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Abstract: Poly(p-phenylene terephthalamide) (PPTA) and ultra-high-molecular-weight polyethylene
(UHMWPE) are high-performance polymer materials largely used for body armor applications.
Although composite structures from a combination of PPTA and UHMWPE have been created
and described in the literature, the manufacture of layered composites from PPTA fabrics and
UHMWPE films with UHMWPE film as an adhesive layer has not been reported. Such a new
design can provide the obvious advantage of simple manufacturing technology. In this study, for
the first time, we prepared PPTA fabrics/UHMWPE films laminate panels using plasma treatment
and hot-pressing and examined their ballistic performance. Ballistic testing results indicated that
samples with moderate interlayer adhesion between PPTA and UHMWPE layers exhibited enhanced
performance. A further increase in interlayer adhesion showed a reverse effect. This finding implies
that optimization of interface adhesion is essential to achieve maximum impact energy absorption
through the delamination process. In addition, it was found that the stacking sequence of the PPTA
and UHMWPE layers affected ballistic performance. Samples with PPTA as the outermost layer
performed better than those with UHMWPE as the outermost layer. Furthermore, microscopy of the
tested laminate samples showed that PPTA fibers exhibited shear cutting failure on the entrance side
and tensile failure on the exit side of the panel. UHMWPE films exhibited brittle failure and thermal
damage at high compression strain rate on the entrance side and tensile fracture on the exit side. For
the first time, findings from this study reported in-field bullet testing results of PPTA/UHMWPE
composite panels, which can provide important insights for designing, fabricating, and failure
analysis of such composite structures for body armors.

Keywords: PPTA; UHMWPE; body armor; interlayer adhesion; failure mechanism

1. Introduction

Lightweight protective body armors have been highly desired by soldiers and security
personnel to enhance their performance [1]. The basic requirement of body armor is to
protect against high-speed projectiles and strikes with sharp objects. Other aspects, such
as lightweight, comfort, and wearability are also important considerations to the wearers.
Hard body armors made of ceramics or metal plates may provide better protection from
high-speed bullets, but they are usually heavier and rigid [1]. In contrast, soft body armors
made from high-performance polymer fibers are flexible, lightweight, and comfortable,
while providing a certain level of protection in everyday use outside the combat zone [1,2].
Although significant progress has been made in improving the performance of soft body
armor by adopting high-performance fabrics, there is still a great challenge in developing
body armor with low bulge deformation, antiballistic capabilities, and flexibility at the
same time [3,4]. In recent years, nanomaterials, such as carbon nanotubes (CNTs) and
graphene, which are among the stiffest and strongest materials, have been explored as
reinforcements for armor composites [5,6]. New designs and material systems are highly
desired for further improvement [7].
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With the rapid development in modern technology, soft body armors are expected
to have advanced functions in addition to resisting bullets, such as response to various
mechanical stimuli, monitoring health condition, and service reliability in harsh environ-
ments [8,9]. Shear-thickening gels (STGs) have gained extensive attention as a new kind of
intelligent material for improving the anti-impact performance of soft body armor, thanks to
their unique impact-buffering capacity and low modulus [10]. By incorporating STGs into
composites, multifunctional soft body armors have been fabricated that can sense mechani-
cal forces, maintain body temperature, monitor human physical state, and perform other
functions [10–12]. To cite a few examples, Fan et al. [10] prepared a SiO2/shear-thickening
gel/reduced graphene oxide (RGO)@Kevlar fabric composite with excellent strain sens-
ing ability, fire resistance, electro-heating, and anti-impact performance. Zhao et al. [11]
prepared a conductive shear thickening gel-Kevlar fabrics (c-STG/Kevlar) body armor
material that exhibited both mechano-sensing and anti-impact capabilities. Another work
by Fan et al. [12] involved the fabrication of a nano-SiO2/carbon nanotube (CNT)/shear-
thickening gel@polyurethane composite, which exhibited resistance to hazardous liquids
(strong acid and alkali), excellent stain-sensing ability, and anti-impact capabilities.

Literature studies show that fiber-reinforced composite materials have broad appli-
cations in soft body armors [13–18]. The reinforcement provided by high-strength fibers,
including glass fibers, carbon fibers, poly(p-phenylene terephthalamide) (PPTA) fibers,
ultra-high-molecular-weight polyethylene (UHMWPE) fibers to various matrices, such as
epoxy, polypropylene, polyurethane, phenolics, and low-density polyethylene (LDPE) can
help achieve excellent mechanical properties, such as high strength-to-weight ratio, good
energy absorption capability and fracture toughness, and superior flexibility.

One particularly important parameter in the design of armor-grade reinforced materi-
als is the interfacial adhesion of the fiber to the matrix [19]. The interfacial adhesion and
interphase properties govern the load transfer between the composite components [20], and
the delamination process, which plays a significant role in impact energy absorption [21–
23]. Different strategies have been implemented to tune the interlayer adhesion between
composite components for ballistic applications. For example, Kessler et al. [19] conducted
surface treatment on E-glass fibers using different dispersion approaches to adjust the
fiber-matrix bonding of the glass/epoxy laminate. Naveen et al. [24] introduced graphene
nanoplatelets to the Kevlar®/Cocos nucifera sheath-reinforced composites to enhance the
fiber and epoxy matrix adhesion. Wang et al. [25] utilized adhesive polyurethane to enhance
the adhesion between yarns in aramid/polyurethane composite for ballistic applications.

While various studies have demonstrated that certain levels of increase in interlayer
adhesion are favorable for absorbing higher levels of impact energy [19,24–28], other studies
suggested that strong interlayer adhesion might reduce the impact energy absorption. For
example, Wang et al. [25] illustrated that during the projectile penetration process, strong
adhesion could cause the yarn breakage without being pulled out, which was detrimental
to impact energy absorption. Zhang et al. [26] conducted finite element modeling (FEM)
to investigate the effect of interface strength on the performance of cross-ply UHMWPE
laminate plates containing Dyneema® SK76 fiber and polyurethane matrix. The results
showed that with the increase of the interface normal strength from 1.2 MPa to a high level
of 1200 MPa, the ballistic performance of the laminates deteriorated dramatically, evidenced
by the significant increase in the residual projectile velocity. The authors contended that
the laminates with strong interface strength are subjected to high bending stress, leading to
premature failure of the rear surface of the laminates [26].

As previously mentioned, among various high-performance polymers, PPTA (e.g.,
Kevlar®) [29–31], and UHMWPE, such as Spectra® or Dyneema® [32] have been exten-
sively utilized for ballistic applications due to their remarkable mechanical properties.
While many studies were dedicated to composite materials consisting of either PPTA or
UHMWPE, a few of them focused on the ballistic performance effect by combining the two.
Hofsté et al. [33] fabricated composites from chopped PPTA fibers and UHMWPE powder.
Mechanical properties characterization showed that there was a large difference between
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the experimentally obtained values and the theoretically predicted values. They attributed
this difference to the voids in the composite and weak adhesion between the PPTA fiber
and the UHMWPE matrix. The same authors used chromic acid to oxidize the UHMWPE
powder before mixing it with the PPTA fiber [34]. The results showed that the mechanical
properties of the composites were improved because of stronger bonding between PPTA
fiber and UHMWPE matrix. However, degradation problems arose due to the instability
of the oxidized UHMWPE. Li et al. [35] used silane, which contains both hydrophobic
and hydrophilic groups, to surface modify the PPTA fibers in PPTA/UHMWPE powder
composites. The results demonstrated that the silane modification process enhanced the
tensile strength and wear resistance of the composites. More recently, Guleria et al. [36] de-
veloped a microwave-assisted compression molding process to prepare PPTA/UHMWPE
power composites. Mechanical properties characterization showed that PPTA/UHMWPE
composites exhibited higher ultimate tensile strength, flexural and hardness properties,
and impact energy absorption rate, compared to pure UHMWPE.

Knitting PPTA and UHMWPE yarns was another way of fabricating PPTA/UHMWPE
composites in addition to preparing PPTA fiber/UHMWPE powder-based materials [37,38].
Adhesive resins such as ethylene vinyl acetate [39], vinyl ester [40], and epoxy [41] as well
as other components such as carbon nanotubes [41] were used to enhance the bonding
between the PPTA fabrics and UHMWPE fabrics/fibers. However, this type of fabrication
process does not form direct bonding between the PPTA and the UHMWPE. Moreover,
complex processing steps, such as mixture/solution preparation, sample impregnation,
heating, curing, and drying, were required in these processes. To the best of the authors’
knowledge, continuous UHMWPE films were not used for fabricating PPTA/UHMWPE
composites. The UHMWPE films in our fabrication act as a bonding layer between the
PPTA fabrics, which eliminated the use of additional adhesives or components. Thus, the
use of UHMWPE films can greatly simplify the process of manufacturing layered structures
compared to using UHMWPE powders and other technologies.

As previously mentioned, both PPTA and UHMWPE are important high-performance
polymers for lightweight body armor. By combining these two materials together, it is
expected that the synergy between PPTA and UHMWPE can be achieved, and that the
antiballistic performance can be further enhanced beyond what either material can achieve
on its own. In this study, laminate panels consisting of PPTA fabrics and UHMWPE films
were produced using a previously developed simple method, which included plasma
treatment and hot-pressing [42]. The plasma treatment process greatly enhanced the
interlaminar adhesion between PPTA and UHMWPE layers. This improvement is expected
to initiate enough delamination during bullet penetration, which can consume impact
energy. This is superior to the case where weak or no interlaminar adhesion exists between
the layers. The ballistic performance of the laminate samples was investigated by bullet
testing. The results were correlated with the interlaminar adhesion reported in our previous
work [42]. Failure mechanisms of the PPTA and UHMWPE layers were studied with the
assistance of electron microscopy.

2. Materials and Methods
2.1. Materials

PPTA fabrics woven from Kevlar® 49 fiber (area density: 218 g/m2, thickness: 0.37 mm,
ends × picks/10 cm: 67 × 67, weave: plain, part number: AR30-FC-000160, Goodfellow
Corporation, Coraopolis, PA, USA) and UHMWPE films (thickness: 0.2 mm, part number:
ET30-FM-000100, Goodfellow Corporation, Coraopolis, PA, USA) were acquired from a
commercial source. The properties provided by the vendor are shown in Table S1.

2.2. Sample Preparation

Prior to the plasma treatment, UHMWPE films (6” × 6”) were first cleaned with
acetone, then rinsed with deionized water, and dried in an oven at 50 ◦C overnight. Oxygen
plasma treatment of UHMWPE films and PPTA fabrics (6” × 6”) at different durations
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was performed using a Harrick Plasma Cleaner (PDC-32G, power: 18 W). In our previous
work [42], we conducted characterizations of UHMWPE and PPTA after plasma treatment.
The SEM and AFM results revealed that the plasma treatment process had cleaned and
roughened the surfaces of UHMWPE and PPTA, which enhanced the mechanical inter-
locking between the two. Additionally, the FTIR and XPS analyses demonstrated that
the plasma treatment process had introduced active functional groups, which could help
the bonding between the two [42]. These surface modifications resulted in an improved
interlaminar adhesion between UHMWPE and PPTA, as shown by the 180-degree peel test
results. Furthermore, by adjusting the plasma treatment time, controllable interlamellar
adhesion between PPTA fabrics and UHMWPE films was achieved [42].

After the plasma treatment process, the UHMWPE films and PPTA fabrics were
stacked alternatively, as shown in Figure 1. The hot-pressing was conducted at 190 ◦C for
1 h using a heat press machine (Across International, Livingston, NJ, USA). The interlayer
compression was adjusted using a mechanical knob on the top of the hot-pressing machine,
which was calibrated in advance using a thin film force sensor (FlexiForce sensor, Tekscan
Inc., Boston, MA, USA). For all samples, the pressure was controlled to be about 173 kPa
during the hot-pressing process.
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Figure 1. Schematic illustration of the sample fabrication process with two different stacking se-
quences.

Two different stacking sequences were used (Figure 1): (i) eight layers of UHMWPE
films and nine layers of PPTA fabrics (PE(8)-KF(9)), in this case, PPTA fabric was on the
outer surface, and (ii) nine layers of UHMWPE films and eight layers of PPTA fabrics
(PE(9)-KF(8)), in this case, UHMWPE film was on the outer surface. Two samples were
prepared for each condition. The mass of all samples is around 80 g.

2.3. Testing and Characterization

Ballistic testing was performed on UHMWPE/PPTA laminates according to NIJ stan-
dards [43,44]. The bullet used in this study was 0.22 lr, which has an average velocity of
1255 feet per second as determined by the chronograph (Figure S1). The shooting distance
was fixed at 4.572 m (15 ft). Each sample was attached to a 6” × 6” wooden box containing
Plastalina modeling clay (Craft Smart®, Michaels Stores, Inc., Irving, TX, USA) (Figure 2
and Figure S1). Six shots were conducted on each sample. After the ballistic testing, the ge-
ometry of the bullet-induced indentations in the clay (Figure 2d) was measured to evaluate
the energy absorption capability of the laminate samples, including their diameters and
depths. The maximum and minimum indentation diameters were recorded and averaged.
In Figure 2d, the check marks denote partial penetration shots, whereas the cross marks
indicate full penetration shots. As shown in Figure 2d, shots #3 and 6 partially penetrated,
showing indents with large diameters and shallow depths, whereas indents of completely
penetrated shots #1, 2, 4, and 5 showed smaller diameters and greater depths.
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UHMWPE film and niner layers of PPTA fabric (PE(8)-KF(9)) and (b) nine layers of UHMWPE film
and eight layers of PPTA fabric (PE(9)-KF(8)); Pictures of a laminate (c) and the indents in the backing
clay (d) after ballistic testing. Numbers 1, 2, 4, 5 indicate completely penetrated shots and numbers 3
and 6 indicate partially penetrated shots.

Back face signature (BFS), which is usually measured from the backing clay, is a
particularly important indicator for evaluating the performance of body armors [29]. If BFS
exceeds a certain limit, the wearer could be harmed even if the bullet was stopped by the
body armor. According to NIJ standards [43,44], complete penetration or indentation depth
of BSF in backing clay greater than 44 mm should be classified as a failure. In this study, the
failure rate was calculated by dividing the number of shots with indentation depth greater
than 44 mm by the total number of shots. The indentation volume is another vital indicator
to assess energy absorption capability, but it is usually challenging to measure [45].

For failure analysis, the laminate samples were sectioned by a sharp knife around
the penetration holes. The cross sections, the bullet entrance surfaces, and the bullet exit
surfaces near the penetration holes were examined using scanning electron microscopy
(SEM, Quanta 450 FEG, Thermo Fisher-FEI, Hillsboro, OR, USA).

3. Results and Discussion
3.1. Anti-Ballistic Performance
3.1.1. Effect of Interlayer Adhesion

The results of the ballistic testing are summarized in Figure 3. The different degrees
of interlayer adhesion obtained as a result of the treatment of UHMWPE and PPTA with
oxygen plasma at different exposure times were described in our previous study [42]. As
shown in Figure 3, samples prepared by simply laying plasma untreated PPTA fabrics
((u)KF) and without hot pressing showed poor ballistic performance with a failure rate of
0.33 and an average penetration depth of 38.67 mm. Adding UHMWPE films between the
layers of PPTA fabric ((u)PE-(u)KF*) improved the ballistic performance with a failure rate
of 0.23 and an average penetration depth of 28.60 mm. In contrast, laminate samples made
by hot-pressing PPTA fabrics and UHMWPE films without plasma treatment ((u)PE-(u)KF)
showed a further improvement in ballistic performance with a failure rate of 0.17 and an
average penetration depth of 26.10 mm. During hot pressing, the UHMWPE films were
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melted, which led to a certain level of adhesion between the layers of PPTA fabrics [42].
This favorably affects the ballistic performance of composites compared to samples without
interlayer adhesion ((u)KF and (u)PE-(u)KF*) (Figure 3d). These results demonstrated that
a certain level of interlayer adhesion increases the absorption of ballistic impact energy.
When UHMWPE was plasma-treated for 1 min, the interlayer adhesion improved, and
the samples exhibited the best ballistic performance with the lowest failure rate of 0.05
and an average indentation depth of 21.71 mm in the backing clay. However, samples
containing plasma-treated PPTA fabrics and showing higher interlaminar adhesion did not
exhibit better ballistic capability, as evidenced by a higher failure rate and a greater average
indentation depth.
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(d) [42] of different samples. (u)KF is the control sample produced by stacking PPTA fabrics without
plasma treatment or hot-pressing. (u)PE-(u)KF* is the sample produced by stacking UHMWPE
films/PPTA fabrics without plasma treatment or hot-pressing. All other samples were produced by
hot pressing eight layers of UHMWPE and nine layers of PPTA fabric. PE: UHMWPE film, KF: PPTA
fabric. The numbers in the brackets indicate the plasma treatment time in minutes, and u indicates
that the sample was untreated.

Samples (u)KF and (u)PE-(u)KF*, which were prepared by simply stacking PPTA
and/or UHMWPE layers together without hot-pressing, exhibited no interlaminar ad-
hesion. For all other samples, bonding was achieved by hot pressing. In these cases,
delamination was expected to occur to absorb additional impact energy. In our previous
work [42], we found that by introducing an oxygen plasma treatment process, both the
topology and chemistry of both PPTA and UHMWPE surfaces were altered. Consequently,
composites of PPTA fabrics and UHMWPE films with improved and controllable inter-
laminar adhesion were prepared (as shown in Figure 3d). By comparing the ballistic
performance with the interlaminar adhesion, it can be seen that moderate interlaminar
adhesion improves the ballistic performance of the laminated panels, which is consistent
with literature data [19,24–28], as discussed in the previous section. Moderate interlayer
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adhesion can help to absorb impact energy by enabling delamination and debonding [28].
However, if the interlayer adhesion is too weak, such as observed in the untreated samples
(u)PE-(u)KF, then the delamination process is insufficient to consume a large amount of
impact energy of the high-speed projectile. Conversely, strong adhesion will cause the pro-
jectile to perforate directly with very limited delamination or even without delamination,
which does not contribute to energy absorption either.

3.1.2. Effect of Stacking Sequence

To investigate the effect of stacking sequence of PPTA and UHMWPE, two types of
samples were made as shown in Figure 1: (i) samples with eight layers of UHMWPE
and nine layers of PPTA or PE(8)-KF(9) samples, and (ii) samples with nine layers of
UHMWPE and eight layers of PPTA, or PE(9)-KF(8) samples. Figure 4a–c show the failure
rate, average indentation depth, and diameter of three groups of samples with the two
stacking sequences. The PE(8)-KF(9) samples exhibit better ballistic performance, with a
lower failure rate. This may be attributed to the following reasons. First, the first layers of
the PE(8)-KF(9) samples are PPTA fabrics, which could provide better resistance against
high-speed bullets due to its stronger mechanical properties than UHMWPE (Table S1).
Second, the PPTA yarns could entangle the bullet and effectively reduce its spin. Lastly,
PPTA has a much higher upper working temperature (thermal stability) than UHMWPE,
which avoids the thermal damage (often noticed in UHMWPE) and may also contribute to
the better performance of the PE(8)-KF(9) samples.
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and eight layers of PPTA and PE(8)-KF(9), eight layers of UHMWPE and nine layers of PPTA where
PE and KF layers were plasma-treated for a different time (2 or 5 min) or not.
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Many factors affecting the impact performance of soft body armors are discussed in the
literature. Mawkhlieng et al. [2] classified various parameters into the following categories,
including (a) material parameters, such as fiber modulus, tenacity, density, and yarn to
yarn friction [46]; (b) structural parameters, such as the number of layers, yarn twist, thread
density, weave; (c) projectile parameters, such as mass, shape and velocity, and (d) testing
parameters, such as shooting location, angle boundary conditions, and the number of
shots, etc. In addition, the layering sequence was also considered to be an important factor
affecting the performance of laminates. Park et al. [47] investigated the role of layering
sequences in the penetration resistance of unidirectional (UD)/woven fabric hybrid panels.
The cross-plied UD fabrics used in their study are UHMWPE fiber-based Dyneema® SB31
and p-aramid fiber-based Gold Flex®. The woven fabric is a plain weave of 600 denier
p-aramid yarns [47]. The authors claimed that when the unidirectional (UD) and woven
fabric of hybrid panels were sequenced in the order of decreasing stiffness, the perforation
resistance against infrangible bullets (5.56 mm NATO fragment-simulating projectile (FSP))
was improved, which was attributed to the less restraint of the subsequent rear-component
layers. However, sequencing the component layers in a reverse manner enhanced the
blunt trauma resistance against frangible bullets (0.44 caliber (10.9 mm) magnum semi-
jacketed hollow point (SJHP)). They believed that this resulted from the better coupling
of yarn elongation in the frontal and rear component layers [47]. Subramaniam et al. [48]
studied the effect of stacking configuration on the quasi-static penetration performance of
kenaf/glass hybrid fiber metal laminates and concluded that laminates with glass fiber plies
on the outer surface exhibited better penetration resistance. They claimed that when the
high strength and high stiffness glass fiber plies were placed on the outer layer, the energy
absorption rate increased due to the higher strength and elongation required to induce the
fracture of the flexible glass plies. Thus, the contact stress from the indenter was effectively
transferred before it propagated to subsequent layers. However, when kenaf fabric was
placed as an outer layer, premature failure occurred before the stress was transferred to the
woven structure due to the low shear force required for penetration [48]. O’Masta et al. [32]
contended that when the ply with the highest compressive strength was placed at the
entrance side, and the ply with the highest tensile strength was placed at the back side
of the laminate, the multi-material laminates exhibited significant impact performance
advantages given the mechanics of progressive projectile penetration accompanied by the
transformation of out-of-plane compression into in-plane tension [32].

In this study, two factors—the interlaminar adhesion and stacking sequence—were
examined in terms of their effect on the ballistic performance. The results showed that a
moderate increase in interlayer adhesion between PPTA and UHMWPE layers can improve
the ballistic performance of the laminates. Laminates with PPTA as the outmost layer
performed better than those with UHMWPE as the outmost layer. Future work will include
the investigation of more parameters, including other stacking structures.

3.2. Failure Mode Analysis
3.2.1. Failure Analysis of Fully Penetrated Samples

1. Failure of PPTA fabrics in PE(9)-KF(8) samples

Understanding the projectile penetration mechanism is of critical importance for
designing high-performance body armors. The laminate sample (u)PE(9)-(u)KF(8) was
sectioned around a completely penetrated hole (Figure 5a) and imaged by SEM. Figure 5b
shows the layered structure of the panel with alternating layers of UHMWPE and PPTA,
and the micro delamination (marked with white arrows) located outside the penetration
hole. The fiber bundles were bent along the direction of the projectile’s motion (indicated
by yellow and blue arrows). Figure 5c displays the obtuse tips of the fractured fibers, which
were often found on the entrance side of the target (yellow arrow), indicating the rupture
mechanism as a result of shear stresses (inset of Figure 5c). Shear stress concentrated on
the sides of the projectile during penetration and shear cutting failure is usually the first
failure mode in ballistic impact. For very high-speed impact, shear failure could be the only
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failure mechanism, where the damage is concentrated around the penetration hole [49]. At
locations close to the exit side of the laminate (Figure 5d,e), the fibers split (defibrillate),
pulling out their constituents and elongating, as illustrated in the inset of Figure 5d,
indicating predominant rupture due to tensile stress caused by the large deflection of the
bulge [50]. Deceleration of the projectile during penetration is the main reason for the
change in the failure mode [49]. After the velocity falls below the critical speed of the shear
failure, subsequent layers may peel off and bend, and fibers can break under the tensile
forces. Results of mechanical defibrillation and fiber splitting can be also observed on the
exit side (Figure 5f).
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Figure 6 shows the morphology of PPTA fibers in another tested laminate sample
(u)PE(9)-(5)KF(8). The damaged PPTA fibers on the entrance side (Figure 6a) exhibit
kinks (Figure 6b) possibly due to pinching by neighboring fibers or buckling induced
by compressive stress resulting from the stretch-and-release of raptured fiber (Figure 6c).
Failure of the sample starts instantaneously due to high contact stresses applied by the
projectile on the entrance side. Figure 6d depicts a large bulge and enlargement of the
penetration hole (in comparison to the entrance side (Figure 6a) on the exit side of the
sample, which is also observed in UHMWPE composite laminates [23] and signifies the
different failure mechanism between the entrance and exit sides. When the projectile
progressed towards the rear face of the composite panel with decreasing velocity, the load
could be distributed into a wider area, resulting in localized bending and bulging around
the impact zone. It is thus believed that materials with a high out-of-plane Young’s modulus
can reduce the bending deformation and delay the occurrence of tensile failure on the exit
side of the panel. Figure 6e,f present fiber stripping and necking characteristics, respectively,
indicating that the fibers experienced high tensile stress before failure. This can also be
observed in the cross-section around the penetration hole of the sample (u)PE(9)-(u)KF(8)
(Figure 5). Although many fibers were intertwined together at the exit side, complete fiber
breakage was rarely seen, which could be due to the protection of the outermost UHMWPE
layer at the rear face (Figure S2).
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2. Failure of PPTA fabrics in PE(8)-KF(9) samples

Figure 7 shows the SEM images captured around a penetration hole on the entrance
side (Figure 7a) and the exit side (Figure 7d) of a (u)PE(8)-(u)KF(9) laminate sample. The
PPTA fibers showed shear cutting failure on the entrance side around the crater (Figure 7b,c).
At the beginning of projectile penetration, a compressive pulse or transient stress wave
is induced in the sample ahead of the projectile [49]. When the projectile penetrated the
panel and the strain level reached the failure threshold, the local deformation around
the penetration hole developed into fiber failure. The PPTA fibers on the exit side of the
laminate were pulled out, which is not obvious for the sample (u)PE(9)-(5)KF(8) (Figure 6).
The fibers fractured and their ends were split (defibrillate) similar to a brush tip (Figure 7e,f),
which differed from the failure mode observed in PE(9)-KF(8) samples (Figure 6). This
difference may be due to the absence of protection from the outermost UHMWPE layer on
the exit side of the (u)PE(8)-(u)KF(9) sample.
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In summary, for both PE(9)-KF(8) and PE(8)-KF(9) samples, the same failure modes
of PPTA fibers were identified, i.e., shear cutting failure on the entrance side, and tensile
failure on the exit side. However, some differences in detailed morphology were observed.
Therefore, placing materials with high compressive and shear strength on the entrance
side and materials with high tensile strength on the exit side may improve the ballistic
performance of laminate panels.

3. Failure of UHMWPE film

Figure 8 shows SEM images taken around a punched UHMWPE film of a fully pen-
etrated laminate at the entrance side (Figure 8a,b), cross-section (Figure 8c,d), and the
exit side (Figure 8e,f) of the sample (u)PE(9)-(5)KF(8). The diameter of the penetration
hole can be measured in Figure 8a, which is around 4 mm and much smaller than the
diameter of the projectile (5.7 mm), indicating severe friction between the projectile and
the sample [23]. Figure 8a–c show the cracks, steps, and shear plugs in the UHMWPE
film due to significant compression of its thickness caused by the high impact stress at the
entrance side of the laminate. We noticed that there was shear plugging formed in the
sample (u)PE(9)-(5)KF(8) during the projectile penetration, as previously reported in the lit-
erature [23,51]. The shear plugging is usually generated under the following circumstances:
(1) the projectile has sharp edges; (2) the samples exhibit brittle properties; (3) the adhesion
between fiber and matrix is high [28]. Based on our experimental results, it is possible that
the last two factors contributed to the formation of the shear plugging observed in this
study. The UHMWPE region around the crater showed signs of brittle fracture, including
sharp-angled edges (Figure 8b), which are very different from typical ductile polymer
behavior demonstrating smooth fracture surfaces. The sharp-angled edges of UHMWPE
were most likely attributed to the partial crystallinity of UHMWPE, which manifests itself
in characteristic splits along the boundaries or easy fracture planes of the crystal structure.
On the other hand, as observed in our previous work [42], plasma treatment used in this
approach enhanced the adhesion between UHMWPE and PPTA layers, which may also
contribute to the formation of shea plugging. Indeed, the sample showed shear plugging
behavior (sample (u)PE(9)-(5)KF(8) in Figure 3d) and exhibited the strongest interlayer
adhesion between PPTA and UHMWPE among all samples, with an average peeling force
of 30.58 N (Figure 3d). The rounded fractured edges of the UHMWPE film (Figure 8c)
indicate thermal damage, which was also observed in broken UHMWPE fibers [52]. During
the entry of the projectile into the panel, both experienced a sharp increase in tempera-
ture due to the resulting friction. Accordingly, an increase in temperature degraded the
fracture resistance of UHMWPE. We also noticed a terraced morphology or the striation
along the fracture surface of the UHMWPE film (Figure 8b,c), which may be related to the
semicrystalline structure of UHMWPE [53,54] and associated with discontinuous crack
propagation and accumulated damage [55]. As the bullet continued moving through the
laminate structure, the velocity decreased dramatically, the frictional heat reduced, and the
temperature dropped below the melting point of the UHMWPE. The UHMWPE film no
longer underwent thermal damage and exhibited blunt and clean fracture (yellow arrows
in Figure 8d). On the exit side of the sample, the UHMWPE displayed a thick and flat
fracture feature due to the tensile stress generated by the large deflection and bending
of the laminate panel (Figure 8e,f) [23,28,32,50,56]. The UHMWPE films fail in tension
once the dynamic stress exceeded the tensile strength. This result was also observed in
UHMWPE fibers [52]. Overall, for UHMWPE films, thermal damage, and brittle failure are
the dominant failure mechanisms on the entrance side, and tensile fracture is on the exit
side of the composite.



Polymers 2023, 15, 2281 12 of 16Polymers 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 8. SEM images of the damaged UHMWPE film captured on the entrance side (a,b), cross-
section (c,d), and the exit side (e,f) of the laminate sample (u)PE(9)-(5)KF(8) around a hole in a com-
pletely penetrated panel. 

3.2.2. Failure Analysis of a Partially Penetrated Sample 
The cross-section of the laminate sample (u)PE(8)-(5)KF(9) around a partially pene-

trated shot was examined by SEM. The bullet appears to be stopped by the laminate and 
deformed into a hemispheric shape (Figure 9a). This deformation consumed part of the 
impact energy. The delamination marked with black arrows in Figure 9a could also have 
absorbed some impact energy, as discussed in previous sections. It was claimed that de-
lamination usually grows in an area that does not fail under shear or tension and ceases 
growing once a layer failed [56]. The brighter regions in Figure 9b–f belong to the bullet, 
which was surrounded by UHMWPE or PPTA layers. In front of the deformed bullet, the 
PPTA fibers are inlaid in the bullet and pulled by the bullet (Figure 9b,c), which may be 
caused by copper melting or softening due to friction-induced heat. Figure 9e displays the 
flat tips of the fractured fibers, suggesting a compressive failure mode where the laminate 
layers were significantly compressed in front of the bullet [28,49,57]. Figure 9f shows the 
failed UHMWPE region, the intertwined PPTA fibers, and a large void on the back of the 
bullet. The light dots present in large quantities on the surface of UHMWPE and PPTA 
fibers are drops of molten metal and are a result of friction heating of the bullet penetrat-
ing through the laminate. 

Figure 8. SEM images of the damaged UHMWPE film captured on the entrance side (a,b), cross-
section (c,d), and the exit side (e,f) of the laminate sample (u)PE(9)-(5)KF(8) around a hole in a
completely penetrated panel.

3.2.2. Failure Analysis of a Partially Penetrated Sample

The cross-section of the laminate sample (u)PE(8)-(5)KF(9) around a partially pen-
etrated shot was examined by SEM. The bullet appears to be stopped by the laminate
and deformed into a hemispheric shape (Figure 9a). This deformation consumed part of
the impact energy. The delamination marked with black arrows in Figure 9a could also
have absorbed some impact energy, as discussed in previous sections. It was claimed that
delamination usually grows in an area that does not fail under shear or tension and ceases
growing once a layer failed [56]. The brighter regions in Figure 9b–f belong to the bullet,
which was surrounded by UHMWPE or PPTA layers. In front of the deformed bullet, the
PPTA fibers are inlaid in the bullet and pulled by the bullet (Figure 9b,c), which may be
caused by copper melting or softening due to friction-induced heat. Figure 9e displays the
flat tips of the fractured fibers, suggesting a compressive failure mode where the laminate
layers were significantly compressed in front of the bullet [28,49,57]. Figure 9f shows the
failed UHMWPE region, the intertwined PPTA fibers, and a large void on the back of the
bullet. The light dots present in large quantities on the surface of UHMWPE and PPTA
fibers are drops of molten metal and are a result of friction heating of the bullet penetrating
through the laminate.
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In the open literature, a number of experimental and simulation studies have been
carried out to understand the complex process of projectile penetration and energy absorp-
tion mechanisms in fabric composites for ballistic applications [20,28,57–63]. For example,
Mawkhlieng et al. [2] classified the energy absorption mechanisms into four categories:
fiber and yarn extension, yarn decrimping, fiber and yarn rupture, and yarn pull-out.
Naik et al. [61,62] investigated the ballistic impact behavior of two-dimensional woven
fabric composites and identified several energy absorption mechanisms, including energy
absorbed by the tensile failure of the primary yarns, deformation of the second yarns,
matrix cracking, shear plugging, and friction between the projectile and the target. De-
lamination is another important mechanism for absorbing impact energy, which is well
documented in the open literature [21–23,61,62] and also confirmed in this study.

Generally, it is believed that there are two stages involved in the projectile penetration
process [51]. In the first stage, shear failure occurs due to the high velocity of the projectile
at the time of entering the target [49]. During the second stage when the projectile velocity
is reduced, tensile failure occurs with bulging or breakout of sub-laminates [22,50]. This
general trend has also been observed in the current study, where tensile failure was induced
by high tensile stress as a result of large deflection and bending of the laminate panel
on the exit side (Figures 6d, 7d and 9a). In the partially penetrated laminates (Figure 9),
delamination is clearly observed, as characterized by the triangular void at the right corner
of the bullet (Figure 9a).

4. Conclusions

In this study, layered PPTA fabric/UHMWPE film laminated samples were fabricated
using surface plasma treatment and a hot-pressing process. Their protective performance
was evaluated by ballistic tests. The results showed that a moderate increase in adhesion
between PPTA fabric and UHMWPE film improved armor performance, which may be
attributed to the energy absorption caused by delamination. It has also been found that
stacking sequence affected the performance of the composite samples, such that the samples
with PPTA fabric placed as the front layer had better protective characteristics. SEM
examinations showed that the main failure modes of PPTA fabric were shear cutting
failure on the entrance side and tensile failure on the exit side. The failure modes of
UHMWPE film were mainly brittle failure and thermal damage at high strain rate under
compression on the entrance side, and tensile failure on the exit side of the laminate
samples. From the examination of the failure modes, it can be seen that the sample mainly
suffered compression and thermal damage on the entrance side and tensile stress on the
exit side. Therefore, it is beneficial to the ballistic performance by placing materials with
high compressive and shear strength, and high thermal stability on the entrance side,
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and materials with high tensile strength on the exit side of the composites. In summary,
this study reported first-hand in-field bullet testing results of PPTA/UHMWPE composite
panels, which can provide important insights for designing, fabricating, and failure analysis
of such composite structure for body armors.
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PPTA fabric and UHMWPE film. Figure S1: Schematic of the experimental setup for the ballistic
testing. Figure S2: SEM images of the PPTA fibers captured on the exit side of the laminate sample
(u)PE(9)-(5)KF(8) around a completely penetrated hole.
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