1680 cm−1) and strong reduction of the aldehyde in 1,1′-ferrocenedicarboxaldehyde,
the adsorption bands at 2970 cm−1 were assigned to Csp3–H stretching vibrations indicative
of the successful polymerizations reaction of substituent-group-free carbazole and pyrrole
with 1,1′-ferrocenedicarboxaldehyde. In addition, the bands at around 1640 cm−1 are
assigned to the stretching vibrations of N−H derived from carbazole and pyrrole rings.
Furthermore, the elemental contents information in the as-prepared polymers was inves-
tigated by XPS spectra. As shown in Figures S3 and S4, the iron element signals were
observed in the spectra, and the iron content values listed in Table S1 were 4.91% and
4.61% for PFcMOP and CFcMOP, respectively. In addition, the measured carbon content
was 92.12% in CFcMOP, which agreed with the theoretical values (92.30%) and the higher
carbon contents (91.30%) in PFcMOP than the calculated values (86.95%), which may be due
to the absorption of CO2 in the porous polymers. Furthermore, the nitrogen content values
were 3.17% and 3.24% for PFcMOP and CFcMOP, respectively. The difference between
the measured value and theoretical value could be ascribed to the XPS test on the surface
content of the polymers.
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The porosity of the resultant ferrocene-based polymer networks was evaluated by
the N2 adsorption and desorption isotherms at 77 K, as illustrated in Figure 3a. Both the
two polymer networks exhibited a continual increase of N2 uptake at the relative pressure
(P/P0) up to 1.0, suggesting the characteristics of mesopores. In addition, CFcMOP showed
a steep rise at very low relative pressure (P/P0 < 0.01), and the N2 adsorption of CFcMOP
increased slowly at relative pressure (P/P0) from 0.1 to 0.9, which can be roughly classified
as type I sorption [41]. When the relative pressure exceeds 0.9, nitrogen uptake rapidly
increases, suggesting the presence of meso- and macroporous structures probably derived
from the interparticulate voids because of the loose packing of tiny particles, as detected
by the field-emission SEM micrographs. Utilizing nitrogen as a probe, the pore sizes
and distributions for the two microporous polymers were calculated through the non-
local functional theory (NLDFT) from the adsorption isotherms of nitrogen at 77 K. As
shown in Figure 3b, the PFcMOP exhibits the pore size of about 1.86 nm, and the CFcMOP
shows a slightly smaller pore size located at 1.36 nm, which belongs to micropore region.
Considering the higher molecular size of pyrrole than carbazole, the smaller pore size of
carbazole-based CFcMOP than PFcMOP can be attributed to interpenetration effect, which
is detected in many porous organic polymers [42,43].
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Figure 3. N2 adsorption–desorption isotherms (a) and pore size distribution curves (b) of PFcMOP 
and CFcMOP. 
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and CFcMOP.

The specific surface areas and porosity parameters of PFcMOP and CFcMOP were
calculated from the adsorption isotherms. Using the Brunauer–Emmett–Teller (BET) model,
the CFcMOP possesses specific surface areas up to 104.5 m2 g−1. However, the BET surface
areas of PFcMOP using pyrrole as a building unit descended to 48.8 m2 g−1. That the
BET surface areas of CFcMOP are a little higher than PFcMOP probably can be ascribed
to the condensation reaction of the aldehyde group with two carbon atoms at the same
five-membered ring of pyrrole, while there are different benzene units in carbazole, which
affect the reacting activity of monomers. In addition, the pore volume of PFcMOP and
CFcMOP reached 0.07 and 0.1 cm3 g−1, respectively.

Photocatalytic degradation of dyes was usually seen as an efficient and simple ap-
proach for the removal of dye pollutants due to its high efficiency, low cost and simplicity.
Considering the existence of the metal ion in the microporous polymer networks, the
photocatalytic activity of MOPs in methylene blue degradation under LED light irradiation
was explored. Typically, the time-dependent adsorption of MB on 3 mg PFcMOP and
CFcMOP was investigated at an initial concentration of 10 mg/L in the test tube with
a magnetic stir bar. Firstly, the system was stirred without light for 60 min to keep the
adsorption/desorption balance. After stirring at certain time intervals during the reaction
processes, the absorbance variation of MB was detected at 660 nm by means of UV-vis
spectroscopy in Figure 4. As seen in Figure 5, the efficiency of degrading MB could achieve
54% and 65% within 20 min for PFcMOP and CFcMOP, respectively. After stirring for
100 min, the degradation finally reached 65% and 78% for PFcMOP and CFcMOP, respec-
tively. The higher photocatalytic activity of CFcMOP than PFcMOP can be ascribed to the
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larger special surface area of CFcMOP, in which MB molecules can easy diffuse into the
pore channel of CFcMOP.
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The photocatalytic active mechanism of MOPs was studied below. As is well known,
four species including electron (e−), active hole (h+), hydroxyl radical (OH) and singlet
oxygen (1O2) are presumed to react as active sites for photocatalytically degrading the
dye [44]. Different scavengers, namely CuSO4, EDTA-2Na, tert-butanol (TBA) and L-His
were selectively added to the photocatalytic reaction for quenching electron (e−), active
hole (h+), ·OH and 1O2, respectively. As exhibited in Figure 6a, the presence of CuSO4,
EDTA-2Na, L-His and tert-butanol led to a prominent restraint in the degradation of MB.
It reflected that e−, h+, 1O2 and ·OH were reactive species in this degradation reaction.
As shown in Figure 6a, the efficiency of PFcMOP degeneration reaction descended to
25%, 25%, 20% and 17%, respectively. In addition, the efficiency of CFcMOP degeneration
reaction descended to 38%, 22%, 34% and 20% after adding corresponding scavengers to the
degradation system (Figure 6b). Hence, in the MB photodecomposition reaction catalyzed
by the MOPs, singlet oxygen and hydroxyl radical could be generated simultaneously as
reactive species in the degradation of MB dye.
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3. Conclusions

In summary, two ferrocenyl microporous organic polymers were successfully syn-
thesized utilizing 1,1′-ferrocenedicarboxaldehyde as building monomers. The resultant
polymers networks were examined by FTIR, XPS and SEM in detail. In addition, MOPs
showed good thermal stability and possessed high porosity with a BET surface area from
48 to 105 m2 g−1, and MOPs could be used in degrading dyes with high efficiency.
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