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Abstract: Membrane sensors have been widely used in various fields owing to their multifunctionality
and cost-effectiveness. However, few studies have investigated frequency-tunable membrane sensors,
which could enable versatility in the face of different device requirements while retaining high
sensitivity, fast response times, and high accuracy. In this study, we propose a device comprising
an asymmetric L-shaped membrane with tunable operating frequencies for microfabrication and
mass sensing applications. The resonant frequency could be controlled by adjusting the membrane
geometry. To fully understand the vibration characteristics of the asymmetric L-shaped membrane,
the free vibrations of the membrane are first solved by a semi-analytical treatment combining domain
decomposition and variable separation methods. The finite-element solutions confirmed the validity
of the derived semi-analytical solutions. Parametric analysis results revealed that the fundamental
natural frequency decreases monotonically with the increase in length or width of the membrane
segment. Numerical examples revealed that the proposed model can be employed to identify suitable
materials for membrane sensors with specific frequency requirements under a given set of L-shaped
membrane geometries. The model can also achieve frequency matching by changing the length or
width of membrane segments given a specified membrane material. Finally, performance sensitivity
analyses for mass sensing were carried out, and the results showed that the performance sensitivity
was up to 0.7 kHz/pg for polymer materials under certain conditions.

Keywords: free vibration; asymmetric L-shaped membrane; semi-analytical treatment; frequency-
tunable membrane sensors

1. Introduction

In the past few decades, polymer membranes have been widely used to manufacture
vibration sensors owing to their mechanical flexibility, high sensitivity, cost-effectiveness,
and facile integration into electronic circuits. These sensors, comprising a flexible mem-
brane, detect changes in the surrounding environment based on changes in the vibration
characteristics. Owing to the high sensitivity of membrane vibrations to changes in the
surrounding environment, these sensors can detect small changes in temperature, pressure,
and other physical parameters. As a result, polymer-membrane vibration sensors are ap-
plied in numerous fields, including structural health monitoring, the automotive industry,
and medical diagnostics [1–5].

Understanding the vibration characteristics of membranes is required to extend the
applications of membrane sensors. Several studies have documented the natural frequen-
cies of homogeneous membranes [6,7]. Generally, exact analytical solutions are limited
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to simple geometries such as rectangles, circles, sectors, ellipses, and isosceles right tri-
angles [8–10]. Various approximate approaches have been developed to solve problems
involving polygonal or compound geometries with Dirichlet, Neumann, or mixed bound-
ary conditions [11–15]. As alternative practical routes, numerical schemes such as the
finite-difference, finite-element (FE), boundary-element (BE), and mesh-free methods have
been reported [16–24]. Recently, novel numerical methods, such as the Galerkin [25] and
Bezier [26] methods, have been shown to attain higher stability and accuracy than other
numerical methods.

Among previous research topics, homogeneous L-shaped membranes are apparently
favored, especially symmetric ones [27,28]. Associated eigenvalues are often used as vali-
dation criteria or cross-reference sources [29–39]. Unfortunately, the theoretical solution for
the corresponding free vibration problems is seemingly difficult. The most commonly used
method (i.e., the variable separation method) is only feasible for simple geometric mem-
branes whose boundaries fit perfectly into a particular separable coordinate system, such
as circular and elliptical membranes [8]. Although the geometries of L-shaped membranes
inherently consist of rectangles, exact analytical solutions for symmetric and asymmetric
cases are not readily available. This is because the contours of L-shaped geometries only
partially conform to a Cartesian rectangular coordinate system.

As frequency-tunable membrane sensors demonstrate more comprehensive applica-
tions (e.g., biomedical sensing, environmental monitoring, and industrial process control),
a conceptual model for a tunable microfabricated device comprising asymmetric L-shaped
membranes is proposed herein. First, a Fourier series solution is derived, which can be
used as an alternative to an exact analytical solution. The region-matching technique com-
bines the domain decomposition method and the variable separation method. When the
appropriate auxiliary boundary is selected, the eigenfunctions in each subregion inherently
satisfy most parts of the clamped boundary conditions. This semi-analytical nature permits
relatively fast convergence and relatively high accuracy of the present results compared to
those obtained using commercial FE software Abaqus [40].

This serves as the cornerstone of our investigation into frequency-tunable sensor
design. The operating frequency of these membrane-based sensors can be tuned by either
material selection or membrane geometry. The semi-analytical solution presented above
is used to determine a suitable material for a membrane vibration sensor with a specific
frequency requirement. In addition, frequency tuning is demonstrated by varying the
length or width of the membrane segments.

2. Materials and Methods

Consider a tunable microfabricated device comprising a stretched asymmetric L-shaped
membrane clamped on all edges. Figure 1 shows the problem geometry. The thin elastic
membrane is assumed to be homogeneous and is characterized by four parameters, b, d, a, and
h, where b and d represent the length and width of the left-hand segment, and a and h represent
those of the right-hand segment, respectively. The uniform tensile force per unit length is T,
and the constant mass per unit area is ρ. The origin of the Cartesian coordinate system (x, y) is
the vertical projection point of the concave corner on the underside of the membrane.

Based on the domain decomposition method, a vertical auxiliary boundary Sa is
introduced to divide the entire computational domain into two enclosed regions: regions 1
and 2 (see Figure 1). The small transverse motions of the membrane, denoted by uj, must
obey the governing Helmholtz equations:

∇2uj + k2uj = 0, j = 1, 2, (1)

where ∇2 is the two-dimensional Laplacian operator in the x–y plane, k = ω
√

ρ/T is the
wavenumber, and ω is the angular natural frequency of vibration. The subscript j, where
j = 1 and 2, represents the region number. The time-harmonic factor is understood through-
out this section.
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Figure 1. Geometric layout of the asymmetric membrane.

The zero-displacement boundary conditions are imposed along the edge of region 1,

u1(x, y) = 0, y = 0, −d ≤ x ≤ 0, (2)

u1(x, y) = 0, x = −d, 0 ≤ y ≤ b, (3)

u1(x, y) = 0, y = b, −d ≤ x ≤ 0, (4)

u1(x, y) = 0, x = 0, h ≤ y ≤ b, (5)

and along the edge of region 2,

u2(x, y) = 0, y = 0, 0 ≤ x ≤ a, (6)

u2(x, y) = 0, x = a, 0 ≤ y ≤ h, (7)

u2(x, y) = 0, y = h, 0 ≤ x ≤ a, (8)

By applying the method of eigenfunction expansion, the displacement fields in regions
1 and 2, respectively, can be expressed as follows:

u1(x, y) =
∞

∑
n=1

An
sinh[αn(x + d)]

sinh(αnd)
sin
(nπ

b
y
)

, (9)

u2(x, y) =
∞

∑
n=1

Bn
sinh[βn(x− a)]

sinh(βna)
sin
(nπ

h
y
)

, (10)

with

αn =

√(nπ

b

)2
− k2, (11)

βn =

√(nπ

h

)2
− k2, (12)

where the expansion coefficients An and Bn are unknown. Notably, Equations (9) and (10)
inherently satisfy the governing Equation (1) and most of the boundary conditions around
the membrane edge, except those on Sa.

Enforcing the displacement continuity condition on Sa yields

u1(x, y) = u2(x, y), x = 0, 0 ≤ y ≤ h, (13)
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By multiplying Equation (13) by a sequence of sine functions and integrating over the
appropriate intervals,

∫ b

0
u1(0, y) sin

( qπ

b
y
)

dy =
∫ h

0
u2(0, y) sin

( qπ

b
y
)

dy, q = 1, 2, · · · , (14)

According to Equation (5), the result of integration from h to b vanishes. This im-
plies that the upper limit of integration on the left-hand side of Equation (14) can be
extended from h to b. Therefore, the orthogonal property of sine functions can be applied
to Equation (14) directly. Consequently, the following relation holds:

An =
2
b

∞

∑
m=1

Bm IS
m,n, (15)

where

IS
m,n =


h/2, mb = nh

− mh(−b)2

π
[
(mb)2−(nh)2

] sin
( nπ

b h
)
, m 6= n , (16)

Similarly, by considering the slope continuity condition across Sa,

∂u1(x, y)
∂x

=
∂u2(x, y)

∂x
, x = 0, 0 ≤ y ≤ h, (17)

and applying successive sine functions, and integrating over the range [0, h],

∫ h

0

∂u1(0, y)
∂x

sin
( qπ

h
y
)

dy =
∫ h

0

∂u2(0, y)
∂x

sin
( qπ

h
y
)

dy, q = 1, 2, · · · , (18)

By exploiting Equation (15) to eliminate the unknown coefficients An and rearranging
the results in a system of linear algebraic equations (with unknown coefficients Bn), the
following matrix form can be obtained:[

Mi,j(k)
]{

Bj
}
= {0}, i = 1, 2, · · · , j = 1, 2, · · · , (19)

with

Mi,j(k) =
∞

∑
n=1

αncoth(αnd)IS
i,n IS

j,n + δi,jβi
bhcoth(aβi)

4
, (20)

where δi,j is the Kronecker delta function.
Clearly, Equation (19) constitutes a generalized matrix eigenvalue problem, as ex-

pected. Standard techniques can thus be used to evaluate the natural frequencies of the
present membrane, which are related to the roots of the determinant equation given by

det
[
Mi,j(k)

]
= 0, (21)

Once the eigenvalues k are found, the expansion coefficients Bn can be evaluated using
partitioned matrices and block multiplication (cf. Equation (19)). Therefore, the expansion
coefficients An are determined directly from Equation (15). Eventually, the natural modes
(eigenmodes) can be obtained by Equations (9) and (10).

In Equation (20), the summation indices n and the weighting indices i and j are
truncated after N terms. Hence, Equation (19) constitutes a system of N equations with
N + 1 unknowns. The number of truncation terms in consideration depends only on the
accuracy requirement.
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3. Results

For nondimensionalization, the width of the right-hand segment h is taken as the
characteristic length. The eigenvalues ki are given, in dimensionless form, as follows:

ki = hω
√

ρ/T, i = 1, 2, · · · , (22)

Before undertaking semi-analytical and FE modeling on L-shaped membranes, pertinent
parameter settings adopted for symmetric and asymmetric cases are shown in Tables 1 and 2.

Table 1. Geometric parameters adopted for symmetric and asymmetric L-shaped membranes.

Geometric
Parameters b/h d/h a/h

Symmetric case 2.00 1.00 1.00
Asymmetric case 1 1.68 0.57 1.24
Asymmetric case 2 1.75 0.5 0.1–0.9
Asymmetric case 3 1.75 0.1–0.9 0.6

Table 2. Simulation parameters adopted for FE analysis.

Simulation Parameters Values

Density (kg/m3) 750
Young’s modulus (GPa) 12

Poisson’s ratio 0.3
Uniform tensile stress (kN/m2) 14

Membrane thickness (mm) 0.1

3.1. Convergence Test for Semi-Analytical Modelling

At the initial stage of semi-analytical modelling, some numerical experiments are
carried out to determine the convergence criterion of the series solution proposed. Table 3
displays the nine selected eigenvalues versus truncation indices N for the asymmetric
case 1. As seen in Table 3, all the eigenvalues converged to at least 2-decimal-place accuracy
at N = 20. Taking N = 500 guarantees 4-decimal-place accuracy. When N = 2000, all the
computed results are the same as those at N = 500, implying that the present solution
procedure remains numerically stable. This exemplifies the good performance of the
proposed scheme.

Table 3. Nine selected eigenvalues versus truncation indices N for the asymmetric case 1.

k
N

20 200 500 2000

1 3.5408 3.5416 3.5417 3.5417
2 4.5721 4.5731 4.5732 4.5732
3 5.7980 5.7994 5.7995 5.7995
7 7.5964 7.5966 7.5966 7.5966
8 7.9849 7.9850 7.9850 7.9850
9 8.8156 8.8159 8.8159 8.8159
13 10.1352 10.1370 10.1371 10.1371
14 10.5901 10.5916 10.5917 10.5917
15 10.7652 10.7652 10.7652 10.7652

3.2. Mesh Sensitivity Analysis for FE Modeling

For the asymmetric case 1, the FE solution was used to cross-reference and validate the
semi-analytical approach. To ensure the convergence of the FE simulation, mesh sensitivity
analyses were performed by reducing the element size. Figure 2 shows the first, fourth, sev-
enth, eleventh, and fifteenth eigenvalues obtained from the semi-analytical and FE solutions.
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Figure 2a shows an overall view of the five selected eigenvalues, while Figure 2b–d shows the
magnified views of the first, seventh, and fifteenth eigenvalues. Notably, the solution domain
is discretized in the FE analysis using three-dimensional linear and quadratic membrane
elements (M3D4 and M3D8 in Abaqus [40]). The FE simulations were conducted with element
numbers ranging from 874 to 120,000, and nodes ranging from 2763 to 361,601. The solid,
dashed, and dotted lines represent the results of the derived series solution, while the solid
and hollow symbols represent the FE solutions.
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Figure 2a shows the results obtained from converged FE simulations. The results
are in agreement with those obtained from the series solution when the characteristic
element size is less than or equal to 20 mm. Clearly, from Figure 2b–d, the convergence
rate of linear element (LE) results is slower than that of quadratic element (QE) results. The
quadratic element was hence adopted for comparison with the semi-analytical solutions of
4-decimal-place accuracy, and a 5 mm element size was selected for later validation and
parametric analyses.

3.3. Verification

To verify the proposed semi-analytical solution, the first 10 eigenvalues for the sym-
metric case were calculated and are shown in Table 4, as well as the results obtained from
the FE solver, Abaqus [40], and those reported previously [17,27,39]. The consistency
between the present results and those obtained from different numerical schemes is clear.
Similarly, Table 5 shows the first fifteen eigenvalues of asymmetric case 1 (as defined in
Table 1). The overall agreement remains quite good, which confirms the accuracy and
reliability of the series solution derived here.
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Table 4. First ten eigenvalues for the symmetric case.

k Present Abaqus Fantuzzi
et al. [37]

Katsikadelis and
Sapountzakis [17] Fox et al. [25] *

1 3.1048 3.1049 3.1046 3.101 3.1048
2 3.8984 3.8983 3.8984 3.896 3.8984
3 4.4429 4.4430 4.4429 4.438 4.4429
4 5.4334 5.4333 5.4334 5.423 5.4334
5 5.6491 5.6491 5.6489 5.617 5.6491
6 6.4401 6.4401 6.4399 6.399 6.4401
7 6.7044 6.7044 6.7044 6.677 6.7043
8 7.0248 7.0249 7.0248 7.020 7.0248
9 7.0248 7.0249 7.0248 7.051 7.0248
10 7.5306 7.5307 7.5305 7.486 7.5306

Note: The asterisk indicates all of the values in the literature are square-rooted.

Table 5. First fifteen eigenvalues for the asymmetric case 1.

k Present Abaqus

1 3.5417 3.5417
2 4.5732 4.5733
3 5.7995 5.7995
4 6.2459 6.2460
5 6.6358 6.6357
6 7.1692 7.1693
7 7.5966 7.5967
8 7.9850 7.9850
9 8.8159 8.8160
10 9.2079 9.2080
11 9.3786 9.3786
12 9.6741 9.6741
13 10.1371 10.1372
14 10.5917 10.5918
15 10.7652 10.7653

3.4. Effect of Geometric Parameters on Eigenvalues

A membrane-type vibration sensor able to actively shift the resonant frequency within
a specific range is desired. Such functionality implies a membrane that is actively recon-
figurable, a property which can be achieved by tuning of the geometric parameters (i.e.,
the length/width of the membrane segments, Figure 3a,b). An additional fixed boundary
or loaded mass could be applied to the membrane to stop the vibration of a certain mem-
brane segment. For example, consider an acoustic application. An electromagnet could
electrically switch between two fixed states by firmly snapping a magnetic disc to stop
membrane vibrations [41]. In the following section, the frequency tuning range of L-shaped
membranes in terms of the length or width of the dimensionless segment is emphasized.
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3.4.1. Tunable Segment Length

To demonstrate the impact of the dimensionless right-hand segment length (i.e.,
a/h) on eigenvalues, Figure 4 shows the computed results for the asymmetric case 2 in
Table 1. Figure 4a,b corresponds to k1–k5 and k6–k10, respectively. With the increase in
a/h, the eigenvalues gradually decrease (Figure 4a,b). The decreasing trend of the low-
order eigenvalues is comparable to that of the high-order eigenvalues. Furthermore,
the bandwidth of variation of the high-order eigenvalues is less than that of the low-
order eigenvalues.
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3.4.2. Tunable Segment Width

The calculated results as the left-hand segment of the L-shaped membrane becomes
wider (cf. asymmetric case 3 in Table 1) are shown in Figure 5a for the first five eigenvalues
and in Figure 5b for the later five ones. With the increase in d/h, the low-order eigenvalues
decrease monotonously (Figure 5a). Figure 5b shows the sudden drop trend of the high-
order eigenvalues, indicating that the high-order eigenvalues are sensitive to the width
changes of the L-shaped membrane segment. In addition, similar to the observations in
Figure 4, the bandwidth of variation is narrow for the high-order eigenvalues, while it is
broader for the low-order eigenvalues. Notably, the width and length of the membrane
segment must be actively adjusted if a high operating frequency is required.
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3.5. Eigenmodes

The performance of membrane-based sensors is dependent on the eigenmodes of
the membrane. For membrane-type actuators, specific eigenmodes are applicable to the
switching between the two ground states. During the switching process, the eigenmodes
are crucial for reconstructing the entire membrane trajectory [42].

The first, second, fifth, and sixth eigenmodes are computed for the asymmetric case 2
with a/h = 0.7. An image sequence for these four eigenmodes is shown in Figure 6. Notably,
for each of the eigenmodes, all of the transverse motions are normalized by the peak
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displacement value, setting the maximum displacement value to unity for each eigenmode.
As expected, the first mode does not have nodal lines within the membrane (Figure 6a),
while the higher modes have more nodal lines passing through the interior of the membrane
(Figure 6b–d). Compared to the first mode, the higher-mode frequencies should provide
more variance.
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4. Discussion

Based on the results of previous parametric analyses, rapid identification of the mem-
brane material in the early design stage is important for many potential applications.
The key parameters of eigenfrequency (resonant frequency) and deflection (transverse
displacement), which are related to membrane vibration in sensors, can affect device per-
formance [43]. For example, the natural frequency can tune the instrument to a specific
frequency range. In addition, the sensitivity of vibration-based sensors can be improved by
increasing the resonant frequency [44].

4.1. Material Selection

When balancing or maximizing conflicting resonant frequency and membrane de-
flection requirements for a given vibration-based sensor, the design criteria for material
selection consist of mass density, ultimate tensile strength, and Young’s modulus [45].
Figure 7a shows material selection graphs for metals and alloys for microelectromechanical
systems (MEMS) materials and Figure 7b for polymers. Detailed MEMS material prop-
erties for metals and alloys are listed in Table 6 and for polymers in Table 7. To achieve
a higher resonant frequency and lower membrane deflection under a given tensile force,
a stiffer membrane (i.e., a higher Young’s modulus) should be selected. This can benefit
measurement applications requiring high displacement resolution or increased sensitivity.

Calculations were performed for several membrane materials shown in Figure 7. The
geometric conditions were the asymmetric case 1, with h = 1.0 mm (cf. Table 1). The applied
prestress was set at 1% of the ultimate tensile strength of the selected material. The first
eigenfrequencies were calculated and are listed in Table 8 for metals and alloys and Table 9
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for polymers. These results may serve as a reference for operating frequencies in the design
of future membrane-type sensor elements.
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Table 6. MEMS material properties for metals and alloys.

Materials Density (kg/m3)
Young’s

Modulus (GPa)
Tensile

Strength (MPa) Ref.

nickel 8900 207 500 [45]
aluminum 2700 70 300 [46]

copper 8960 120 250 [47]
gold 19,300 70 300 [46]

titanium 4510 105 615 [48]
tungsten 19,300 410 700 [48]

Ni-Fe alloy 8000 120 1600 [46]
titanium alloy 4500 110 962 [49,50]

silver 10,490 83 125 [46,51]

Table 7. MEMS material properties for polymers.

Materials Density (kg/m3)
Young’s

Modulus (GPa)
Tensile

Strength (MPa) Ref.

PI 1420 8 40 [48]
SU-8 1164 3.5 40 [48]

Parylene 1300 3 70 [49]
Silicone rubber 1070 0.0005 15 [52,53]

PVDF 1780 2.3 50 [47]
PMMA 1000 2 80 [46]
PDMS 1227 0.005 7 [54,55]

PET 1410 1.7 50 [56]

Table 8. First eigenfrequencies for sensing membranes comprising metals or alloys selected from
Figure 7a.

Materials Frequency f 1 (Hz)

Nickel 13,361
Titanium 20,815

Ni—Fe alloy 25,209
Titanium alloy 26,062
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Table 9. First eigenfrequencies for sensing membranes comprising polymers selected from Figure 7b.

Materials Frequency f 1 (Hz)

Polydimethylsiloxane (PDMS) 4258
Polyvinylidene difluoride (PVDF) 9447

Polyimide (PI) 9461
Polyethylene terephthalate (PET) 10,615

4.2. Geometry Selection

The frequency adjustment of a manufactured membrane sensor is achieved by chang-
ing the width or length of the asymmetric L-shaped membrane segments according to the
mechanism shown in Figure 3. For example, consider a membrane sensor composed of
a polymer material (Young’s modulus E = 11.9 GPa, Poisson’s ratio v = 0.3, and density
ρ = 790 kg/m3). The membrane thickness is set to 0.1 mm, and the membrane is subjected
to a biaxial prestress of 105 Pa in the horizontal and vertical directions.

Table 10 summarizes the fundamental frequencies of the membrane sensors corre-
sponding to different geometries. With a decrease in the length of the right segment, a,
or the width of the left segment, d, the fundamental frequency of the membrane sensor
increases. By contrast, with the increase in the length of the left segment, b, the fundamental
frequency of the membrane sensor decreases. In addition, the vibration frequencies of the
membrane sensor could be modified by changing the applied prestress of the membrane.

Table 10. First eigenfrequencies for sensing membranes with different geometries.

Case a (mm) b (mm) d (mm) h (mm) Frequency f 1 (Hz)

1 1.24 1.68 0.57 1.0 6342
2 1.00 1.68 0.57 1.0 6550
3 1.24 1.68 0.35 1.0 6630
4 1.00 1.68 0.35 1.0 6977
5 1.24 1.50 0.57 1.0 6343

4.3. Potential Applications and Performance Sensitivity Analyses

Membrane vibration-based sensors can be designed to detect changes in resonant
frequency or vibration amplitude due to external stimuli such as changes in mass, tem-
perature, or pressure. For example, if the mass of the membrane increases or decreases
due to the interaction of gas or chemicals with the membrane surface or due to other
environmental factors, the natural frequency of the membrane sensor will change. As a
result, the frequency shift can be used to detect the presence and concentration of gases
and chemicals, as well as changes in mass [57–60].

Considering the asymmetric L-shaped membrane, we assume a 1% change in the
membrane mass due to external interactions, with the added mass uniformly distributed
over the entire membrane surface. The geometric parameters b and h are set to 1.75 mm
and 1 mm, respectively, while the material properties of the membrane are listed in Table 2.
The membrane thickness is set to 0.1 mm, and the pre-applied biaxial stress is 105 Pa in
the horizontal and vertical directions. We vary the geometric parameters (a and d) to test
the performance sensitivity of the membrane sensor. The performance sensitivity, S, is
defined as the ratio of the fundamental frequency shift ∆f to the mass change ∆m and is
given by [58]:

S =
∆ f
∆m

(23)

Figure 8 demonstrates the performance sensitivities of these asymmetric L-shaped
membrane sensors with varying geometric parameters. The higher the performance sen-
sitivity, the more significant the frequency shift is under the same mass change. From
Figure 8, it can be found that the performance sensitivity increases as the geometric param-
eters a and d are decreased. These results are due to the fact that reducing the geometric
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parameters increases the fundamental frequency of the membrane while decreasing the
mass. Therefore, as long as there is a slight disturbance in the mass of the membrane, the
shift in fundamental frequency will be easily detected.

Polymers 2023, 15, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 8. Performance sensitivities of the asymmetric L-shaped membrane sensors versus a/h and 
d/h. 

5. Conclusions 
In this study, a tunable vibration-based sensor comprising asymmetric L-shaped 

membranes was proposed for use in MEMS applications. A semi-analytical series solution 
was derived for the corresponding two-dimensional Helmholtz eigenvalue problem to 
better understand the vibration characteristics of these membranes. The region-matching 
technique, which combines domain decomposition and variable separation methods, was 
used to construct the Cartesian displacement fields. The results of this semi-analytical 
analysis were comparable to those of finite-element simulations over a wide range of 
asymmetric L-shaped geometries, as well as previous numerical (approximation) solu-
tions for symmetric cases. These results demonstrate the good performance and compu-
tational efficiency of the semi-analytical approach. 

The asymmetric L-shaped membrane sensor is advantageous as the operating fre-
quency can be tuned by adjusting the geometry, such as the length or width of the mem-
brane segments. The fundamental natural frequency increases with a decrease in the 
length or width of the membrane segments, providing a means of frequency tuning. In 
addition, the proposed model can be used to determine the membrane material for mem-
brane sensors with specific frequency requirements and geometries. Based on the changes 
in resonant frequency due to interactions between the ambient environment and the mem-
brane surface, these membranes could be employed as gas sensors, chemical sensors, or 
mass sensors. Our numerical results indicate that the performance sensitivity for mass 
sensing is significantly affected by the geometry of the asymmetric L-shaped membrane. 
The asymmetry of the membrane can thus be customized for different mass sensing sen-
sitivity requirements. 

It is worth noting that the proposed semi-analytical solutions are derived on the basis 
of the linear, homogeneous, and isotropic material properties of membranes subjected to 
a uniform tensile stress. In addition, the pre-applied tension and the material properties 
of the membrane are assumed to remain constant during the vibration, neglecting envi-
ronmental factors, such as temperature and pressure changes. Further applications are 
possible if the membrane-based sensors comprise multi-segmented rectangles of different 
material types. In addition, fabrication issues in micromachined tunable devices will be 
investigated in the future. 

  

Figure 8. Performance sensitivities of the asymmetric L-shaped membrane sensors versus a/h and d/h.

5. Conclusions

In this study, a tunable vibration-based sensor comprising asymmetric L-shaped
membranes was proposed for use in MEMS applications. A semi-analytical series solution
was derived for the corresponding two-dimensional Helmholtz eigenvalue problem to
better understand the vibration characteristics of these membranes. The region-matching
technique, which combines domain decomposition and variable separation methods, was
used to construct the Cartesian displacement fields. The results of this semi-analytical
analysis were comparable to those of finite-element simulations over a wide range of
asymmetric L-shaped geometries, as well as previous numerical (approximation) solutions
for symmetric cases. These results demonstrate the good performance and computational
efficiency of the semi-analytical approach.

The asymmetric L-shaped membrane sensor is advantageous as the operating fre-
quency can be tuned by adjusting the geometry, such as the length or width of the membrane
segments. The fundamental natural frequency increases with a decrease in the length or
width of the membrane segments, providing a means of frequency tuning. In addition, the
proposed model can be used to determine the membrane material for membrane sensors
with specific frequency requirements and geometries. Based on the changes in resonant
frequency due to interactions between the ambient environment and the membrane surface,
these membranes could be employed as gas sensors, chemical sensors, or mass sensors. Our
numerical results indicate that the performance sensitivity for mass sensing is significantly
affected by the geometry of the asymmetric L-shaped membrane. The asymmetry of the
membrane can thus be customized for different mass sensing sensitivity requirements.

It is worth noting that the proposed semi-analytical solutions are derived on the basis
of the linear, homogeneous, and isotropic material properties of membranes subjected to a
uniform tensile stress. In addition, the pre-applied tension and the material properties of the
membrane are assumed to remain constant during the vibration, neglecting environmental
factors, such as temperature and pressure changes. Further applications are possible if the
membrane-based sensors comprise multi-segmented rectangles of different material types.
In addition, fabrication issues in micromachined tunable devices will be investigated in
the future.
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