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Abstract: This study investigates the application of a coupled multi-layer perceptrons (MLP) model
with Archimedes optimizer (AO) to predict characteristics of dissimilar lap joints made of polymethyl
methacrylate (PMMA) and polycarbonate (PC). The joints were welded using the laser transmission
welding (LTW) technique equipped with a beam wobbling feature. The inputs of the models were
laser power, welding speed, pulse frequency, wobble frequency, and wobble width; whereas, the
outputs were seam width and shear strength of the joint. The Archimedes optimizer was employed to
obtain the optimal internal parameters of the multi-layer perceptrons. In addition to the Archimedes
optimizer, the conventional gradient descent technique, as well as the particle swarm optimizer (PSO),
was employed as internal optimizers of the multi-layer perceptrons model. The prediction accuracy
of the three models was compared using different error measures. The AO-MLP outperformed the
other two models. The computed root mean square errors of the MLP, PSO-MLP, and AO-MLP
models are (39.798, 19.909, and 2.283) and (0.153, 0.084, and 0.0321) for shear strength and seam
width, respectively.

Keywords: laser welding; polymeric lap joints; artificial intelligence; multi-layer perceptrons;
Archimedes optimizer

1. Introduction

Polymeric materials have been widely used in many engineering, domestic, and
medical applications, including electronics, automotive, aerospace, medical, implants,
medical disposals tissue engineering, dental materials, wind turbine, solar cells, packaging,
and sensors [1–5]. This is due to the advantages over other metallic materials such as being
lightweight, having good specific strength, and being a cost-efficient processing technique.
Joining polymeric materials is a critical industrial issue to obtain high-quality products
that fit a range of industrial and daily-life applications [6–8]. Many joining techniques of
polymeric materials have been developed in literature such as hot plate welding [9], hot gas
implant welding [10], hot gas butt welding [11], friction stir welding [12,13], electromagnetic
pulse welding [14], vibration welding [15], and ultrasonic welding [16,17]. Laser welding
has shown promising applications in the welding of polymeric materials due to its flexibility,
versatility, and speed, producing narrow and deep welds, non-continuous nature, and
non-contact nature [18,19]. There are two widespread laser welding technologies used
in polymeric material welding, namely, laser transmission welding (LTW) and laser butt
welding (LBW). In LBW, the ends of the welded parts are placed together to form a butt
joint and the laser beam irradiates the side surfaces of the two parts. The laser energy is
absorbed by the two welded parts and converted into heat, which is utilized to convert
the welding interface into a softened state. Once the welding interface is converted into a

Polymers 2023, 15, 233. https://doi.org/10.3390/polym15010233 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15010233
https://doi.org/10.3390/polym15010233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-5080-4934
https://orcid.org/0000-0003-0944-4938
https://doi.org/10.3390/polym15010233
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15010233?type=check_update&version=1


Polymers 2023, 15, 233 2 of 16

softened state, they are joined together by applying pressing forces on the welded parts [20].
In LTW, one of the welded parts is put on the other one and the laser beam irradiates the
upper surface of the upper part [21]. The laser beam is passed through the transparent
upper part and absorbed by the lower part in which it is converted into heat. The upper
transparent part may also absorb a small amount of laser energy due to the occurrence of
multiple scattering. This heat, along with clamping forces, is utilized to accomplish the
welding process with minimum energy input [22]. LTW has been extensively used to weld
thin and thick polymeric components [23].

Many experimental studies have been carried out to explore LTW of polymeric ma-
terials by investigating the effects of optical and thermophysical properties of welded
materials, applying coating on the welded materials, welding paraments and conditions,
and laser beam characteristics on the performance of the LTW process [18,19,24]. The
main welding paraments and conditions that affect the induced heat during the welding
process are laser power, welding speed, pulse frequency, laser beam size, and clamping
pressure. Chen et al. [25] investigated LTW of polymethyl methacrylate (PMMA) sheets
by employing copper wires as an absorbing medium that absorbs the laser energy and
converts it into heat. The shear force of welded joint using multi-core wire is higher than
that of single-core wire by about 33.7–124.3% and the maximum obtained shear force was
1100 N. The reason behind this enhancement in the joint strength is that the melted PMMA
material flowed into multi-core wire which resulted in a substantial increase in the Van der
Waals force between PMMA and copper wires. Wang et al. [26] welded polyarylsulfone
(PASF) using the LTW technique utilizing carbon black and zinc particles as absorbing
mediums. The effects of welding parameters (welding speed and laser power) on the joint
strength and interface structure were investigated. The welded joints have a maximum
welding strength of 10.8 MPa at a welding speed of 3 mm/s and a laser power of 26 W.
Irregular ridges and bubbles were found in the weld interface due to the existence of
coating particles and confined gasses in the molten pool. Jankus and Bendikiene [27]
investigated the effects of material transparency during LTW of polyphthalamide (PPA)
sheets with carbon black additives on the weld interface properties. It was observed that
more pores are formed on the weld interface as meltdown increases. The weld strength
is highly affected by the formation of defects inside the weld seam. Yuet et al. [28] inves-
tigated LTW of dissimilar thermoplastics, namely polycarbonate (PC) and PASF. Metal
particles, including tin, zinc, and magnesium zinc alloy, have been employed as absorbents
to enhance the optical properties of welded materials. Experiments were conducted to
explore the effects of welding parameters (welding speed and laser power) as well as metal
particles on the weld morphologies and shear strength. The welded joint with magnesium
zinc alloy particles had the highest shear strength among other particles. The shear force
of these joints reached a high value of 662 N at a welding speed of 8 mm/s and laser
power of 35 W. The shear force reached its peak values at moderate values of laser powers
and welding speeds. Acherjee [29] modeled LTW of dissimilar welded joints made of
PC and acrylonitrile butadiene styrene (ABS) using ANSYS® as a powerful commercial
finite element and parametric design software. All heat transfer modes were considered in
the developed models including heat convection, conduction, and thermal radiation. The
numerical results were confirmed by conduction welding experiments. Both experimental
and simulated results were in good agreement. It was observed that the melt width at the
weld interface is not the same in both welded materials because of the difference between
the thermophysical properties of ABS and PC, especially the glass transition temperatures.

Prediction of the joint characteristics produced by LTW has significant importance in
optimizing the joint quality. Artificial intelligence tools have been reported as efficient tools
to model and predict the response of different engineering processes such as metal cut-
ting [30], desalination systems [31], power generation plants [32], material processing [33],
wastewater treatment plant [34], solar systems [35], and heat exchangers [36]. They also
performed well in the modeling manufacturing process of polymeric materials such as
friction stir welding [37], ultrasonic welding [38], and laser cutting of polymers [39].
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AI tools were also employed to model the laser welding process of different ma-
terials and joint configurations [40–42]. Banerjee et al. [43] introduced an ANN model
to predict the weld quality of stainless steel laser-welded butt joints. The model in-
puts were laser power, wire feed rate, and welding speed; whereas, the model outputs
were overlap factor and tensile strength. The introduced model was trained using
the Levenberg–Marquardt optimizer. The optimal number of hidden nodes was de-
termined. The average percentage error between actual and predicted data was 1.22
and 1.86 for overlap factor and tensile strength, respectively. The shear force of dissim-
ilar lap-welded joints made of copper and aluminum was predicted using the ANN
technique [44]. A prediction accuracy of 91% was found between the predicted and
experimental data. ANN models were developed to estimate weld geometry [45] and
weld depth [46] of laser-welded joints made of titanium alloy and boron steel, respec-
tively. Defects induced in laser-welded joints made of galvanized steel sheets were
detected using the ANN model [47]. Conventional artificial tools suffer low accuracy
due to the well-known drawbacks of the conventional optimizers embedded in the
artificial intelligence models such as trapping at local minima, low convergence rates,
and high computational costs [48]. Metaheuristic optimizers such as Harris Hawk’s
Optimizer [49], mayfly optimizer [50], chimp optimizer [51], heap-based optimizer [52],
transient search optimizer [53], pigeon optimizer [54], cat swarm optimizer [55], rabbit
optimizer [56], and parasitism-predation algorithm [57] have been proposed as internal
optimizers to optimize different artificial intelligence models. Datta et al. [58] employed
four different metaheuristics optimizers genetic algorithm, grey wolf optimizer, Jaya
optimizer, bonobo optimizer, and sine-cosine optimizer to optimize two different ANN
models, namely feed-forward neural network and recurrent neural network, used to
predict the characteristics of laser-welded butt joints made of nickel–titanium alloy.
The inputs of the models were power, welding speed, duty factor, frequency, and fo-
cal distance. The outputs of the models were bead geometry, tensile strength, and
microhardness. The performance of the ANN models was improved by employing
metaheuristic optimizers. The best results were obtained by the bonobo optimizer
followed by the genetic algorithm, grey wolf optimizer, and Jaya optimizer; whereas,
the sine-cosine optimizer had the worst accuracy. Liu et al. [59] employed a genetic
algorithm to optimize the ANN model used to predict the joint characteristics of laser-
welded butt joints made of SUS316L stainless steel. The inputs of the model were
power, welding speed, beam separation, and focal distance. The outputs of the models
were the number of porosities and their average area. The genetic algorithm was also
employed to optimize the welding process to obtain porosity-free welds. In another
study, Yanxi et al. [60] applied optimized ANN using the genetic algorithm to predict
the weld geometry of laser-welded joints. Wu et al. [61] developed a hybrid ANN/bees
optimizer model to reduce the distortion of laser-welded joints.

Based on the discussed literature, AI tools succeeded to model different laser weld-
ing processes, predict joint characteristics, and detect the defects in the welded joints.
Moreover, the integration between AI tools and metaheuristic optimizers outperformed
standalone AI tools. This motivated us to develop a hybrid MLP integrated with AO
to predict the seam width and shear strength of dissimilar laser-welded joints. AO was
employed to improve the prediction accuracy of conventional MLP mode. An optimized
MLP model using PSO as well as standalone MLP was employed to predict the welded
joint characteristics. Different error measures were utilized to assess the performance of
different models.

2. Experimentation

Transparent PMMA and PC sheets of the same size (80 mm length × 40 mm width
× 4 mm thickness) were welded together using the LTW technique [62], as shown in
Figure 1. PC is a transparent, hard, tough, stiff, amorphous thermoplastic with out-
standing impact resistance and strength. It has been widely used in the automotive
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industry, packaging, electronics devices, cash dispenser, electrical devices, baby bottles,
and sporting goods. PMMA is a transparent, rigid thermoplastic polymer with outstand-
ing stiffness, strength, and dimensional stability. It has high resistance to weathering
and ultraviolet light. The mechanical and thermophysical properties of PC and PMMA
are tabulated in Table 1. The welding process was accomplished using an Nd:YVO4 laser
with a wobbling feature [62]. The beam diameter, wavelength, pulse width, average
power, and spot diameter were 1.2 mm, 1064 nm, 4.2 ns, 9.28 W, and 50 µm, respectively.
A lap joint with 30 mm overlap is formed by putting a transparent PMMA on a transpar-
ent PC plaque. A black marker was used to draw a straight line in the location of the
weld line which acted as an absorber to laser light. The stand-off distance and laser spot
diameter were considered as constant parameters during all experiments. The lap joint
assembly was held on the welding table using screw clamps. These clamps provided
the assembly with the required forces for ensuring perfect heat transfer from the black
line-welded plaques.

Figure 1. Experimental setup.

Table 1. Mechanical and thermophysical properties of PC and PMMA.

Property

Thermal
Conductivity
at 25 ◦C
(W/mK)

Specific
Heat
(J/(kg ◦C))

Density
(kg/m3)

Glass
Transition
Temperature
(◦C)

Linear
Thermal
Expansion
(×10−5/k)

Poisson’s
Ratio

Young’s
Modulus
(MPa)

Luminance
Transmission

PC 0.20 1100 1160 141 6.5 0.399 2400 89%

PMMA 0.21 1270 1190 83 6.3 0.328 3300 92%

Laser power (7.89, 8.12, and 8.35 W), welding speed (2, 3, and 4 mm/s), pulse frequency
(25, 30, and 35 kHz), wobble frequency (1, 3, and 5 kHz), and wobble width (0.4, 0.6 and
0.8 mm) were considered as the control factors of the welding process; whereas, seam width
(SW) and shear strength (WS) of the weld was considered as the process responses [62]. The
shear test was carried out on the universal testing machine Instron® model 8801. To ensure
dominant shear loading over bending loading, two square plaques (40 mm × 40 mm) were
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attached to the free ends of PMMA and PC plaques using super glue. Moreover, the loading
area of all specimens was roughened to prevent the possibility of slipping during the test.
The joint strength was considered as the maximum load at the failure of the joint during
the test. The SW was measured using an OLYMPUS 3-D optical microscope model STM-6.
All measurements were carried out three times to minimize measurement errors, and the
average of the three readings was used as the final response. A face-centered composite
design was employed to design the experiments considering three levels of each process
control factor. In this design, center points, star points, and factorial points were 8, 10, and
32, respectively. According to the established design plan, fifty experiments were carried
out as tabulated in Table 2.

Table 2. Experimental plan [62].

Laser
Power

(W)

Welding
Speed
(mm/s)

Pulse
Frequency

(kHz)

Wobble
Frequency

(kHz)

Wobble
Width
(mm)

Seam
Width
(mm)

Shear
Strength

(N)

1 7.89 2 25 1 0.4 0.479 471.24

2 8.35 2 25 1 0.4 0.619 487.23

3 7.89 2 35 1 0.4 0.403 474.38

4 8.35 2 35 1 0.4 0.589 488.87

5 7.89 4 25 1 0.4 0.443 446.08

6 8.35 4 25 1 0.4 0.507 462.18

7 7.89 4 35 1 0.4 0.359 461.72

8 8.35 4 35 1 0.4 0.515 476.22

9 7.89 2 25 1 0.8 0.543 475.44

10 8.35 2 25 1 0.8 0.643 487.43

11 7.89 2 35 1 0.8 0.546 465.08

12 8.35 2 35 1 0.8 0.71 483.57

13 7.89 4 25 1 0.8 0.519 429.78

14 8.35 4 25 1 0.8 0.602 439.77

15 7.89 4 35 1 0.8 0.509 431.92

16 8.35 4 35 1 0.8 0.654 445.41

17 7.89 2 25 5 0.4 0.634 543.24

18 8.35 2 25 5 0.4 0.681 562.98

19 7.89 2 35 5 0.4 0.586 552.13

20 8.35 2 35 5 0.4 0.668 572.37

21 7.89 4 25 5 0.4 0.529 495.33

22 8.35 4 25 5 0.4 0.495 513.08

23 7.89 4 35 5 0.4 0.453 522.72

24 8.35 4 35 5 0.4 0.508 539.97

25 7.89 2 25 5 0.8 0.577 479.69

26 8.35 2 25 5 0.8 0.548 500

27 7.89 2 35 5 0.8 0.587 477.03

28 8.35 2 35 5 0.8 0.682 497.32

29 7.89 4 25 5 0.8 0.493 402.28

30 8.35 4 25 5 0.8 0.422 419.03
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Table 2. Cont.

Laser
Power

(W)

Welding
Speed
(mm/s)

Pulse
Frequency

(kHz)

Wobble
Frequency

(kHz)

Wobble
Width
(mm)

Seam
Width
(mm)

Shear
Strength

(N)

31 7.89 4 35 5 0.8 0.526 417.17

32 8.35 4 35 5 0.8 0.553 434.41

33 7.89 3 30 3 0.6 0.531 497.65

34 8.35 3 30 3 0.6 0.642 517.77

35 8.12 3 25 3 0.6 0.618 616.82

36 8.12 3 35 3 0.6 0.587 646.59

37 8.12 2 30 3 0.6 0.613 607.47

38 8.12 4 30 3 0.6 0.487 566.94

39 8.12 3 30 3 0.4 0.452 541.29

40 8.12 3 30 3 0.8 0.475 498.12

41 8.12 3 30 1 0.6 0.682 507.71

42 8.12 3 30 5 0.6 0.739 524.71

43 8.12 3 30 3 0.6 0.591 582.43

44 8.12 3 30 3 0.6 0.602 577.43

45 8.12 3 30 3 0.6 0.579 580.12

46 8.12 3 30 3 0.6 0.574 574.43

47 8.12 3 30 3 0.6 0.613 579.23

48 8.12 3 30 3 0.6 0.598 582.58

49 8.12 3 30 3 0.6 0.585 578.57

50 8.12 3 30 3 0.6 0.583 572.41

3. Modeling Approach

In this section, the modeling approach is discussed. The basics and mathematical
formulation of MLP and AO are introduced. Then, the hybrid AO-MLP developed to
predict the shear strength and seam width of the welded joints is presented.

3.1. Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) is a well-known feedforward ANN with a fully con-
nected structure. It is composed of multiple layers containing nodes (perceptrons) that
act as data processing units. A typical MLP model has one input layer, one or multiple
hidden layers, and one output layer. All these layers contain many neurons depending
on the modeled process. Each neuron, except the input ones, has a nonlinear transfer
function. This type of ANN model is trained using a supervised learning procedure called
the backpropagation technique. The input neurons receive the input data, and all input
and/or output neurons are connected to the preceding and following neurons in other
adjacent layers. For each hidden neuron, given n inputs from the input layer, the input
value xr

i of the r layer is computed as:

xr
i = Φ

(
∑n

j=1 zr−1
i × Gr

ji + Sj
i

)
(1)

where zr−1
i denotes the preceding layer output; Gr

ji denotes the weight connecting to the

neuron to the j-th input; Sj
i denotes the bias value of i-th neuron; Φ(.) denotes the transfer
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function. The backpropagation process is executed at the output layer by employing the
following loss function:

L = L(zr
1, . . . , zr

h) = ∑h
i=1(z

r
i − ei)

2 (2)

where the r-th and ei denote the output layer and the expected output of the i-th output
neuron. The weights of the model are updated using many techniques such as gradi-
ent descent, mini-batch gradient descent, Nesterov accelerated gradient, and stochastic
gradient descent.

In this study, we employed a gradient descent technique as an easy-to-implement
computational technique. The weights are updated according to the following formula:

Gr
jn = Gr−1

jn − µ × ∂L
∂Gr−1

jn

(3)

where the µ denotes the rate of the learning process.

3.2. Archimedes Optimizer

The AO is a new metaheuristic optimizer developed to solve engineering optimization
problems. It is inspired by Archimedes’ theorem which states that the upward force exerted
on an immersed body in a certain fluid equals the weight of the displaced fluid [63]. In a
typical AO model, several immersed bodies are used as the algorithm’s population. In the
beginning, the locations of the bodies are initialized as follows:

BLk = LLPk + rand × (ULPk − LLPk) (4)

where BLi denotes the position of the k-th body, LLP denotes the lower limit of position
decision parameters, ULP denotes the upper limit of position decision parameters, and
rand is a generator of random numbers.

After that, the volume and density of all bodies are randomly defined as follows:

Vk = rand (5)

Dk = rand (6)

where Vk, Dk and rand denote the volume of k−th body, the density of k−th body, and a
generator of random numbers, respectively.

Then, the acceleration of bodies is determined as follows:

fi = LLFk + rand × (ULFk − LLFk) (7)

where fi denotes the acceleration of the k−th body, LLF denotes the lower limit of accelera-
tion decision parameters, ULF denotes the upper limit of acceleration decision parameters,
and rand is a generator of random numbers.

The volume and density of the bodies are updated according to the following formulas:

Vt+1
k = Vt

k + rand ×
(
Vb − Vt

k
)

(8)

Dt+1
k = Dt

k + rand ×
(

Db − Dt
k
)

(9)

where Vt
k , Vt+1

k , Dt
k, Dt+1

k , Vb and Db denote the k−th body’s volume at iteration t, k−th
body’s volume at iteration t + 1, k−th body’s density at iteration t, k−th body’s density at
iteration t + 1, best body’s volume, and best body’s density, respectively.

The bodies begin to collide with each other until reaching the equilibrium position
after some time. This process is mathematically modeled using a transfer function which
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is employed to change the search behavior from the exploration stage to the exploitation
stage. This transfer function is defined as:

t f = exp
(

g − h
h

)
(10)

where t f , g, and h denote the transfer function, the number of iterations, and the maximum
number of iterations.

Additionally, the AO employs a decreasing density function (d f ) to change the search
mode from global mode to local mode. This function is defined as follows:

d f t+1 = exp
(

g − h
h

)
−

( g
h

)
(11)

During the exploration stage, bodies collide with each other and d f ≤ 0.5. The
acceleration of a certain body is updated according to the following formula:

f t+1
k =

Drm + Vrm × frm

Dt+1
k + Vt+1

k

(12)

where f t+1
k , frm, Vrm, and Drm denote the k−th body’s acceleration at iteration t + 1,

body’s acceleration with random material, body’s volume with random material, and
body’s density with random material.

During the exploitation phase, bodies do not collide with each other, and d f > 0.5.
The acceleration of a certain body is updated according to the following formula:

f t+1
k =

Db + Vb × fb

Dt+1
k + Vt+1

k

(13)

where fb denote the best body’s acceleration.
The acceleration is normalized using the following formula:

f t+1
knorm = σ ×

f t+1
k − fmin

fmax − fmin
− υ (14)

f t+1
knorm, f t+1

k , fmax, fmin, σ and υ denote normalized acceleration, maximum acceler-
ation, minimum acceleration, first normalization parameter, and second normalization
parameter, respectively.

At the beginning of optimization, acceleration has a large numerical value. Then,
it decreases during each iteration. This process accelerates reaching the global solution.
Finally, the locations of the bodies are updated according to the following formulas:

If d f ≤ 0.5,

BLt+1
k = BLt

k + C1 × rand × f t+1
knorm × d f ×

(
BLrand − BLt

k
)

(15)

If d f > 0.5,

BLt+1
k = BLt

b + C2 × C3 × t f × rand × f t+1
knorm × d f ×

(
C3 × t f × BLb − BLt

k
)

(16)

where C1, C2 and C3 are updating constants. Moreover, BLt
k, BLt+1

k , BLt
b, BLb, and BLrand

denote the location of k−th body at iteration t, the new location of k−th body at iteration
t + 1, the best position of a certain body for iteration t, the best position for all iterations,
and the random position of bodies.
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3.3. Optimized Model

The metaheuristic optimizers (PSO and AO) are employed in this study to obtain the
optimal values of biases

(
Sj

i

)
and weights

(
Gr

ji

)
that lead to the highest model accuracy.

Biases and weights are treated as AO bodies which are obtained by minimizing the cost
function through the optimization process. The employed cost function was a mean square
error (MSE) function which is given as follows:

MSE =
∑NS

a=1 ∑NM
b=1(targetab − predictedab)

2

NS
(17)

where predictedab and targetab denote the predicted and real values of output b-th for a
training sample a-th. NS and NM are the total number of training samples and the total
number of outputs, respectively.

4. Results and Discussions

The joint characteristics in terms of shear strength and seam width were predicted
using three AI models, namely, MLP, PSO-MLP, and AO-MLP. Like other AI tools, mod-
els were trained using experimental data to learn and figure out the main features and
relationships that exist in the data. Forty datasets were utilized to train the models which
represent 80% of the whole datasets. Then, the models were tested using the remaining
datasets. Figure 2a shows the predicted shear strength of the welded joints using MLP,
PSO-MLP, and AO-MLP and the target data. There is excellent agreement between the
target data and those predicted using AO-MLP. A moderate agreement between the target
data and those predicted using PSO-MLP is also observed. The worst agreement between
the target data and predicted data is observed in the case of a standalone MLP model.
The same trend is observed for seam width as shown in Figure 2a. The best agreement is
observed for AO-MLP followed by PSO-MLP; whereas, MLP shows the worst agreement.
The absolute errors between the predicted shear strength of different samples and the
experimental ones reveal that AO-MLP has the minimum error among other models, as
shown in Figure 2b. Additionally, the absolute errors between the predicted seam width
of different samples and the experimental ones reveal that AO-MLP has the minimum
error among other models as shown in Figure 2b. The statistical analysis of absolute
errors between predicted data using MLP, PSO-MLP, and AO-MLP and target ones for
shear strength and seam width is shown in Figure 3 and listed in Table 3, considering the
maximum, minimum, average, and standard deviation of the data. MLP has maximum
error values of 122.709 N and 0.416 mm for shear strength and seam width, respectively,
which are the highest among all models; as PSO-MLP has 59.834 N and 0.142 mm, whereas
AO-MLP has 8.464 N and 0.099 mm. The maximum absolute error of MLP is more than
14 and 4 times that of AO-MLP for shear strength and seam width, respectively, which
reveals the tendency of MLP to predict some data with outlier errors that may destroy
the prediction process. AO-MLP has minimum error values of 0.026 N and 0.0008 mm
for shear strength and seam width, respectively, which are the lowest among all models;
as MLP has 3.117 N and 0.004 mm, whereas PSO-MLP has 0.5123 N and 0.0003 mm. The
average absolute error and standard deviation of MLP are more than 19 and 13 times that of
AO-MLP for shear strength, respectively, whereas they are more than 5 and 3 times that of
AO-MLP for seam width. The low values of average shear length and seam width obtained
by AO-MLP reveal the better accuracy of AO-MLP compared with MLP and PSO-MLP. The
low values of the standard deviation of shear length and seam width obtained by AO-MLP
reveal the lower variance of AO-MLP compared with MLP and PSO-MLP.
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Figure 2. Target and predicted data using MLP, PSO-MLP, and AO-MLP for: (a) data of shear strength;
(b) absolute error of shear strength; (c) data of seam width; (d) absolute error of seam width.

Figure 3. Maximum, minimum, average, and standard deviation of absolute errors between predicted
data using MLP, PSO-MLP, and AO-MLP and target ones for: (a) shear strength and (b) seam width.
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Table 3. Statistical analysis of absolute errors between predicted data using MLP, PSO-MLP, and
AO-MLP and target ones.

Statistical Criteria
Shear Strength, N Seam Width, mm

MLP PSO-MLP AO-MLP MLP PSO-MLP AO-MLP

Maximum 122.709 59.834 8.464 0.416 0.142 0.099

Minimum 3.117 0.512 0.026 0.004 0.0003 0.0008

Average 33.925 15.462 1.729 0.127 0.075 0.024

Standard deviation 21.018 12.669 1.505 0.085 0.036 0.022

Q-Q plots shown in Figure 4 confirm the outperformance of AO-MLP over MLP and
PSO-MLP. The plotted points of AO-MLP (green points) have a lower offset from the
straight line compared with that of MLP (blue points) and PSO-MLP (red points). The
low offsets between the plotted points and the straight line indicate the high correlation
between the predicted and target data, and consequently, the high accuracy of the model. It
is observed from this figure that AO-MLP has the highest accuracy followed by PSO-MLP,
whereas MLP has the lowest accuracy. Taylor diagrams shown in Figure 5 also confirm the
outperformance of AO-MLP over MLP and PSO-MLP. AO-MLP has the highest correlation
coefficient, lowest root-mean-square deviation, and reasonable standard deviation com-
pared with that of MLP and PSO-MLP. In the case of shear strength, correlation coefficients
are (0.857, 0.952, and 0.999), the root-mean-square deviation is (35.058, 18.073, and 2.283),
and the standard deviation is (68.184, 51.626, and 57.639) for MLP, PSO-MLP, and AO-MLP,
respectively. In the case of seam width, correlation coefficients are (0.433, 0.839, and 0.920),
the root-mean-square deviation is (0.118, 0.044, and 0.032), and the standard deviation is
(0.1280, 0.068 and 0.068) for MLP, PSO-MLP, and AO-MLP, respectively.

Figure 4. Q-Q plots of predicted data using MLP, PSO-MLP, and AO-MLP and target ones for shear
strength and seam width.
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Figure 5. Taylor diagrams of predicted data using MLP, PSO-MLP, and AO-MLP and target ones for:
(a) shear strength and (b) seam width.

The accuracy of the models are assessed using six of the most commonly used statistical
measures, namely, coefficient of determination (R2), root means square error (RMSE),
mean absolute error (MAE), coefficient of variance (COV), efficiency coefficient (EC), and
coefficient of residual mass (CRM) and overall index (OI) [64]. The model with the highest
accuracy should have unity values of R2, EC, and OI. On the other hand, the model with
the highest accuracy should have minimum values of RMSE, MAE, and COV. As shown
in Figure 6 and tabulated in Table 4, AO-MLP outperformed MLP and PSO-MLP models.
AO-MLP has the highest values of R2, EC, and OI of (0.998, 0.998, and 0.994) and (0.847,
0.841, and 0.878) for shear strength and seam width, respectively. These values are much
higher than that of MLP and PSO-MLP. In the case of MLP, they are (0.735, 0.531, and 0.684)
and (0.187, −2.602, and −1.002) for shear strength and seam width, respectively. In the
case of PSO-MLP, they are (0.907, 0.882, and 0.901) and (0.705, −0.084, and 0.347) for shear
strength and seam width, respectively. AO-MLP has the lowest values of RMSE, MAE, and
COV of (2.283, 1.729, and 0.447) and (0.0321, 0.023, and 5.708) for shear strength and seam
width, respectively. These values are much higher than that of MLP and PSO-MLP. In the
case of MLP, they are (39.798, 33.925, and 7.523) and (0.153, 0.127, and 23.198) for shear
strength and seam width, respectively. In the case of PSO-MLP, they are (19.909, 15.462, and
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3.839) and (0.084, 0.075, and 17.117) for shear strength and seam width, respectively. Thus,
AO-MLP has better accuracy to predict the shear strength and seam width of the welded
joints compared with MLP and PSO-MLP models. This is due to the vital role of AO to
obtain the internal parameters of MLP that maximize the model accuracy. Consequently,
AO-MLP is recommended to model the LTW process of dissimilar lap joints made of PMMA
and PC.

Figure 6. Radar diagrams of different statistical measures used to evaluate the performance MLP,
PSO-MLP, and AO-MLP for: (a) shear strength and (b) seam width.

Table 4. Different statistical measures used to evaluate the performance MLP, PSO-MLP, and AO-MLP.

R2 RMSE MAE COV EC OI

Sh
ea

r
st

re
ng

th MLP 0.735 39.798 33.925 7.523 0.531 0.684

PSO-MLP 0.907 19.909 15.462 3.839 0.882 0.901

AO-MLP 0.998 2.283 1.729 0.447 0.998 0.994

Se
am

W
id

th

MLP 0.187 0.153 0.127 23.198 −2.602 −1.002

PSO-MLP 0.705 0.084 0.075 17.117 −0.084 0.347

AO-MLP 0.847 0.0321 0.023 5.708 0.841 0.878

5. Conclusions

In this study, predictive models were developed to model laser welding of dissimilar
polymeric joints using the transmission welding technique based on the experimental
data reported in [62]. The welded joints were made of polymethyl methacrylate and
polycarbonate sheets. The welding process was accomplished using an Nd:YVO4 laser
with a wobbling feature. A black marker was used to draw a straight line in the location of
the weld line which acted as an absorber to laser light. Laser power, welding speed, pulse
frequency, wobble frequency, and wobble width were considered as the control factors of
the welding process; whereas, seam width and shear strength of the weld was considered
as the process responses. A face-centered composite design was employed to design the
experiments considering three levels of each process control factor. The models were
composed of conventional multi-layer perceptrons coupled with the Archimedes optimizer
or particle swarm optimizer. The prediction accuracy of all models was compared using
different error measures. Archimedes’ optimizer model outperformed the pure model and
particle swarm model. It has the highest values of coefficient of determination of 0.998 and
0.847 for shear strength and seam width, respectively. These values are much higher than
that of the pure model and particle swarm model, which reveals its ability to predict the
process responses with excellent accuracy. For future work, it is recommended to employ
other artificial intelligence tools as well as metaheuristic optimizers to model and optimize
laser welding processes.
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