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Abstract: Background: Different compositions of DSF/NaOH/IA-PAE/R. spp. composite particle-
board phantoms were constructed. Methods: Photon attenuation characteristics were ascertained
using gamma rays from 137Cs and 60Co. Absorbed doses at the location of an ionization chamber and
Gafchromic EBT3 radiochromic films were calculated for high-energy photons (6 and 10 MV) and
electrons (6, 9, 12, and 15 MeV). Results: The calculated TPR20,10 values indicate that the percentage
discrepancy for 6 and 10 MV was in the range of 0.29–0.72% and 0.26–0.65%. It was also found that
the relative difference in the dmax to water and solid water phantoms was between 1.08–1.28% and
5.42–6.70%. The discrepancies in the determination of PDD curves with 6, 9, 12, and 15 MeV, and
those of water and solid water phantoms, ranged from 2.40–4.84%. Comparable results were found
using the EBT3 films with variations of 2.0–7.0% for 6 and 10 MV photons. Likewise, the discrepancies
for 6, 9, 12, and 15 MeV electrons were within an acceptable range of 2.0–4.5%. Conclusions: On
the basis of these findings, the DSF/NaOH/IA-PAE/R. spp. particleboard phantoms with 15 wt%
IA-PAE addition level can be effectively used as alternative tissue-equivalent phantom material for
radiation therapy applications.

Keywords: dosimetric properties; tissue-equivalent phantom; absorbed dose; IA-PAE; radiation therapy

1. Introduction

Phantoms have become essential for quality assurance (QA) and quality control (QC)
in a variety of medical procedures involving radiation. The earliest phantoms consisted
of water or wax, but wax phantoms had a number of issues. Wax formulations differed
greatly depending on the type of wax used and, at low energies, deviated from tissue
equivalence [1]. On the other hand, water has been described as the standard and most
universal phantom material for dosimetry measurements of photon and electron beams. As
the use of liquid water can prove to be challenging and inconvenient in certain situations,
because of its surface tension and the uncertainty in positioning the detector near the surface,
solid homogeneous phantom materials have achieved substantial recognition [2]. The
benefit of these phantoms allows the measurement of the interaction of ionizing radiation
in the human body, which enables the range of doses in various organs and tissues to be
measured according to their sensitivity. The most widely used tissue-equivalent material
(TEM) are those that are both easy to work with and relatively inexpensive. The usage of
natural, readily available, and cheap phantom material, such as wood (Rhizophora spp.), is
often of interest.
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Rhizophora spp. (R. spp.) has received increasing attention for industrial applications
due to its fast-growing nature, high productivity, quick maturity, and high strength, with
advancement in processing technology and increased market demand. The chemical
composition of R. spp. is very similar to those of TEM normally utilized as phantoms
for radiation therapy when compared with other wood species [3–8]. Moreover, R. spp.
possesses convenient morphological characteristics and physiological adaptations, with
moisture content ranging from 5–10% and basic physical density within 0.90–1.04 gcm−3 [9].
Various researchers have shown that R. spp. is a highly attractive material for use as an
effective TEM for a wide range of benefits, including high-energy photon and electron
radiation therapy, as well as X-ray imaging [5–7,10–12]. However, due to its shortcomings,
such as the tendency to be warped, cracked, degraded, and weakened over time, the
usage of appropriate resins with unique characteristics in the development of R. spp.
particleboards has been reported [5–8,11,12]. The type of these curing resins and their
chemical properties are also crucial criteria that should be well-decided for particleboard
phantom formation and structure.

Among the various forms of modifying resins, synthetically-based ones are the most
commonly adopted [13], but prolonged human exposure to non-renewable resources has
been shown to cause chronic toxicity, myeloid leukemia mortality, and lymphohematopoi-
etic malignancies [14–16]. In relation to TEM studies, synthetically based resins were also
found not to be compatible with the intended density and radiation attenuation prop-
erties (RAPs) of R. spp. particleboards as compared to water [17]. On the other hand,
bio-based materials, such as soy protein (DSF—defatted soy flour) developed in wood
resin, have been validated through specific independent studies because of their ready
availability and low cost, coupled with the fact that they are biodegradable, biocompatible,
and eco-friendly [6,7,15,16,18–20].

DSF is a highly oxygenated carbon compound, which makes it attractive for use
in the development of phantom materials equivalent to tissue and water, and it can be
appropriate either as an uncured or a cured bio-based adhesive [18]. Uncured DSF was,
however, identified as a weak adhesive, and a chemical change is needed to break the
internal bonds and disperse the polar protein molecules [6,16,18–24]. The most commonly
used cross-linking agents for DSF are itaconic acid polyamidoamine-epichlorohydrin (IA-
PAE), epoxy, formaldehyde, glutaraldehyde, and glyoxal. Since some of these curing agents
also have a deleterious environmental impact, as well as being non-renewable, IA-PAE
has been considered as an alternative cross-linker for DSF-based adhesives [6,18–20,24].
The cross-linking reaction of DSF with NaOH/IA-PAE resins is highly regarded for their
incomparable multifunctionality, enhanced physical and mechanical characteristics, stable
water resistance, and good wood-bonding ability [6].

The current study aims to construct and examine the dosimetric characterization of bio-
based particleboard phantoms for radiation therapy by integrating DSF-based resins—R.
spp. particles of size ≤74 µm, NaOH (10 wt%)—and four different treatment levels of IA-
PAE (0, 5, 10, and 15 wt%). High energy photon attenuation measurements were ascertained
using a Ludlum setup with 137Cs and 60Co sources with effective photon energies of 0.662
and 1.250 MeV. A linear accelerator (LINAC) was utilized to determine the dosimetric
characteristics of the DSF/NaOH/IA-PAE/R. spp. particleboard phantoms. This is done
using a cylindrical Farmer-type ionization chamber (IC) (NE 2581/334) and Gafchromic
EBT3 radiochromic films to evaluate the tissue–phantom ratio (TPR20,10), percentage depth
dose (PDD) and beam profile of the samples for high energy photon (6 and 10 MV) and
electron (6, 9, 12 and 15 MeV) beams. The findings were compared with those of appropriate
standard phantom materials (water and solid water) utilized in radiation therapy.

2. Materials and Methods
2.1. Preparation of Bio-Based Adhesives

As previously reported [6,7], the synthesized IA-PAE solution had a solid content of
55.96± 0.01 wt%, a pH of 6.68 at 27.58 ◦C, and an apparent viscosity of 100.40 ± 0.25 mPa.s,
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comparable to commercial PAE-soy protein (C-PAE-SF) and IA-PAE reported by Gui et al. [19].
The DSF-based bio-adhesives were prepared at room temperature by dissolving 35 g of
DSF under steady mechanical stirring in distilled water (65, 50, 45, and 40 g) for 0.5 h
following the procedure described by Samson et al. [6]. Various concentrations of the
prepared IA-PAE (0, 5, 10 and 15 wt%) were then applied to the uniform mixtures and
moderately stirred for 0.5 h. The cured DSF/IA-PAE slurry mixture was maintained at
pH 11.0 with 2N of NaOH (10 wt%) solution, since pH 11.0 is the optimum condition for
cross-linking reactions [25].

2.2. Fabrication of DSF/NaOH/IA-PAE/R. spp. Particleboard Phantoms

At the start of the process, all sample formulations with particle size ≤ 74 µm were
thoroughly mixed by hand as they were applied for 0.5 h to the DSF/NaOH/R. spp. mix-
ture with different IA-PAE content. Thereafter, they were mixed evenly for another 10 min
using a rotary mixer machine to ensure the uniformity of the samples. By using a mould of
dimension (30 cm × 30 cm × 1.0 cm), the mixtures were subsequently cold-compressed
for 10 min using a hydraulic press machine (0.49 MPa, 5 min, and 0 ◦C) fitted with stops
to achieve a target density of 1.0 gcm−3 at room temperature and relative humidity of
55%. The stacked mats were then constructed using a hydraulic hot press machine at
170 ◦C for 20 min with 20 MPa [6]. A total of 150 units of DSF/NaOH/IA-PAE/R. spp.
particleboard phantoms were developed. Tables 1 and 2 have been tabulated to examine the
physico-mechanical and dimensional stability properties (PMDSP) (MC—moisture content,
SC—solid content, IB—internal bonding, MOR—modulus of rupture, MOE—modulus
of elasticity, TS—thickness swelling, and WA—water absorption), elemental composi-
tions, effective atomic numbers (Ze f f ), and electron densities (Nel) of the particleboards
and standard phantom materials. As can be seen, Table 1 shows that sample A15 with
15 wt% IA-PAE concentrations provides the ascribable parameters and meets the minimum
requirements of Type 8, Type 13, and Type 18, according to JIS A-5908 [26]. The Ze f f and
Nel of these phantoms, which were the exclusive parameters used to characterize various
types of materials, were found to be comparable to those of water and other commercial
phantom materials (Table 2).

Table 1. PMDSP of particleboard phantoms.

Sample

Physico-Mechanical Property Dimensional Stability Property

MC (%) SC (%) IB (MPa) MOR (MPa) MOE (GPa)
TS (%) WA (%)

2 h 24 h 2 h 24 h

A0 7.44 ± 0.21 33.18 ± 0.40 0.11 ± 0.09 5.39 ± 0.57 2.04 ± 0.10 34.62 ± 1.8 50.3 ± 1.7 60.2 ± 1.1 66.1 ± 0.9
A5 8.08 ± 0.30 34.10 ± 1.08 0.65 ± 0.02 14.18 ± 0.31 4.46 ± 0.51 21.11 ± 1.0 25.2 ± 1.3 31.4 ± 1.6 36.3 ± 1.0
A10 7.11 ± 0.27 35.06 ± 0.56 0.69 ± 0.06 17.60 ± 0.45 7.30 ± 0.13 10.20 ± 1.2 11.0 ± 1.8 24.2 ± 0.8 30.6 ± 1.2
A15 7.05 ± 0.19 37.31 ± 1.01 0.72 ± 0.01 18.97 ± 0.22 7.89 ± 0.11 10.01 ± 0.9 10.5 ± 1.2 20.7 ± 1.0 23.9 ± 0.5

Remark: A0 = Uncured R. spp., A5 = DSF/NaOH/IA-PAE/R. spp., A10 = DSF/NaOH/IA-PAE/R. spp.,
and A15 = DSF/NaOH/IA-PAE/R. spp. indicate 0, 5, 10, and 15 wt% IA-PAE. Data are expressed as an
average ± standard deviation (SD).

Table 2. Elemental compositions, Ze f f , and Nel of phantom samples.

Sample
Weight Fraction of Elements in Each Sample (%) Ze f f Nel × 1023

H C O N Na Mg p S Cl K Ca Fe Zn

A0 - 51.01 46.24 2.64 - - - 0.11 - - - - 7.18 a 3.39
A5 - 51.48 42.10 4.71 0.55 0.20 - - 0.15 0.21 0.60 - - 7.45 a 3.26
A10 - 51.07 43.92 4.02 0.28 - - - 0.11 0.24 0.31 0.05 7.51 a 3.33
A15 - 53.11 41.28 2.56 0.43 0.04 0.12 0.05 0.32 0.18 1.75 0.07 0.09 7.72 a 3.34

Solid water 8.10 67.20 19.90 2.40 - - - - 0.10 - 2.30 - 7.29 b 3.32
Water 11.20 - 88.80 - - - - - - - - - 7.42 b 3.34
Virtual
water 7.70 68.70 18.90 2.30 - - - - 0.10 - 2.30 - - 6.12 c 3.38

PMMA 8.00 60.00 31.96 - - - - - - - - - - 5.85 c 3.87
Polystyrene 7.74 92.26 - - - - - - - - - - - 5.29 c 3.43

a Curent study, b Sahoo et al. [27], c Schoenfeld et al. [28].
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Using the gravimetric technique (Equation (1)), the average particleboard densities
(ρ) were assessed, and the propagation of uncertainty was deduced based on the external
dimensions using Equation (2):

ρ =
m

l × w× h
(1)

dρ =

(
dm
m

+
dl
l
+

dw
w

+
dh
h

)
ρ (2)

where, m, l, w, and h denote the respective particleboard mass, length, width, and thickness;
dm, dl, dw, and dh are the uncertainties in m, l, w, and h, respectively.

The computed tomography (CT) image modality was achieved based on a previous
technique detailed by Samson et al. [7]. The parameters of the various standard phantom
materials, compared with DSF/NaOH/IA-PAE/R. spp., are listed in Table 3. The results of
the average density show that the density of A15 is within the range found for water and
other commercial phantom materials. According to the results, the mean HU values and
ED of the A15 were near to those acceptable standard reference equivalent materials [7],
while a significant variation is observed with Ao, A5, and A10, respectively. This might
explain the fact that better attenuation abilities were observed when X-ray beams passed
through the corresponding sample (A15). Therefore, the A15 sample formulation showed
the potential to replicate human tissue because it has a comparable dynamic and is higher
in terms of stability as a medical phantom.

Table 3. Parameters of various standard phantom materials compared with DSF/NaOH/IA-PAE/R. spp.

Phantom Materials Manufacturer Density (g/cm3) Mean HU Value ED × 1023 (Electrons/cm3)

A0 Current study 1.07 −89.71 3.39 a

A5 Current study 0.96 −55.55 3.26 a

A10 Current study 0.99 −33.01 3.33 a

A15 Current study 1.01 −12.79 3.34 a

Solid water
Gammex,

Middleton,
WI, USA

1.04 5.30 3.32 b

Water - 1.00 −9.01 3.34 b

Virtual water
Med-Cal,

Middleton,
WI, USA

1.04 −7 ± 7 3.38 c

Polymethyl methacrylate - 1.19 133 3.87 c

Polystyrene - 1.06 140.5 3.43 c

a Current study, b Sahoo et al. [27], c Schoenfeld et al. [28].

2.3. Measurement of RAPs

The attenuation properties were determined using a Ludlum lead equivalent setup,
as depicted in Figure 1. 137Cs and 60Co sealed sources with effective gamma energies of
0.662 and 1.250 MeV were used to provide the incident photons. The sources and the
Ludlum NaI(TI) detector, with diameters of 2.5 cm and 6.5 cm, were encapsulated in a lead
container with collimation of diameter 0.5 cm and thickness of 2 cm to simulate the line
source projection and avoid leakage. An aluminum (Al) plate of dimension 7 cm × 7 cm,
with an approximate thickness of 0.1 cm, was used as an attenuator to produce the scattered
photons. The optimum distance between the source compartment and the Al plate and
between the Al plate and the detector compartment was 30 cm, whereas the distance
between the phantom samples and the detector compartment was 6.2 cm. The transmitted
photons from the source were collected and detected using the Ludlum scintillation detector
connected to a single channel analyzer (SCA).
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The linear attenuation coefficient (LAC) and mass attenuation coefficient (MAC) are
the fundamental parameters to evaluate the dosimetric and radiation shielding performance
of any composite material. These commonly used parameters provide some information on
the possibility of photon interaction processes with matter per unit thickness. As a photon
beam propagates through a homogeneous medium, the beam intensity at depth t is assigned
as It, whereas the beam intensity at a reference point in the absorbing material (t = 0), is
assigned as Io. This can be described by the familiar Beer-Lambert’s law (Equation (3)) [6,7].

µ =
1
x

ln
(

Io

It

)
(3)

µm =
µ

ρ
=

1
ρt

ln
(

Io

It

)
=

A
M

ln
(

1
T

)
(4)

where µ (cm−1) denotes the LAC, ρ (g·cm−3) is the density, x (cm) and t (g·cm−2) are the
physical thickness and mass thickness (mass per unit area), T is the transmittance, M (g)
is the mass of the sample material, A is the cross-sectional area (cm2), and µm (cm2g−1)
indicates the total MAC. The total µm values were calculated on the basis of the mixture
rule by using the weight fraction (ωi) for each element i of the particleboard materials, as
expressed in Equations (5) and (6):

µm =

(
µ

ρ

)
DSF−based particleboard

= ω1

(
µ

ρ

)
1
+ ω2

(
µ

ρ

)
2
+ . . . =

N

∑
i=1

ωi

(
µ

ρ

)
i

(5)

ωi =
ni Ai

∑i ni Ai
=

ρ̃i
ρ

(6)

where ni denote the number of atoms of the ith individual element, Ai is the atomic weight,
and ρ̃i is the actual mass density. The related cumulative discrepancies in the experimental
MAC were obtained by using the propagation of error relationship from ambiguities in
Io, It, x and areal density (ρ) [7]:

∆
(

µ

ρ

)
=

1
ρ

√√√√[(∆It

It

)2
+

(
∆Io

Io

)2
+

(
ln

∆Io

It

)2
+

(
∆x
x

)2
]

(7)

where ∆It, ∆Io, and ∆x are the errors in the intensities It, Io, and thickness x of the
sample material, respectively. Paired t-test using SPSS (V22.0) was used to calculate any
variations in µm values, as compared with the value of water ascertained via the photon
cross-section database (XCOM) [29]. The half-value layer (HVL–X1/2) is used to assess how
far X-ray penetrates the particleboard samples, which were used to verify the performance
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of the patient’s radiation exposure. It can be defined, as given in Equation (8), whereas
Equation (9) is the relationship between the mean free path (MFP− λ) and X1/2 [7,8].

HVL, X1/2 =
0.693

µm × ρ
(8)

MFP, λ =
X1/2

0.693
(9)

2.4. Dosimetric Evaluation of DSF/NaOH/IA-PAE/R. spp. Particleboard Phantoms

Samples with up to 15 wt% IA-PAE addition were selected because of their opti-
mum characteristics, and a total of 34 units of DSF/NaOH/IA-PAE/R. spp. particleboard
phantoms of sizes 30 cm × 30 cm × 1.0 cm and 30 cm × 30 cm × 0.5 cm, simulating the
dimensions of widely used solid water phantom slabs (CIRS Inc., Norfolk, VA, USA), were
fabricated. Additionally, two of these slabs were designed with slots to accommodate
the cylindrical IC. The Farmer-type IC was used due to its unique features, such as high
precision, stability, dose rate independence, excellent linearity, little to no fading, and equiv-
alency to soft tissue nature. All experimental measurements with both photon and electron
beams were carried out on the medical Elekta Synergy PRIMUS LINAC at the Department
of Oncological and Radiological Science, Advanced Medical and Dental Institute, Universiti
Sains Malaysia (USM).

2.5. Determination of Photon Beam Quality Index (TPR20,10—Tissue Phantom Ratio)

Samples of DSF-based particleboard and solid water phantoms were mounted and
aligned on the central axis of the beam, followed by the insertion of the IC into an electrom-
eter (Model PTW-Unidos ET10008/081134) at depths z = 20 cm and z = 10 cm below the
water surface at 10 cm × 10 cm field size and 100 cm SSD, as depicted in Figure 2. Before
taking any reading, the IC and electrometer were warmed up for 10 min. For each of the
phantom samples, three exposures were made at the two depths, and the average charge
collected was evaluated. The expression related to the charge collected at the two depths
can be expressed as:

TPR20,10 =
Q20

Q10
(10)

where Q20 and Q10 are the respective charge (nC) collected at depths z = 20 cm and
z = 10 cm for DSF-based particleboards, water, and solid water phantoms, respectively.
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2.6. PDD Evaluation Using IC

Samples of 15 cm thickness were placed on the LINAC couch to establish the photon
and electron beams with backscatter. The calibrated IC with an inner volume of 0.6 cm3,
connected to the electrometer, was placed in the chamber slot to acquire PDDs in the
DSF-based particleboards, water, and solid water phantoms, as displayed in Figure 2.
The slabs of solid water were selected for the phantom material, as it was found to be
appropriate for dosimetry of high energy photon and electron beams [30]. The IC and
phantoms were positioned in an isocentre distance of the LINAC at an SSD of 100 cm
using the front pointer device, and the field size was set at 10 cm x 10 cm on the surface
in accordance with the calibration parameters in the dosimetry protocol of IAEA TRS-
398:2000 [31]. Exposures were rendered using photon beams of 6 and 10 MV and electron
beams of 6, 9, 12, and 15 MeV with 100 monitor units (MU). Particleboard slabs were added
above the IC to assess the ionization at depth below the surface of the phantoms, and the
SSD and field size were subsequently readjusted. During these measurements, both the
gantry and collimator angles were set to zero degrees. The PDDs were measured from
the phantom surface at 0 cm until a depth of approximately 20 cm was reached along
the central axis, with a measurement interval of 1 mm from the surface to 2 cm depth
followed by 2.5 cm and then 3 cm up to 25 cm. The PDD determination for each depth
took 6 s. Exposure using electron beams was achieved by adopting an applicator to the
LINAC treatment head. After each exposure, a time delay of 120 s was applied before
the next phantom slab was inserted in order to take proton production into account. The
PDD values were expressed as a percentage of the absorbed dose at a given depth D′ to
the absorbed dose at a specified reference depth (maximum depth) D” along the central
axis of the phantom samples (Equation (11)). The discrepancy in the calculated PDD was
estimated as a percentage (D%), as given in Equation (12):

PDD =
D′

D′′
× 100% (11)

D(%) =
PDD(DSF) − PDD(water/solid water)

PDD(water/solid water)
× 100 (12)

where PDD(DSF) is the PDD for the constructed DSF-based R. spp. particleboard phantom
samples and PDD(water/solid water) is the PDD for the water and solid water phantoms.
The PDD curves were plotted for 6 and 10 MV photons, as well as for 6, 9, 12, and
15 MeV electrons.

2.7. PDD Evaluation Using Gafchromic EBT3 Radiochromic Films

The Gafchromic EBT3 radiochromic film sheets (Lot #: 05161903), with dimensions
of 20.3 cm × 25.4 cm, were inserted between the DSF-based particleboard phantoms
and solid water phantoms in a portrait orientation due to their near tissue- and water-
equivalent characteristics, and 10 cm of phantom material was placed under the film to
ensure sufficient backscatter. Phantom slabs were inserted above the film, and the SSD and
field size were readjusted afterward. The measurements were repeated until a depth of
almost 20 cm, and the results were compared with that of water and solid water phantoms.
All films were marked with reference points to indicate the film orientations relative to
the gantry. Irradiation was made parallel to the beam for a static 10 × 10 cm2 field size at
100 cm SSD and with a dose ranging from 0 to 700 cGy. Three films were exposed for each
photon and electron energy. The irradiated films were kept at room temperature for 24 hrs
post-irradiation to allow time for the polymerization reactions in the film to stabilize and
produce a stable optical density measurement [32]. The films were then processed with
an EPSON Expression 10,000 XL flatbed scanner. To acquire images, a desktop computer
was interfaced with the scanner, and VeriSoft® software 5.1 was used for image scanning
and capture. The experimental setup for the PDD evaluation is highlighted in Figure 3.
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The PDD data were normalized to the maximum dose, expressed as a percentage, and the
percentage variation was measured, as indicated in Equations (11) and (12).
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3. Results and Discussion
3.1. Density Measurement of DSF-Based R. spp. Particleboard Phantoms

Figure 4 displays the variation of average densities with point distribution of DSF-
based R. spp. composite particleboard phantom slabs. It is seen that the constructed
particleboard phantoms exhibit acceptable quality values of average densities to those of
water (1.00 gcm−3) and solid water phantom (1.04 gcm−3) in the range between 0.99 ± 0.01
–1.04 ± 0.03 gcm−3, making them potentially suitable for use in the fabrication of tissue-
equivalent phantom materials. This is attributed to better adhesive-coated particles that
provide intimate contact with the mat’s wood particles and, thus, increase the bonding
capabilities of the particleboards. This revealed that the combination of DSF/NaOH/IA-
PAE with an increased percentage concentration of IA-PAE up to 15 wt% leads to an
improvement in the average mass density of the particleboards approaching the value of
water. These findings are in good agreement with previous studies of the average density
of particleboard phantoms for dosimetric applications at high photon and electron energies
utilized in radiation therapy [5,10].
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Figure 4. Average density with point distributions of DSF/NaOH/IA-PAE/R. spp. composite
particleboard phantoms.

3.2. Evaluation of RAPs

The experimental computation has been performed in order to obtain the total LAC
and MAC values for photon energies of 0.662 and 1.250 MeV and compared with those of
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solid water phantom and theoretical values of water using cross-section data (XCOM), as
displayed in Table 4. The errors in density, thickness, incident, and transmitted gamma-ray
intensities were used to evaluate the uncertainties in experimental MAC. The dependency
of MAC values on photon energies can be explained by the dominance of partial photon
interactions (e.g., photoelectric absorption, coherent scattering, incoherent scattering, and
pair production) with the samples. As we know, the photoelectric effect dominates below,
and pair production dominates above 1 MeV, whilst Compton scattering dominates at
around 1 MeV [8,33]. The calculated values of LAC ranged from 0.059–0.083 cm−1 for
0.662 MeV photon energy, while for 1.250 MeV, the observed LAC values were within
0.043–0.056 cm−1. Additionally, the observed total MAC values for these photon energies
ranged between 0.059–0.082 cm2g−1 at 0.662 MeV, whereas for 1.250 MeV, the MAC values
were found to range between 0.041–0.056 cm2g−1. The estimated errors in experimental
total MAC values for all the samples were less than 0.028%. As observed from Figure 5a,
the difference of total MAC values with the incident photon energy for all composite
particleboard samples and those of solid water phantom and water (XCOM) is almost
identical as IA-PAE concentration increases with A15, depicting higher MAC values for
both photon energies, potentially providing a useful approximation of tissue-equivalent
phantom materials. As expected, by increasing the incident photon energy, the total MAC
values in all samples decreased slightly. This behavior may be due to the incoherent
scattering process, which becomes the dominant mechanism in this region [34]. This can
be ascribed to the fact that the Compton scattering cross-section is inversely proportional
to the incoming photon energy (E−1) and varies linearly with atomic number. In all the
investigated samples, by increasing the incident photon energy, the highest HVL and MFP
values were found for samples containing A0 and A5, while the lowest values were found
for water (XCOM) and solid water phantom (Figure 5b,c). It was also observed that, in all
samples and for all energies, A15 has the lowest HVL and MFP values with approximately
no noticeable difference relative to those of solid water phantom and water (XCOM), which
implies a higher radiation absorption ability. A comparison between the calculated values
shows reasonable agreement with 15 wt% IA-PAE, solid water phantom, and theoretical
values of water (XCOM), as depicted by the χ2 values (Table 5). It can be seen that, among
the selected samples, A15 provided the least values of χ2 (0.044). This revealed, with an
insignificant difference, the closest value of RAPs to those of solid water phantom and the
theoretical value for water (XCOM).

Table 4. LAC and MAC values of DSF/NaOH/IA-PAE/R. spp. particleboards and solid water
phantoms in comparison with water (XCOM).

Sample Average ρ (gcm−3)

137Cs
(0.662 MeV)

60Co
(1.250 MeV)

µ (cm−1) µ/ρ (cm2/g) σµ/ρ ± (%) µ (cm−1) µ/ρ (cm2/g) σµ/ρ ± (%)

A0 1.040 0.063 0.061 0.028 0.043 0.041 0.023
A5 1.038 0.067 0.064 0.021 0.045 0.044 0.017
A10 1.002 0.070 0.070 0.019 0.054 0.054 0.015
A15 1.006 0.083 0.082 0.009 0.056 0.056 0.011
Solid water 1.040 0.085 0.082 0.013 0.058 0.056 0.017

Water (XCOM) 1.000 0.086 0.059
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Table 5. χ2 values for MAC of DSF-based R. spp. particleboards and solid water phantoms.

Sample
χ2 Water (XCOM)

137Cs (0.662 MeV) 60Co (1.250 MeV)

A0 0.797 0.612
A5 1.098 0.779
A10 0.709 0.111
A15 0.198 0.044
Solid water 0.095 0.031

3.3. Dosimetric Characteristics of DSF-Based R. spp. Particleboard Phantoms
3.3.1. Measurement of Photon Beam Quality Index

The tissue-phantom ratio (TPR20,10) remains the most appropriate parameter for
ascertaining the beam quality of a clinical photon beam. It is believed that material with
near TPR20,10 to water has similar RAPs to those of water and soft tissue [35]. The measured
TPR20,10 values of DSF-based R. spp. particleboards (sample A15), solid water, and water
phantoms for 6 and 10 MV photon beams with the use of IC are presented in Tables 6 and 7.
The result indicates that the percentage discrepancies of sample A15 in comparison to those
of solid water and water phantoms are in the range between 0.29–0.72% for 6 MV photons.
Likewise, the discrepancies for the 10 MV photon beam are within the acceptable range
of 0.26–0.65%. These results are in good agreement with previous work on the TPR20,10 of
renewable resources in the respective photon energy ranges [5,10].



Polymers 2023, 15, 244 11 of 18

Table 6. TPR20,10 measurement for DSF/NaOH/IA-PAE/R. spp. particleboards (sample A15), water,
and solid water phantoms for 6 MV photons.

Phantom Depth (cm)
Charge Collected (nC)

Mean Ratio
Discrepancy (%)

1 2 3 W/S W/R S/R

Water
20 9.786 9.791 9.792 9.789

0.698 - - -
10 14.04 14.01 14.03 14.027

Solid water
20 9.511 9.509 9.512 9.511

0.695 0.43 - -
10 13.69 13.69 13.69 13.690

DSF-based
20 9.845 9.836 9.841 9.841

0.693 - 0.72 0.2910 14.22 14.20 14.20 14.207

Note: W, S, and R depict the water, solid water, and DSF-based (DSF/NaOH/IA-PAE/R. spp.) phantoms.

Table 7. TPR20,10 evaluation for DSF/NaOH/IA-PAE/R. spp. particleboards (sample A15), water,
and solid water phantoms for 10 MV photons.

Phantom Depth (cm)
Charge Collected (nC)

Mean Ratio
Discrepancy (%)

1 2 3 W/S W/R S/R

Water
20 12.23 12.20 12.22 12.217

0.770 - - -
10 15.86 15.86 15.86 15.860

Solid water
20 12.05 12.08 12.08 12.070

0.767 0.39 - -
10 15.74 15.73 15.73 15.733

DSF-based
20 12.32 12.31 12.31 12.313

0.765 - 0.65 0.2610 16.10 16.10 16.09 16.097

Sample A15 with p-values of 0.071 and 0.069 for 6 and 10 MV photons showed no sig-
nificant difference to those of water and solid water phantoms in the photon beam radiation
quality, as presented in Tables 8 and 9. These findings demonstrated that DSF/NaOH-based
R. spp. particleboard phantoms with 15 wt% IA-PAE (sample A15) provide the ascribable
characteristics that are proper as appropriate tissue-equivalent phantom materials.

Table 8. Paired t-test of the TPR20,10 measurement for 6 MV photons.

Phantom

Paired Differences

t df Sig.
(2-Tailed)Mean (d) Std. Dev. (σd) Std. Error Mean

95% Confidence Interval
Difference

Lower Upper

Water 0.698 0.0082 0.0004 0.6967 0.6993 1709.7 20 0.081
Solid water 0.695 0.0016 0.0082 0.6924 0.6976 851.2 20 0.073
DSF-based 0.693 0.0022 0.0011 0.6896 0.6964 641.59 20 0.071

Table 9. Paired t-test of the TPR20,10 measurement for 10 MV photons.

Phantom

Paired Differences

t df Sig.
(2-Tailed)Mean (d) Std. Dev. (σd) Std. Error Mean

95% Confidence Interval
Difference

Lower Upper

Water 0.770 0.0008 0.0004 0.7690 0.7715 1942.2 20 0.086
Solid water 0.767 0.0011 0.0005 0.7654 0.7689 1414.4 20 0.077
DSF-based 0.765 0.0010 0.0005 0.7638 0.7670 1486.8 20 0.069
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3.3.2. Determination of PDD Photon Beams Using IC

The measured PDD values of 6 and 10 MV photon beams with the use of IC for
sample A15, water, and solid water phantoms are shown in Figure 6. The computed profiles
were normalized to the maximum dose in the depth-dose profile positioned symmetrically
opposite the IC within the photon beam to ensure that the profiles being compared were
identical to those of water and solid water phantoms. The dose first increases steadily
below the surface dose (ds), reaches a maximum value (dmax) at zmax, then decreases almost
gradually until it reaches dext at the patient’s exit position. The discrepancies in the d_max
in comparison to those of water and solid water phantoms were at most 1.08% and 1.28%
for 6 MV photons (Figure 6a). On the other hand, for 10 MV photons (Figure 6b), the
observed percentage differences in the dmax were found to be 5.42% and 6.70% at the dose
build-up region, which is the region from the phantom surface to the depth at d_max and
the equilibrium region. The greatest difference was recorded for 10 MV photons for all the
phantoms, which is similar to previous observations by Yusof et al. [5] and Banjade et al. [10].
The observed values of the surface dose were found to range between 2.29% and 2.34% for
6 MV photons. Similarly, the surface dose values for 10 MV photons were found to be 4.69%
and 5.29%, respectively. The PDD values for the examined particleboard phantoms at a
depth beyond dmax indicates no significant difference with percentage difference within the
limit of 0.09–0.16% for 6 MV, while for 10 MV photon, the variations in the depth beyond
dmax were found to range between 0.37–0.70%, which is consistent with those of water and
solid water phantoms.
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3.3.3. PDD Curves for Gafchromic EBT3 Radiochromic Films for Photon Beams

Figure 7 shows a comparison between the estimated PDD profiles for sample A15,
water, and solid water phantoms for 6 MV and 10 MV photon beams using Gafchromic
EBT3 radiochromic films. As shown in the Figures, the percentage variations in the dmax
of the particleboard phantom, relative to those of water and solid water phantoms, were
found to be 1.03% and 1.68% for 6 MV photons (Figure 7a), whereas the contrast between
the measured PDD at all depths for 10 MV photon beams indicates good consistency with
a difference within the range of 5.42% and 5.92% (Figure 7b). Overall, the results depict
agreement with those of water and solid water phantoms in the build-up region for 6 MV
photons with lower variations in the PDD values at dmax, whereas the variations were
marginally higher for 10 MV photons with discrepancies found within 5% and 7%. This can
be ascribed to the fact that the dominant free electron population originating in the build-
up region continues to cause further interactions as a result of pair production, Compton
scattering, and the photoelectric effect. High energy electrons are emitted as high energy
photons (10 MV) interact with the phantoms and are absorbed by their interaction with
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the phantom. The resulting electrons will reduce with depth inside the phantoms owing
to the continuously reduced energy fluence of the photons. The corresponding results
for the surface dose of fabricated particleboards with water and solid water phantoms
were found to be within 2.23–2.44% and 4.48–4.84%. With regards to the depth beyond
dmax, the PDD values showed agreement to those of water and solid water phantoms, with
percentage deviation in the interval of 0.01–0.02% and 0.06–0.07%, respectively. These
trends are similar to what was reported for IC performance.
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3.3.4. Beam Profile Comparison at Reference Dose (dre f ) and Maximum Dose (dmax)

The comparison of the relative dose plots against distance from the central axis of
sample A15 and solid water phantoms for the beam profile curves for 6 and 10 MV photons
are presented in Figures 8 and 9. As can be seen from the figures, the DSF-based particle-
boards reveal remarkable beam profiles with good dose homogeneity and beam symmetry
in comparison to those of solid water phantoms. There was a consistency between the
constructed particleboard and solid water phantom plots in both the dose plateau and the
penumbra regions. Table 10 addressed the variation of flatness of the beam profiles at dre f
and dmax between the DSF-based particleboards and solid water phantoms for both photon
energies. Overall, the beam uniformity enhanced as the photon energy increased, with
10 MV photons having a reduced percentage discrepancy of beam flatness values at dre f
and dmax compared with that of 6 MV photons relative to solid water phantom. This has
demonstrated the appropriateness of DSF/NaOH/IA-PAE/R. spp. particleboards to be
utilized as phantom material for high-energy photons in medical health applications.
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Table 10. Beam profile flatness for DSF/NaOH/IA-PAE/R. spp. particleboards (sample A15) com-
pared to that of solid water phantom for 6 MV and 10 MV photons.

Phantom

Beam Flatness Discrepancy (%)

6 MV 10 MV 6 MV 10 MV

5 cm zmax 5 cm zmax 5 cm zmax 5 cm zmax

Solid water 2.582 2.416 1.933 1.816 - - - -
DSF-based 2.761 2.596 2.010 1.923 6.93 7.45 3.98 5.89

3.3.5. Determination of PDD for Electron Beams Using IC

The PDD curves of the electron beams for the particleboard phantoms showed an
improved surface dose when compared with that of water and solid water phantoms, as
displayed in Figure 10a–d. DSF-based phantom delivers a reasonably homogeneous dose
from the surface to a specific depth, after which the dose falls off rapidly with increasing
depth, eventually to near zero values. As can be seen from the figures, the percentage dose
variations in dmax between the DSF-based R. spp. Particleboards, with respect to water
and solid water phantoms for the four electron beam energies, were within 2.40–3.87%,
3.52–3.59%, 4.36–4.55%, and 2.82–4.63%, respectively. In addition, the percentage difference
at which the electron PDD beyond the depth of zmax drops off sharply as a result of the
scattering and continuous energy loss by the incident electrons. The therapeutic range (R90
and R80) and half-value depth range (R50) were found to be within the limit and similar to
those of water and solid water phantoms for 6, 9, 12, and 15 MeV electrons (Table 11).

Table 11. Comparison of PDD curves between DSF/NaOH/IA-PAE/R. spp., water and solid water
phantoms for different electron beams.

Depth

Percentage Difference of PDD (%)

Water Solid Water

6 MeV 9 MeV 12 MeV 15 MeV 6 MeV 9 MeV 12 MeV 15 MeV

zmax 2.06 1.33 1.27 1.81 1.51 0.79 1.01 1.30
d50 2.34 2.75 2.73 2.22 1.69 1.56 1.09 2.02
d80 2.69 2.54 2.84 2.05 1.71 2.33 1.34 2.67
d90 2.51 2.78 2.64 2.40 1.60 2.89 1.78 2.44



Polymers 2023, 15, 244 15 of 18

Polymers 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

Table 10. Beam profile flatness for DSF/NaOH/IA-PAE/R. spp. particleboards (sample A15) 
compared to that of solid water phantom for 6 MV and 10 MV photons. 

Phantom 
Beam Flatness Discrepancy (%) 

6 MV 10 MV 6 MV 10 MV 
5 cm 𝒛𝒎𝒂𝒙 5 cm 𝒛𝒎𝒂𝒙 5 cm 𝒛𝒎𝒂𝒙 5 cm 𝒛𝒎𝒂𝒙 

Solid water 2.582 2.416 1.933 1.816 - - - - 
DSF-based 2.761 2.596 2.010 1.923 6.93 7.45 3.98 5.89 

3.3.5. Determination of PDD for Electron Beams Using IC 
The PDD curves of the electron beams for the particleboard phantoms showed an 

improved surface dose when compared with that of water and solid water phantoms, as 
displayed in Figure 10a–d. DSF-based phantom delivers a reasonably homogeneous dose 
from the surface to a specific depth, after which the dose falls off rapidly with increasing depth, 
eventually to near zero values. As can be seen from the figures, the percentage dose variations 
in 𝑑௠௔௫ between the DSF-based R. spp. Particleboards, with respect to water and solid water 
phantoms for the four electron beam energies, were within 2.40–3.87%, 3.52–3.59%, 4.36–
4.55%, and 2.82–4.63%, respectively. In addition, the percentage difference at which the 
electron PDD beyond the depth of 𝑧௠௔௫ drops off sharply as a result of the scattering and 
continuous energy loss by the incident electrons. The therapeutic range (R90 and R80) and 
half-value depth range (R50) were found to be within the limit and similar to those of water 
and solid water phantoms for 6, 9, 12, and 15 MeV electrons (Table 11). 

 
Figure 10. PDD curves for water, solid water, and DSF/NaOH/IA-PAE/R. spp. particleboard 
phantoms using IC for: (a) 6 MeV, (b) 9 MeV, (c) 12 MeV, and (d) 15 MeV electrons. 
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phantoms using IC for: (a) 6 MeV, (b) 9 MeV, (c) 12 MeV, and (d) 15 MeV electrons.

3.3.6. Evaluation of PDD for Electron Beams Using Gafchromic EBT3 Radiochromic Film

Figure 11a–d depicts the PDD profiles between DSF-based particleboard phantom, wa-
ter, and solid water phantom evaluated from their surfaces for 6, 9, 12, and 15 MeV electron
beams using Gafchromic EBT3 radiochromic films. As shown in the figures, comparable
results were found in the constructed particleboards at the selected electron beams range to
those of water and solid water phantoms. In this case, for 6, 9, 12, 15 MeV electrons discrep-
ancies found were within 1.49–1.90%, 1.89–3.01%, 1.74–3.53%, and 2.38–3.84%, respectively.
These findings indicate that, at 6 MeV, DSF-based particleboards depicted good agreement
to those of water and solid water phantom with minimum discrepancies, whereas 9, 12,
and 15 MeV give maximum values of percentage of discrepancies. Additionally, it can be
observed that variations in percentage between the examined phantoms were lower at a
depth beyond zmax in comparison to that in the build-up region. According to the obtained
results, the dissimilarities in the discrepancy of the surface dose values were found to
improve in the range between 1.45–1.63%, 1.51–1.79%, 1.53–2.17%, and 1.98–2.70%, which
showed good agreement with the results of the IC. The observed reduction in surface dose
can be assigned to a slight reduction in backscatter. This confirms that EBT3 radiochromic
film is suitable and provided surface dosimetry measurements in 6, 9, 12, and 15 MeV
electrons beam fields.
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4. Conclusions

The RAPs and dosimetric characterization of DSF/NaOH/R. spp. particleboard
phantoms as a tissue-equivalent phantom material with different amounts of IA-PAE
(0, 5, 10, and 15 wt%) have been demonstrated. The ascertained average mass density
exhibited acceptable quality values to those of water and solid water phantom in the
range between 0.99 ± 0.01 gcm−3–1.04 ± 0.03 gcm−3. The PMDSP, ze f f , and Nel values
were found to be satisfactory. Comparison between the calculated RAPs values shows a
reasonable agreement with 15 wt% IA-PAE, solid water phantom, and theoretical values
of water (XCOM), as indicated by the χ2 values (0.044). The dosimetric computation
results of DSF/NaOH/IA-PAE/R. spp. particleboard phantoms from IC showed good
agreement with Gafchromic EBT3 radiochromic films, and they were benchmarked with
those of water and solid water phantoms for the selected high energy photons and electrons,
demonstrating the possibility to use these dosimeters under extremely intense radiation
fields and confirming the effectiveness of the DSF/NaOH/IA-PAE/R. spp. particleboards.
The fabricated particleboard phantom (sample A15) was shown to be ideal for use in
radiation therapy dosimetry as tissue-equivalent phantom material within the range of 1%
variations to those of water and solid water phantoms.
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