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Abstract: Shear thickening fluid (STF) is a dense colloidal suspension of nanoparticles in a carrier
fluid in which the viscosity increases dramatically with a rise in shear rate. Due to the excellent energy
absorption and energy dissipation of STF, there is a desire to employ STFs in a variety of impact
applications. In this study, a comprehensive review on STFs’ applications is presented. First, several
common shear thickening mechanisms are discussed in this paper. The applications of different
STF impregnated fabric composites and the STF’s contributions on improving the impact, ballistic
and stab resistance performance have also been presented. Moreover, recent developments of STF’s
applications, including dampers and shock absorbers, are included in this review. In addition, some
novel applications (acoustic structure, STF-TENG and electrospun nonwoven mats) based on STF
are summarized, to suggest the challenges of future research and propose some more deterministic
research directions, e.g., potential trends for applications of STF.
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1. Introduction

Shear thickening fluid (STF) is a non-Newtonian fluid that exhibits an abrupt increase
in viscosity by a few orders of magnitude with increasing shear rate [1–3]. STF behaves as
a solid-like material under applied stress due to increasing viscosity, and when the loading
is removed from the medium, the STF turns to the initial liquid state. Due to the excellent
energy absorption and energy dissipation characteristics of STF, it has been widely used
in the Li-ion batteries [4], wearable devices [5], triboelectric nanogenerator (TENG) [6],
protective structures [7,8] and some novel applications [9–11].

STF consists of a carrier liquid and colloidal particles [12,13]. The particles are generally
selected from a number of groups of particles which include silica, polymethyl methacrylate,
calcium carbonate, cornstarch, synthetically and naturally occurring minerals, polymers
or a mixture of them. Many carrier fluids such as water, ethylene glycol (EG) and poly
ethylene glycol (PEG) have been investigated [14]. The common particles and carrier
fluids of STFs are summarized in Table 1. The shear thickening mechanisms, material
composition, fabrication methods, rheological properties and factors influencing shear
thickening behavior have been reviewed by many researchers [15–21].

Table 1. The compositions of STFs.

Particles Carrier Fluids Additives Reference

Polystyrene-ethylacrylate (PSt-EA) EG — [2]

Polymethyl methacrylate (PMMA) Glycerine–water — [22]
PEG — [23]
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Table 1. Cont.

Particles Carrier Fluids Additives Reference

Silica nanoparticles

PEG — [24]
Ethyl alcohol and PPG — [25]

PEG Polyvinyl alcohol [26]
Water — [27]

Ionic liquids — [28]
EG PEG [29]

PEG Graphene [30]
Ethanol and PEG Silane coupling agent [31]

Fumed silica
PEG

SiC [32]
SiC nanowires [33]

Carbon nanotubes [34]
EG — [35]

PEG Clay nanoparticles [29]

Cornstarch
Water — [36]

CsCl in demineralized
water — [36]

Styrene/acrylate EG — [37]

(Poly)Styrene-acrylonitrile (PSAN) EG — [38]

Polyvinyl chloride (PVC) Dioctyl phthalate — [38]

Precipitated calcium carbonate PEG — [39]

ZrO2 Mineral oil — [40]

Soda-lime glass spheres Water — [40]

Glass spheres Mineral oil — [40]

Polystyrene (PS) PEG — [41]

Nano-silica and calcium PEG and ethanol — [42]

Kaolin clay particles Glycerol — [43]

According to the rheological properties of STF, they can be divided into two categories:
continuous shear thickening (CST) and discontinuous shear thickening (DST). CST is ob-
served below threshold value, ∅c, and becomes weaker with decreasing volume fraction.
DST is an abrupt increase by orders of magnitude in viscosity above a critical value of the
applied shear rate [44]. Fernandez et al. [45] proposed a model to identify the nature of the
Shear thickening transition which was controlled by the volume fraction and boundary
lubrication friction coefficient through the simulations and experiments. Brown et al. [46]
gave a good overview on phenomenology and mechanisms of shear thickening and dis-
cussed the relations to jamming systems. They proposed different mechanisms and models
to explain the common physical properties and a phase diagram for shear thickening
behavior. The rheological properties of STF are affected by many factors, including particle
volume fraction, particle aspect ratio, particle–particle interactions, hardness, roughness,
particle size, size distribution of particle, modification of particle, liquid medium, pH value,
temperature and additives of STF, as reviewed by Gürgen [47] and Subramaniam [48].
More recently, Yusuf Salim [49] has reviewed the factors and damage mechanism of the stab
and spike resistance performance of STF-impregnated. To improve the impact resistance
of textile, different STFs were prepared for the high performance fabric composites [50].
Some approaches to improve the ballistic performance including surface treatments and
modifications of fabrics in STF-based soft body armor were elucidated [11,51]. The ap-
plications of various STF impregnated fabric composites and the STFs’ contribution on
improving the impact, ballistic and stab resistance performance were investigated by many
researchers [21,52]. Mechanistic problems due to sudden change in viscosity and recent
developments of simulations of the effect of contact forces were discussed in the STF [53].
The premise of this paper is to review the recent developments in various applications of
STF, as shown in Figure 1.
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The shear thickening mechanisms will be discussed, including the order–disorder
theory, hydro-clustering theory, dilation theory, jamming theory and friction contact theory.
Recent advances, including soft body armors, dampers, shock absorbers and some novel
applications, such as sensors, aerospace, acoustics, battery in the engineering of STF are
summarized in this review. Finally, the challenges of future research and the prospects of
STF are also discussed.

2. Shear Thickening Mechanism

Over the past few decades, the shear thickening mechanism has been studied by
many researchers and extensive studies have been reported in the literature, including the
order–disorder transition, hydro-clustering, dilation, jamming and friction contact theory.

2.1. Order–Disorder Transition Theory

Hoffman [38] first proposed the order–disorder transition theory that the shear thick-
ening phenomenon was concurrent with the transition from order to less ordered flow
of particles. Different diffraction patterns were found before and after shear thickening,
as shown in Figure 2a. Subsequently, he found that the nanoparticles in the STF are lay-
ered order below the critical shear rate and the transition from order to disorder caused
a drastic increase in suspension viscosity by experiment [60]. At a certain critical shear
rate, particle doublets would form, which moved out of their layers and disrupted the
flow, resulting in an increase in the suspension viscosity [61]. Moreover, Laun et al. [62]
studied shear-induced particle structures of STF with styrene-ethylacrylate-copolymer
spheres in glycol or water by small angle neutron scattering in a wide range of shear rates
and found that the particle structures which stopped flowing depended on the shear rate.
In an effort to better understand the shear thickening mechanism, computer simulations
presented a path forward. Catherall et al. [63] used Stokesian dynamics to investigate the
rheology and microstructure of STF under the shear thickening regime; they controlled
the interparticle gaps to evaluate the thickening behavior, reporting that at higher hard
core volume fractions, larger jumps in viscosity were observed with the transition from
order to disorder and the strong thickening behavior was only observed with the enhanced
lubricating force.
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Figure 2. (a) Different diffraction patterns before (a1) and after (a2) shear thickening [38],
(b) instantaneous real-space configuration of hydro-clusters [64], (c) the visible effect of dilation
for shear thickening fluid of cornstarch in water ((c1) before shear, the surface of the suspension
looked wet and shiny, (c2) when the shear rate was above the critical shear rate, the nearby suspension
appeared rough) [28], (d) the shear-jammed regime explicitly caused by dropping small steel spheres
onto the shear thickening fluid [65] and (e) contact networks along the suspension with particle
loading of 56% [44].

2.2. Hydro-Clustering Theory

Brady et al. [66] and Butera et al. [67] found that the order–disorder transition did not
always occur during all shear thickening phenomena, suggesting that the order–disorder
transition was dispensable for shear thickening. Moreover, Bossis et al. [39] also found
that shear thickening behavior was dependent on the formation of large clusters rather
than the order–disorder transition. The hydro-clustering mechanism proposed that the
particles of STF were driven together into clusters under shear, as a result of short-range
hydro-dynamic lubrication forces overcoming the repulsive forces among adjacent parti-
cles. The hydro-clustering mechanism has been widely accepted for explaining the shear
thickening behavior by many researchers [68,69]. For example, Cheng et al. [64] visu-
alized and identified the hydro-clusters as the onset of thickening in the STF of silica
spheres in a water-glycerin mixture using the fast confocal microscopy with simultane-
ous force measurements. Figure 2b depicts the instantaneous real-space configuration
of hydro-clusters and different colors indicate different clusters. Next, Maranzano and
colleagues [70] demonstrated the extreme sensitivity of high-shear rheology to the surface
properties of suspended particles, which was consistent with the formation of hydro-
clusters and the dominance of short-range lubrication forces in the shear thickening state.
Later, Chellamuthu et al. [71] measured the extensional properties of fumed silica nanopar-
ticles in polypropylene glycol as a function of concentration and extension rate and found
that the dynamic rheological behavior of STF was caused by the formation of large hydro-
dynamic clusters. Brady et al. [72] used the Stokesian dynamics to calculate the particle
trajectories to find that molecular-dynamics-like method could accurately represent the
suspension hydrodynamics.
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2.3. Dilation Theory

Brown et al. suggested that the hydro-clustering theory, which had been successful
for clarifying CST, had failed to explain the orders of magnitude increase in viscosity
during DST [28,36]. In this mechanism, the shear stress overcomes the onset stresses of
the shear thickening, and they begin to shear relative to each other, which causes the grain
packing to dilate. Dilation of granular shear flows causes particles to penetrate the liquid-
air interface for STF, generating restorative forces transmitted through the suspensions
produce a confining shear stress which is proportional to normal stress, resulting in DST [28].
Figure 2c depicts the visible effect of dilation on STF of cornstarch in water [28]. Shear
thickening was described as dilatancy, which refers to the expansion of a system due to the
change in packing arrangement [73,74]. A dense mixture of granules and liquid is called
a dilatant fluid which often exhibits shear thickening behavior with the increase in shear
rate. Nakanishi et al. [75] constructed a fluid dynamics model for the dilatant fluid by
introducing a phenomenological state variable for a local state of nanoparticles, and the
results of model showed that the STF exhibited an instability in a shear flow and shear
thickening oscillation.

2.4. Jamming Theory

In recent years, studies revealed that the explanation of the DST was closely connected
to jamming [76,77]. They believed that the nanoparticles of STF would spontaneously
aggregate under shear, forming local blockages. The dispersed phase particles diffuse
under the action of shearing, and the suspension cannot flow at all, showing the exponential
growth of shear stress and the explosive increase in apparent viscosity. Next, a new added
mass model was introduced to clarify the dynamic solidification process that the large
normal stresses formed using a rapidly growing jammed solid region, which is pushed
through the surrounding STF by the impactor [78]. Then, Marc-Andre Brassard et al. [79]
reported a new model, in which the viscous-like forces control the impact response of
STFs to supplement the add-mass theory. Peters et al. [65] explored the solid behavior
in the shear-jammed regime experimentally by dropping small steel spheres (diameter
5.0 mm) onto the STF. The dynamic shear jamming behavior was observed directly, as
shown in Figure 2d. Moreover, Seto et al. [80] adopted a numerical method which included
hydrodynamics interactions and granular contacts, and observed that contact friction was
essential for discontinuous shear thickening. A low viscosity occurred in a contactless
(hence, frictionless) state, and a high viscosity exhibited a frictional shear-jammed state.
Next, the elongation and breakage of a filament of STF under tensile loading was closely
related to the jamming transition seen in its shear rheology as presented by Smith et al. [81].
The jamming theory can well explain the solid–liquid transition in STF, it provides a
reasonable explanation for the relationship between shear stress, shear rate and apparent
viscosity. However, jamming is just a general term for describing the phenomenon and
does not really reveal the nature of the shear thickening phenomenon.

2.5. Friction Contact Theory

The friction contact theory was adopted to explain the relationship between the CST
and DST. Under low shear, the normal contact force between particles is small, and the
fluid lubricating force plays a more important role in the impact process. When the normal
contact force between particles is large, the fluid film between particles is destroyed,
and particle-to-particle contact force and friction force play a leading role. As the shear
rate increases, there are more frictional contacts, and the system forms a frictional contact
network [45]. Mari et al. [44] numerically obtained that as the shear rate increased, the shear
increased as shown in Figure 2e. The uncontacted particles with gray colored line, which
connects the centers of two related particles, are drawn, while the red line indicates the
particles that will come into contact during the thickening process. Clearly, the contacting
particles form an extended contact network in the STF. All the aforementioned studies
show that the mutual frictional contact of dispersed phase particles plays an important



Polymers 2023, 15, 2238 6 of 22

role in the shear thickening process of STF. In summary, the friction contact model is a
theoretical model accepted widely by scholars. It can not only explain the CST behavior
and the DST behavior at the same time, but also can be verified through inverse shear
rheological experiments and numerical simulations.

3. Soft Body Armors

Soft body armor is an advanced protective equipment which is used to protect the
human body against attacks of various kinds of sharp objects or projectiles [54]. When a
high-performance fabric is hit by a projectile, energy is absorbed through various mecha-
nisms, depending on both material and projectile parameters. The research on the prepa-
ration of high-performance STF-impregnated fabrics for soft body protection has become
a research hotspot. Firstly, the fabrics were cut into a square to prepare the specimens
of STF-impregnated fabrics. It is difficult to make the uniform impregnation of fabrics
with a high viscosity suspension. Therefore, the STF was diluted in ethanol with a volume
ratio, and the fabrics were soaked in the solution under an ultrasonic treatment. After
that, the roller shown in Figure 3a [35] was used to squeeze the excess solution, and the
STF-impregnated fabrics were dried in a vacuum oven [18]. Currently, soft body armor
research is focusing on the development of light weight, flexible and comfortable armors
with improved yarn pull-out behavior, ballistic impact resistance and stab, spike resistance
of STF/fabric composites [82].

3.1. Inter-Yarn Interaction of High Performance STF/Fabric Composites

Novel body armor based on STF has shown promising prospects towards improved
protection and flexibility [83–86]. The improvement in fiber friction has been proved to be
a major contribution of STFs to impregnated fabrics. Mawkhlieng et al. [35] explored the
role of STF in enhancing the impact resistance of high-performance Kevlar fabrics. They
found that the inherent shear thickening behavior of silica-PEG STF played a crucial role
other than just increasing the yarn-to-yarn friction of the Kevlar fabrics. In addition, the
study by Sanchi Arora et al. [87] implied the interplay between ultra-high molecular weight
polyethylene (UHMWPE) woven fabrics with 400 denier and STFs of silica particles in
water and PEG-200, as shown in Figure 3b. For firm structures created by higher values
of fabric set, STF-treated fabric/firm structures deteriorated the impact resistance owing
to stress concentration. For fabrics woven with finer yarns, the yarn-to-yarn friction was
enhanced after STF impregnation.

Yarn pull-out test is a good way to understand the role of friction in the performance
of fabrics [88]. Figure 3c depicts the basic principle of the single yarn pullout test. The STF
impregnated fabrics improved the yarn pull-out force which was found to show significant
correlation with the energy absorption of Kevlar and UHMWPE (Spectra) fabrics during
low-velocity impact (6 ms−1) [89]. In the yarn pull-out test conducted by Bai et al. [90], an
energy absorption model was adopted to investigate the energy absorption mechanism that
the work conducted by external force can be equivalent to the interfacial friction energy,
and they found that the energy absorption capacity of STF-treated fabric was obviously
affected by the SiO2 mass fraction of STF and the yarn pullout speed was much greater
than that of neat fabric. Srivastava et al. [26] investigated the effect of padding pressure on
the impact energy absorption and measured the yarn to yarn friction, which only partially
influenced the impact performance of Kevlar woven fabrics impregnated with silica/PEG
STF by the quasi-static yarn pull-out force.

In consideration of the requirement that the body-amour materials should be applied
under various environments, Wang et al. [41] studied the shear thickening behaviors of
STF containing polystyrene (PS) microspheres in PEG-200 at different temperatures. The
55 wt% STF represented the best shear thickening behavior at −15 ◦C. Figure 3d illustrates
the inter-yarns frictional forces of STFs-treated fabrics at different pull-out speeds. The
results show that the lower temperature improves the thickening effect, and the frictional
force presents a more important role than hydrodynamics in the aggregation for these shear
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thickening fluids. Some textile fabric materials were impregnated with different STFs to
study the effect of the STF treatments on the impact response and inter-yarn friction of
fabrics by researchers, as listed in Table 2.

Table 2. STF composition and fabric materials used to study the effect of the treatments on the impact
response and inter-yarn friction of fabrics.

Particles Carrier Fluids Additives Fabrics Materials Reference

Silica nanoparticles PEG — Kevlar fabrics [84]
Silica nanoparticles PEG Polyvinyl alcohol (PVA) Kevlar fabrics [26]
Silica nanoparticles PEG — UHMWPE fabrics [89]
Silica nanoparticles EG — Kevlar fabrics [90]

PS microspheres PEG — Kevlar fabrics [41]
Silica nanoparticles PEG Silicon carbide Twaron [32]
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3.2. Application of STF/Fabric Composites in Ballistic Protection

Lu et al. [91] investigated the ballistic behavior of STF-treated fabrics under high
velocity impact as shown in Figure 4a, and found that the movement constraint of the
primary yarns decreased the projectile velocity. Figure 4b shows the failure characteristics
of post-impact fabrics [92]. The failure mode of STF-impregnated fabric was changed from
tensile-dominant to shear-dominant and the pull-out distance was decreased, causing a
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decrease in energy absorption. Moreover, the ballistic performance of Twaron® CT615
plain-woven fabric treated with different silica colloidal particle water suspension (SWS)
was studied by V.B.C. Tan [27]. It was found that the ballistic limits of fabric armor systems
could be improved by impregnating the fabric with SWS due to the rise in projectile-fabric
friction and inter-yarn friction arising from the silica particle addition and silica clusters
formation. Wagner et al. [93] also described the use of STFs with different volume fractions
to improve the ballistic resistance of the Kevlar fabric.

Ávila et al. [42] investigated the dual-phase STF of a combination of nano-silica and
calcium carbonate with PEG and ethanol and their experimental results showed that the
STF consisting of 25% w/w nano-silica and 75% w/w calcium showed the best ballistic
resistance due to the increase in the inter-yarn fraction. In addition, Gürgen et al. [94]
fabricated the multi-phase STFs consisting of silica and PEG suspensions with different
amount of silicon carbide additives. They found that the multi-phase STFs enhanced
the ballistic performance of fabrics and energy absorption in comparison to single-phase
STFs. Subsequently, a numerical model was introduced to investigate the impact behavior
of the single and multi-phase STF treated textiles. According to the numerical results,
there was a good match with the experimental results between target deformations and
projectile residual velocities, which yielded a correlation index of 0.9691, as shown in
Figure 4c [95]. Meanwhile, Bajya et al. [96] investigated the effect of nano-silica particle size
on the ballistic resistance of soft body armor panels against the small arms ammunition. It
was found that soft armor panels consisting of fabrics impregnated with STF based on silica
particles (500 nm diameter) yielded lower back face signature than the panels impregnated
with 100 nm silica-based STF. Moreover, Khodadadi et al. [92] also found that the impact
resistance performance of Kevlar fabric was significantly increased with the weight fraction.
Edison et al. [97] investigated the ballistic impact behavior of laminated hybrid panel
consisted of aluminum alloy, epoxy and Kevlar fabrics treated with STF in Figure 4d,
finding that the energy absorption of the composites improved with the STF addition.
Meantime, Subhajit Sen et al. [98] numerically studied the ballistic response of the two STF
composite structures, i.e., Kevlar-STF-Kevlar sandwich composite and STF impregnated
Kevlar and reported the effect of STF on the process of improving ballistic response.
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3.3. Application of STF/Fabric in Stab Resistance and Low-Velocity Impact Protection

Figure 5a shows the schematic illustration of the stab resistance of STF impregnated
fabric under the impact of a knife, and it was found that the stab resistance of the Kevlar
fabrics was significantly improved with an increased addition of STF [99]. Decker et al. [100]
investigated the stab resistance of Kevlar and Nylon fabrics impregnated with STFs based
on silica particles dispersed in PEG. The puncture resistance increased dramatically under
low impact velocity due to the reduced mobility of the yarns. Moreover, Sun et al. [101]
reported the stab resistance of an advanced material made up of STF and UHMWPE
and found that the great improvement in stab resistant property of the STF/UHMWPE
fabric was attributed to the increase in the mass fraction of silica in STF, and that the
flexibility of the composite material was higher than that of the neat fabric. Similarly,
Xu et al. [102] investigated the effects of silica nanoparticle sizes and silica nanoparticle
weight fraction on stabbing resistance of the STF impregnated woven fabric panels. The
results indicated that the higher nanoparticle weight fraction and larger nano-particle size
of silica resulted in a better stabbing resistance performance. Balali et al. [29] investigated
the penetration resistance of glass fiber-reinforced hybrid STF and found that the increase
in friction between the penetrator and the fiber, and between the fibers and the yarns at
their crossing points enhanced significantly the penetration resistance. Meanwhile, the
neat UHMWPE specimen and STF/UHMWPE specimen after the dynamic stab test for
knife and spike threats were investigated. It was found that the STF/UHMWPE specimen
exhibited less deformation and damage compared with the neat fabrics in both tests [103].

The stab resistance of STF impregnated fabric is affected by many factors, including the
particle size [23], hardness [32] and additives [31,34,98,99]. Various kinds of textile fabric
materials that were impregnated with STF to enhance their stab and spike resistance were
listed by researchers, as shown in Table 3. Meanwhile, Figure 5c is the failure patterns of
neat Kevlar and STF-impregnated fabric. Liu et al. [8] investigated a high-impact resistant
hybrid sandwich panel filled with STF and found that the energy absorption capacity was
effectively improved due to the synergistic effect of STF’s high energy absorption, the
improved stiffness of STF-Kevlar fabric and the confinement of STF-filling aluminum cells.

In addition to the above researches on STF impregnated fabric composites soft body
armor as a protection solution against impact, bulletproofing and stab, the application
of STF on space shields also attracted more attention under the high-speed environment
of micrometeoroid and orbital debris (M/OD) [55,104]. Cwalina et al. [55] reported a
novel method to improve the cut and puncture resistance of the thermal micrometeoroid
garment (TMG) by replacing the standard neoprene-coated nylon absorber layers with
woven aramid textiles intercalated with STF, i.e., STF-Armor TM. At equal areal densities,
the results showed that a TMG lay-up containing STF-Armor™ greatly improved puncture
resistance and reduced total weight with comparable flexibility, as shown in Figure 5c. The
study revealed experimentally that the fabric rear wall of a space shielding system could
be enhanced effectively by using STF-treated layers [105]. Liu et al. [5] designed a novel
carbon nanotubes (CNT)/STF/Kevlar-based wearable electronic textile (ET) composite
which had excellent protective and sensing performance for human bodies in different
environment and found that it could be applied as a sensor to monitor the signal of various
human body movements, as shown in Figure 5d.

Table 3. STF composition and fabric materials to study stab resistance of STF impregnated fabric.

Particles Carrier Fluids Additives Fabrics
Materials Reference

PSt-EA nanospheres EG — Kevlar fabrics [83]
Silica nanoparticles PEG — Nylon fabrics [100]
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Table 3. Cont.

Particles Carrier Fluids Additives Fabrics
Materials Reference

Nanosilica EG — UHMWPE [101]

Nanosilica PEG — Twaron woven
fabrics [90]

Fumed silica PEG Nanoclay Glass fabrics [29]
Nanosilica EG PEG UHMWPE [103]

Fumed silica PEG — Kevlar fabrics [100]
Kaolin particles Glycerol — Kevlar fabrics [43]

PMMA PEG — Kevlar fabrics [23]
Nanosilica PEG Silicon carbide Twaron [104]

Silica microsphere [BMIm][BF4] — Kevlar fabrics [99]

Fumed silica PEG Carbon nanotubes
(CNTs)

Woven high modulus
polypropylene
(HMPP) fabric

[34]

Nanosilica Ethanol and
polyethylene glycol Silane coupling agent Kevlar fabrics [31]
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(c) image of the thermal micrometeoroid garment (TMG) [55] and (d) relative normalized resistance
change in the ET in monitoring movements of a finger [5].
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4. Dampers

Damping is the most effective method to reduce unwanted vibrations where the system
is excited close to its natural frequency. STF-filled dampers have potential application in
the industry [106]. The dynamic performance and mechanical model of a self-adaptive STF
were investigated and the results showed that the smart damper could realize controllable
output damping force by changing the loading frequency, loading amplitude and fluid
gap [107]. Neagu et al. [108] studied the micromechanics and damping properties of
composites integrated with STFs and found that the stiffness and damping properties
were significantly dependent on both frequency and applied external load amplitude.
Over the past few decades, extensive studies have been performed to understand the
dynamic properties of the shear thickening viscous damper and the results showed that the
dynamic properties also affected by the fluid viscoelastic properties [109,110] and particle
concentration [111].

Jolly et al. [112] reported the controllable devices consisting of STF that exhibit dis-
continuous increases in flow resistance as controlled by changes in the applied magnetic
or electrical fields. The magnetic-field-controlled and speed-activated magnetorheolog-
ical STF (MRSTF) consisting of nano-size silica particles in the EG was fabricated [113].
Tian et al. [114] investigated the performance of a linear damper working with MRSTFs and
the results showed that the system can investigate the stiffness coefficient and a variable
damping coefficient. Furthermore, novel MRSTF-based linear dampers containing 20%
and 80% weight fraction micro-sized carbonyl iron particles were investigated [115]. The
dampers filled with 20% MRSTF had better magnetorheological effect and shear thicken-
ing effect than the 80% magnetorheological STF-filled damper. Moreover, the nonlinear
hysteretic behavior and energy dissipation capacity of a STF damper were investigated.
According to the responses of damping force-displacement and damping force-velocity, it
was found that the loading conditions, regardless of frequency or amplitude, had signifi-
cant effect on the hysteretic loop and energy dissipation capacity [56]. Gaines reported a
STF vibration damper system for vehicle seat to reduce and eliminate vibrations with the
improvement in the vehicle seat back [116].

Smart structures based on STFs were also studied for the vibration attenuation and the
industrial applications. For example, Gürgen et al. [117] investigated the smart polymer
integrated cork composites for enhanced vibration damping properties, finding that STF
could contribute to suppressing the vibration in Figure 6a. Subsequently, he reported a
novel concept by filling STF into extruded polystyrene foam core of an aluminum face sheet
sandwich structure to study the vibration attenuation. From the results, we can come to
the conclusion that STFs significantly improved the vibration attenuation of the sandwich
structures in Figure 6b [118]. Haris et al. investigated the shock wave mitigation capability
of polyurea and STF-based suspension pads, as shown in Figure 6c. The results showed
that the STF pad and STF-infused foam pad performed better than the conventional foam
pad in terms of peak pressure [119].

Williams et al. [120] proposed surgical and medical garments and materials incorpo-
rating STFs, such as surgical gowns, surgical gloves and wound-care products. The use
of foam-based STF composites in trauma pads was also investigated. The results of these
tests were used to identify the potential usage of STFs in blunt trauma impact resistance
applications. Chavhan et al. [57] proposed the STF speed breaker in Figure 6d and found
that the STF speed breaker improved the fuel efficiency of vehicles and reduced installa-
tion costs and maintenance costs compared to conventional speed breakers. A method
to reduce movement of controlled pulse or high energy fracture was reported, where the
STF was used as a tamp to minimize damage to the downhole equipment. Subsequently,
Wasserman et al. reported a cable consisting of a conductor surrounded by STF systems to
resist damage from a puncture by shovels, trucks and other equipment [121].
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5. Shock Absorbers

The shock absorber is a mechanical device, which links the equipment and the foun-
dation, to smooth out, damp shock impulse and dissipate shock energy [122]. STF can
be utilized in an impact-resistant structure or energy dissipation attributed to the high
stiffness of formation of jamming triggered at the critical shear rate [123]. Because of the
following performance of energy absorption and dissipation of STF under compress and
impact, it can be used in shock absorber.

The confined compressive behavior of STFs has attracted the considerable interest
of many researchers [123–127]. The compression of STFs can be reversible, as shown in
Figure 7a. The bulk modulus of STFs was measured and the results showed that the bulk
modulus enhanced with the rise in the applied stress [127].

Some studies have used the SHPB to investigate the dynamic compressive behavior
under high stain rates [128,129], transient response [130] and stress pules attenuation [131]
of STF. Fu et al. [132] investigated the compressive behavior of STF with styrene/arylate
particles at 58% volume fraction at high strains rates using the split Hopkinson pressure bar
(SHPB) test. The results showed that the impact toughness and energy absorbed increased
with the loading rate. In addition, the Johnson-Cook model was used to reproduce the
high-rate compressive behavior of STF. Wu et al. [133] investigated the dynamic energy
absorption behavior of lattice material filled with STF by the modified SHPB and found
that the dynamic energy absorption behavior of the sandwich panel with the STF filled
pyramidal lattice truss core could be interpreted by the interaction of the strong lateral drag
force between the filled STF and the pyramidal lattice core. The shear thickening behavior
of STF was improved with the addition of graphene because the SHPB experimental results
showed that the peak flow stress of the STF increased with the increase in the graphene
volume fraction [30].
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The ballistic response of STF with cornstarch, silicon carbide and silicon dioxide
particles was investigated systemically by the experiment [134]. The penetration of STF
by a projectile was shown in Figure 7b. The results showed that the nanoparticles have
sufficient strength to decrease the projectile velocity, suggesting that the strength of the solid
material in the interparticle contacts was overcome by the impact-generated stresses [134].

Brassard et al. [79] found that the viscous-like forces controlled the impact response
of STF to supplement the add-mass theory, as shown in Figure 7c. Moreover, Cheng et al.
investigated the effect of striker shape on the energy absorption of STF. The results showed
that the total impact energy absorption increased with the increase in striker diameter and
decrease in the lower penetration depth in Figure 7d [135]. Later, to explore the energy
absorption behavior of STF at various temperatures, low velocity impact tests were utilized
by a drop-weight tower with a temperature-control chamber and it was found that the
anti-impact behavior of the STF enhanced with the decrease in temperature [136]. The
restricted boundary conditions played an important role in the impact resistance and energy
absorption of STF. It was found that the STF under the finite space constraint of circular
section had better impact resistance and energy absorption, as shown in Figure 7e [137].
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Figure 7. (a) Typical compression load and depth of the STF during loading and unloading in a
confined compression test [127], (b) a broken-out section view of the projectile penetrating the suspen-
sion and the related mesostructural changes to the particle distribution [134], (c) a front that grows
downward and laterally and can experience added-mass and viscous forces [79], (d) schematic of low-
velocity impact tests with six different strikers [135], (e) relationship curves between the drop hammer
velocity and the penetration depth obtained by drop hammer impact on STF under finite space con-
straints of different cross sections [137], (f) damage patterns of (f1) pristine SCP (vinitial = 4.0 m/s,
tSTF thickeness = 7.2 mm), (f2) STF-filled SCP (vinitial = 4.0 m/s, tSTF thickeness = 7.2 mm), (f3) STF-
filled SCP (vinitial = 2 m/s, tSTF thickeness = 7.2 mm) and (f4) STF-filled SCP (vinitial = 2.0 m/s,
tSTF thickeness = 12.7 mm) [17] and (g) MSTF prepared with different CIP mass fractions (g1), shock
absorber used in the test (g2), the vehicle model (g3) and test system (g4) [19].
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STF was incorporated with lattice materials or structures to improve dynamic energy
absorption by the interaction of lattice structure and STF [123]. The low-velocity impact
behaviors of sandwich composite panels (SCPs) with carbon fiber reinforced plastic (CFRP)
facings based on a concentrated styrene/acrylate particle STF were investigated by Fu.
Figure 7f shows the damage pattern at the back of SCP and STF-filled SCP after impacts at
different velocities. The low-velocity impact tests showed that the STF could absorb more
energy with less penetration depth than an aluminum foam [17]. The damping behavior
and impact properties of the carbon fibers reinforced polymer (CFRP) laminates consisting
of STF were investigated, and the results showed that the system can absorb up to 45% of the
energy during the impact event at 2.5 m/s due to the STF which can act as shock absorber
media [138]. Moreover, Galindo-Rosales et al. [139] reported CorkSTFµfluidics which were
eco-friendly light-weight composites comprising of a laminar sheet of compacted micro-
agglomerated cork engraved with a network of microchannels by laser and filled with STF
of suspension of cornstarch. The results of low-velocity impact tests illustrated that the
composites had better energy absorption properties. Furthermore, Liu et al. reported that a
multifunctional smart material with both shear thickening effect and magnetorheological
performance was fabricated by dispersing carbonyl iron powder (CIP) particles into STF
in Figure 7g. The influence of the shear thickening effect of MSTF on the damping force
in the shock absorber was studied by testing the self-made MSTF and MRF with the CIP
fraction from 10% to 70%. This work provided a design idea to improve the shock absorber
performance [19].

6. Multi-Functional Properties

Recently, Liu [4] studied the potential of STF in new generation gelled or solid elec-
trolytes to improve the impact resistance of Li-ion batteries. To further understand the
response of the electrolyte under external impact, impact experiments were conducted
at different speeds, and the results showed that the impact resistant electrolyte has excel-
lent electrochemical stability. The shear thickening effect on electrolytes of lithium-ion
batteries was investigated, and the results showed that STFs were proved to be a potential
replacement for traditional electrolytes in lithium-ion batteries. The STF could act as both
highly conductive electrolytes and mechanical protectors for lithium-ion batteries and
could demonstrate shear thickening effect under impact [140]. Wei et al. [141] theoretically
studied the vibration of a sandwich beam which consisted of a STF core and conductive
skins. The results revealed that the natural frequency of the sandwich beam integrating
STF was more dynamic than conventional structures during the different periodic exci-
tations. More recently, the mechanical, acoustic, and thermal performances of STF-filled
rigid polyurethane (PU) foam composites were investigated by Li et al. [142]. The STF/PU
foam composites increased the compressive, bending strength and maximum acoustic
coefficient and were excellent sound-absorbing energy conservation materials. Figure 8a
presents the thermal conductivity of rigid STF/PU foam composites of different particle
size silica particles. The 1.0 wt% STF of 14 nm silica has the best thermal insulation [142]. As
shown in Figure 8b, Liu et al. [7] investigated the acoustic property of 3D printed structures
filled with STFs. It was found that sound transmission loss of the structures filled with
46.5 vol% silica-based and 58.8 vol% styrene/acrylate-based STFs have been improved
significantly, while their sound absorption coefficient reduced greatly. According the study
by Li et al. [143], the sound insulation performance of the STF-treated fabrics was better
than that of the untreated fabrics. Their sound insulation was significantly increased by
increasing surface density, as shown in Figure 8c. Later, Wang et al. [144] fabricated a novel
sound insulation composite by modifying glass fiber fabric with tetrapod ZnO whisker
(TW-ZnO)/SiO2-compounded STF and came to the same conclusion. Aslan et al. [58]
designed an acoustic structure and investigated its sound absorption behavior. The results
showed that the frequency at the maximal SAC value decreased with the increase in fluid
viscosity, as shown in Figure 8d.
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Mechanical components could be fabricated from solid materials containing STFs as
discrete droplets or regions or as a co-continuous network within the solid material. Smart
components could be fabricated where the stiffness or hardness of a flexible component
can change as a result of degree of deformation [145]. Tian et al. [146] reported a rotational
brake working with shear thickening fluid, which did not require a power supply due
to the changing of torque. The 3D structure of the rotational brake was drawn by the 3D
designing software. There was a holder as a reservoir for STF, and the rotator was located
on the top of the holder with a ramp fin which was immersed and rotated in STF.

Li et al. proposed a shear thickening polishing method and adopted a material
removal rate model to improve rapidly the surface quality, as shown in Figure 9a [147–149].
Polishing tests were conducted with a CSM Tribometer by adjusting the equipment for
STF polishing. A nano-sized fumed silica-based STF was utilized as a polishing matrix
to improve the surface of a steel bar by manipulating the viscosity [59]. Electroosmosis
of non-Newtonian fluids was suggested conceptually for pumping, solute transport and
heat transport [150]. Xie et al. reported that the STFs were widely applied in enhanced oil
technique, adopting a multiphase Lattice Boltzmann method (LBM) model [151]. Recently,
the shear dependent electrical property of conductive STFs was investigated [152]. A high
anti-impact STF/Ecoflex composite structure with a sensing capacity for wearable design
was designed to obtain excellent anti-impact and high energy absorption properties. The
results showed that the C-STF/Ecoflex was fabricated by adding carbon nanotubes (CNTs)
to STF, which had excellent impact sensing function and could be combined with Kevlar for
wearable devices with anti-impact properties due to the STF concentration, as displayed in
Figure 9b [153]. A versatile TENG with impact/sway/magnetic field multi-mode energy
harvesting and protective properties was developed by assembling shear thickening fluid
(STF) and magneto-sensitive films. This novel TENG had been proven to effectively
absorb and dissipate collision energy, providing excellent protective property for wearers.
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Recently, electrospinning was used to fabricate core-sheath fibers and encapsulate STFs in
the resultant fibers. A new composite consisting of electrospun ultrafine fibers and STF was
developed to improve the shape stability of STF-impregnated fabrics. The composites were
demonstrated to be shape-stable with high breakthrough pressure due to the small effective
pore size and the high capillary force of UFF membranes [154]. Chen et al. proposed a direct
microencapsulation of Ionic-Liquid-based STF and designed a circuit made of Ionic-Liquid-
based STF microcapsules-incorporated conductor. The results showed that the circuit can
exhibit electrical stability after the impact and autonomic conductivity self-healing after
damage [9].
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Figure 9. (a) Illustration of the polishing test system (a1) frontal view and (a2) vertical view [148] and
(b) the versatile wearable C-STF/Ecoflex/Kevlar ((b1) worn on arm, (b2) leg and (b3) knee, (b4) the
overlying one provided higher protection effect, and (b5) the arrays were integrated into one pad
with larger protection area) [153].

7. Conclusions

This paper provides a comprehensive review of various applications pertaining to
STFs. There is a growing demand to understand the shear thickening mechanism to explain
the mechanical behavior of STFs in different applications. Thus, this review discusses
five different shear thickening mechanisms, i.e., order–disorder theory, hydro-clustering
theory, dilation theory, jamming theory and friction contact theory. Then, this paper
reviews typical STF applications to provide an insight into the usage of STFs in impact
protections. This paper reviews different methods to improve the impact, ballistic and
stab-resistant performance of STF-impregnated fabric. The greater impact resistance and
energy absorption of STF-impregnated fabric are mainly attributed to the inherent shear
thickening behavior of STF and improvement in the frictions between yarns and fibers.
Moreover, the industrial devices based on STFs, such as dampers, shock absorbers and
some other novel applications (acoustic structure, STF-TENG and electrospun nonwoven
mats), are also included in this review. With the addition of STF, the mechanical, acoustic,
thermal, vibration, mechanic-magnetic coupling and electrokinetic performances of devices
are improved.

At present, the application of STF to smart wearable devices has become a hot topic
of research. However, the sedimentation of STFs may restrict its wide application. The
particle sedimentation of STFs is nearly unavoidable after long-term usage. Therefore,
it is recommended to prepare the STF with particles and carrier liquid with comparable
densities. Moreover, the shear thickening behavior of STF is also sensitive to the environ-
mental temperature. Preparing an STF that can work under a wide temperature range is a
meaningful research direction. However, the problems of high viscosity, hygroscopicity
and difficult handling have become the biggest factors hindering its development in the
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practical application of STFs. To overcome these shortcomings and improve the stability of
the STF in service, it is particularly important to use suitable technologies to encapsulate
STFs. Hence, the interaction between STFs and different encapsulated materials for impact
protection is a potential field for future work.
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94. Gürgen, S.; Kuşhan, M.C. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening

fluids. Polym. Test. 2017, 64, 296–306. [CrossRef]
95. Gürgen, S. Numerical modeling of fabrics treated with multi-phase shear thickening fluids under high velocity impacts. Thin-

Walled Struct. 2020, 148, 106573. [CrossRef]
96. Bajya, M.; Majumdar, A.; Butola, B.S.; Verma, S.K.; Bhattacharjee, D. Design strategy for optimising weight and ballistic

performance of soft body armour reinforced with shear thickening fluid. Compos. Part B Eng. 2020, 183, 107721. [CrossRef]
97. Haro, E.E.; Szpunar, J.A.; Odeshi, A.G. Ballistic impact response of laminated hybrid materials made of 5086-H32 aluminum alloy,

epoxy and Kevlar® fabrics impregnated with shear thickening fluid. Compos. Part A Appl. Sci. Manuf. 2016, 87, 54–65. [CrossRef]
98. Sen, S.; Jamal, M.N.B.; Shaw, A.; Deb, A. Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar

composite. Int. J. Mech. Sci. 2019, 164, 105174. [CrossRef]
99. Qin, J.; Guo, B.; Zhang, L.; Wang, T.; Zhang, G.; Shi, X. Soft armor materials constructed with Kevlar fabric and a novel shear

thickening fluid. Compos. Part B Eng. 2020, 183, 107686. [CrossRef]
100. Decker, M.J.; Halbach, C.J.; Nam, C.H.; Wagner, N.J.; Wetzel, E.D. Stab resistance of shear thickening fluid (STF)-treated fabrics.

Compos. Sci. Technol. 2007, 67, 565–578. [CrossRef]
101. Sun, L.-L.; Xiong, D.-S.; Xu, C.-Y. Application of shear thickening fluid in ultra high molecular weight polyethylene fabric. J. Appl.

Polym. Sci. 2013, 129, 1922–1928. [CrossRef]
102. Xu, Y.; Chen, X.; Wang, Y.; Yuan, Z. Stabbing resistance of body armour panels impregnated with shear thickening fluid. Compos.

Struct. 2017, 163, 465–473. [CrossRef]
103. Li, W.; Xiong, D.; Zhao, X.; Sun, L.; Liu, J. Dynamic stab resistance of ultra-high molecular weight polyethylene fabric impregnated

with shear thickening fluid. Mater. Des. 2016, 102, 162–167. [CrossRef]
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