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Abstract: The solution casting technique is utilized to fabricate blank and CuO-doped polyvinyl
alcohol/chitosan (PVA/CS) blends for eco-friendly applications. The structure and surface morpholo-
gies of prepared samples were explored by Fourier transform infrared (FT-IR) spectrophotometry
and scanning electron microscopy (SEM), respectively. FT-IR analysis reveals the incorporation
of CuO particles within the PVA/CS structure. SEM analysis exposes the well-dispersion of CuO
particles in the host medium. The linear/nonlinear optical characteristics were found on the basis of
UV-visible-NIR measurements. The transmittance of the PVA/CS decreases upon CuO increasing
to 20.0 wt%. The optical bandgap (Eg dir./Eg ind.) decreases from 5.38/4.67 eV (blank PVA/CS) to
3.72/3.12 eV (20.0 wt% CuO-PVA/CS). An obvious improvement in the optical constants of the
PVA/CS blend is achieved by CuO doping. The Wemple-DiDomenico (WDD) and Sellmeier oscilla-
tor models were utilized to examine the CuO role dispersion behavior of the PVA/CS blend. The
optical analysis shows clear enrichment of the optical parameters of the PVA/CS host. The novel
findings in the current study nominate CuO-doped PVA/CS films for applications in linear/nonlinear
optical devices.

Keywords: polyvinyl alcohol/chitosan blend; CuO doping; linear/nonlinear optical; optical bandgap;
Wemple-DiDomenico model; eco-friendly applications

1. Introduction

Polymeric composites have received great attention because of their effective role in
various applications, including the industrial, biological, medical, shielding and entertain-
ment fields [1–5]. Polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), chitosan (CS),
carboxymethyl cellulose (CMC) and polyethylene glycol (PEG) possess many attractive
features over the rest of polymers, such as non-toxicity, water-solubility, bio-compatibility,
eco-friendly and degradability [6–8]. Polymeric composites (PCs) are mainly produced by
doping small amounts of fillers in a host polymeric matrix for such an application while
blending two polymers or more is another scientific trend to yield new polymeric hosts with
specific characteristics for updated applications. Particularly, PVA and CS polymers could
be blended to produce a novel polymeric host for a lot of applications. PVA possesses high
transmittance Vis/NIR regions and a broad bandgap (5.40 eV). Moreover, the hydroxyl
groups (—OH) attached to its carbon-chain backbone perform as a hydrogen bonding
source that enhances the complexation process [9], while CS, as chitin’s derivative, is the
most available polymer that exists in nature [10]. CS could play a dominant role in medical
issues because of its unique biocompatibility, antifungal and antimicrobial activities [11].
Mixing PVA and CS produces a PVA/CS polymeric blend to serve as a novel host for
various kinds of dopants.

Lots of former works related to PCs are found in the literature. For example, the
Heiba research group made great progress using CdS/Mg nanostructures (NPs) on the
enhancement of optical characteristics of PVA/CMC. The al-Harthi group proved that the
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photoluminescent and optical behavior of the PVP/PVA blend could be tailored by incor-
porating with non-stoichiometric SnS [12]. The microstructure of the PVA/CMC/graphene
oxide blend was modified via doping with Fe3O4 NPs for energy storage issues by Alsu-
lami and Rajeh [13]. Moreover, the optical constants of the PVA/CS blend were enhanced
by filling it with graphene/Fe2O3 for energy storage applications [14]. The Pashameah
group concluded that the electrical performance of PVA/CMC was enhanced by MnO2
incorporation for optoelectronic applications [15]. The Norouzi research group showed
that a PVA/CS blend adapted with TiO2/graphene oxide or carbon quantum dots could
improve wound healing [16]. Similarly, Venkataprasanna et al. concluded that a CuO-
filled CS/PVA/graphene oxide blend could be effectively applied for wound healing [17].
Furthermore, the storage modulus and glass transition temperature of CS were greatly
enhanced by Fe2O3 NPs.

This work focuses on the enhancement of microstructure and linear/nonlinear optical
performance of PVA/CS via CuO doping for eco-friendly applications. Copper oxide is
preferred as a filler in the PVA/CS blend because of its non-toxicity, abundance, low cost,
chemical stability and environmental friendliness. Moreover, its biocompatibility and high
antibacterial activities qualify CuO PCs for a lot of medical and daily applications. In
addition, CuO’s relatively small optical bandgap (1.2 eV) and large optical absorption coef-
ficient could play a potential role as a filler for LEDs, solar cells, energy storage and other
optoelectronic applications. For that, different CuO contents doped in PVA/CS blend were
prepared with the solution casting method. The modification in PVA/CS blend structure
due to CuO doping was examined by a Fourier transforms infrared (FT-IR) spectropho-
tometer. The surface morphology was investigated using scanning electron microscopy.
Linear/nonlinear optical constants have been investigated based on UV/Vis/NIR data.
The obtained investigations reveal the suitability of CuO-doped PVA/CS films for vari-
ous linear/nonlinear optical applications such as LEDs, fast communications and energy
storage devices.

2. Methods and Materials

Solution casting technique presented in the literature was carried out to fabricate
different contents (0.5, 1.0, 5.0, 10.0 and 20.0 wt%) of CuO-doped PVA/CS polymeric
blends. To perform the process, starting sources of PVA (M. W.: 85,000 g·mol−1), chitosan
(CS) in powder form (≥75% deacetylated) and copper oxide (CuO; purity > 99.0%) were
obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). First, at 70 ◦C, 7.5 PVA grams
were dissolved in 250 mL of double distilled water (DDW) for 4 h. In parallel, 2.5 CS grams
were dissolved in acetic acid/DDW/(1:9) at 25 ◦C for 24 h. Both solutions were mixed for
4 h until a homogenous PVA/CS blend (3:1) was achieved. Next, certain amounts of CuO
powder were blended to prepare CuO-doped PVA/CS blends. Afterward, the different
CuO-PVA/CS blends were cast in Petri dishes for one day at 55 ◦C. Next, the samples were
peeled out and marked by C0 (blank blend) to C20.0 (20.0 wt% of CuO-PVA/CS blend). A
digital micrometer was used to measure films’ thickness and found 0.18 ± 0.01 mm.

Films’ surface morphology was investigated using a scanning electron microscope
(JSE-6390LA, JEOL Ltd., Tokyo, Japan). Absorption bands and structures’ changes were
explored at room temperature (RT) using FT-IR (Shimadzu, IRAffinity-1S, Kyoto, Japan)
spectrophotometer with the KBr pellets technique. UV-visible-NIR measurements were
recorded at RT using a spectrophotometer (JASCO V670, Jasco Corp., Easton, MD, USA).
Tauc’s technique was applied to investigate both direct/indirect bandgap (Eg) values
as follows [6,18]:

(αhν)m = B
(
hν− Eg

)
(1)

where α(= 1
d ln 1

T [6]), and d are optical absorption coefficient and films’ thickness, B is
constant and m is a parameter that may take 2 and 1/2 values for allowed direct/indirect
electronic transitions [18,19].
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Localized states and created defects’ role in host’s bandgap as a result of CuO doping
is investigated via the determination of the Urbach energy (Eu) as follows [13]:

α = α0exp(hν/Eu ) (2)

where α0 is a constant.
The refractive index (n), extinction coefficient (K), and optical conductivity (σopt.) in

UV/Vis/NIR regions were calculated as

n =

(
1 + R
1− R

)
+

[
4R

(1− R)2 − K2

]1/2

(3)

K =
αλ

4π
(4)

σopt. =
αnC
4π

(5)

where C is light speed, R is reflectance, and λ is photons/wavelength.
The dielectric permittivity constants (real εr, imaginary εi) and surface/volume energy

loss functions (SELF/VELF) were also determined from [20,21]:

εr = n2 − K2 (6)

εi = 2nK (7)

SELF =
εi

(εr + 1)2 + ε2
i

(8)

VELF =
εi

ε2
r + ε2

i
(9)

Moreover, Wemple-DiDomenico (WDD) model was followed to examine n disper-
sion [22], whereas Sellmeier oscillator relations were applied to investigate the rest of the
optical parameters as infinite refractive index (n∞), average oscillator strength (S0), average
inter-band oscillator wavelength (λ0), infinite dielectric parameter (ε∞), lattice dielectric
parameter (εL) and free carrier concentration/effective mass (N/m*) as [23,24]:

n2 = 1 +
EdE0

E2
0 − (hν)2 (10)

n2
∞ − 1

n2 − 1
= 1−

(
λ0

λ

)2
(11)

(
n2 − 1

)−1
=

1−
(

λ0
λ

)2

S0λ2
0

(12)

S0 =
n2

∞ − 1
λ2

0
(13)

ε∞ = n2
∞ (14)

εr = n2 = εL −
e2

4π2C2ε0

N
m* λ2 (15)

where e is free electron charge, and ε0 is space dielectric constant.
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The linear first-order susceptibility (χ(1)), nonlinear third-order susceptibility (χ(3))
and nonlinear refractive index (n2) were investigated as [25,26]

χ(1) =
n2 − 1

4π
(16)

χ(3) = 1.7× 10−10
(

χ(1)
)4

(17)

n2 =
12π

n
χ(3) (18)

3. Results and Discussion
3.1. Morphological Analysis

Films’ surface morphologies were captured by a scanning electron microscope (SEM).
Figure 1a–f illustrates SEM micrograms of the blank and different (0.5 to 20 wt%) CuO-
PVA/CS films, respectively. The SEM microgram of the blank film is spot-free with a smooth
surface (Figure 1a), whereas distinguishable bright spots related to the CuO granules are
clearly noticed in SEM micrographs of 0.5 and 1.0 wt% of CuO-PVA/CS films. These spots
become denser, closer and more compact as the CuO concentration is increased to 20 wt%.
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3.2. FT-IR Analysis

Figure 2a,b depicts FT-IR transmittance spectra of blank and different CuO-PVA/CS
films in the 400 to 4000 cm−1 range, as demonstrated by plots, clear variations in intensity
and sites of dominant absorption bands of doped samples with respect to the blank one.
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These changes confirm the interactions between the CuO molecules with the structure
of the host PVA/CS matrix. This interaction mainly takes place by replacing the OH
groups in the host structure with that of the CuO ones [27]. Relative to FT-IR spectra of
blank PVA/CS film and pure CuO material, the main absorption bands and vibrations
are recorded (Table 1). Similar FT-IR performance is noticed in the CuO-PVA/CS films
with clear intensity variations and slight location shifts with broadening in the absorption
bands. These changes are pronounced in the regions 3900–3600 cm−1 and 1300–400 cm−1

as background shadows in Figure 1a, whereas the absorption bands correspond to the
Cu-O bonds may overlap with those of the host matrix at the 1300–400 cm−1 region, as
shown in Figure 1b. Our findings reveal the complete incorporation of CuO and the host
medium. The same trends are reported in the literature [27–29].
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Figure 2. FT-IR spectra (a) full wavelength range and (b) 1300–400 cm−1 of blank and CuO-PVA/CS films.

Table 1. FT-IR absorption bands and bonds’ vibration.

Wavenumber Site (cm−1) Bond Vibration References

3280 O—H stretching [30,31]
2915 C—H asymmetric stretching [13,32]
1724 C=O stretching [30,33]
1552 O—H and C—H bending [34]
1423 C—H bending [33,35]
1251 C—H wagging [33,34]
1069 C—O bending [27,28]
832 C—C stretching [34,36]
435 O—H wagging, C—C bending and CuO [29,33,37]
891 Cu—O—Cu stretching [38,39]
762 Cu—O stretching [38,40]
480 Cu—O stretching [41]

3.3. UV/Vis/NIR Investigations

The effect of CuO concentration on the optical parameters of the PVA/CS blend has
been explored on the basis of the UV/Vis/NIR measurements. The wavelength dependence
of the transmittance (T) and absorbance (A) of blank and different CuO contents filled
PVA/CS blends are presented in Figure 3a,b, respectively. It is noticed that at any certain λ,
T decreases in visible-NIR regions as the CuO content is increased from 0 to 20 wt%. For
example, the T of the blank PVA/CS film is more than 80% in the visible region, while it
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decreases to about 3% for 20 wt% of CuO-PVA/CS film in the same region. Moreover, as
the CuO content is increased from 0 to 20 wt%, the UV cut-off edge is red-shifted to longer
wavelengths from 225 nm to 358 nm. This valuable result nominates the possible role of
CuO-PVA/CS films in UV-shielding applications. In contrast, the absorption increases
due to the increase of CuO contents. In addition, clear redshifts in the absorption edges
are noticed. Furthermore, two absorption peaks at 211 nm and 258 nm are detected in all
absorption spectra that correspond to the PVA electronic π→ π* transitions [42], whereas
the absorption edge detected at 324 nm refers to the electronic n→ π* transitions [43]. The
decrease in the optical transmittance and hence increment in the absorption amounts due
to CuO doping is attributed to the increase in defects (shown below), which leads to a
decrease in the optical band gap of the PVA/CS blend, as discussed in Figure 4.

Based on Tauc’s equation (Equation (1)), direct/indirect optical bandgap (Eg dir./Eg ind.)
of blank and CuO-PVA/CS films has been obtained from (αhν)2 and (αhν)1/2 curves vs. hν,
respectively, as depicted (Figure 4). The x-axis intercepts of extrapolated linear parts of
these curves to hν = 0 equal Eg values as listed in Table 2. The obtained Eg dir./Eg ind. values
of blank PVA/CS film are 5.38 eV and 4.67 eV. These values are well-consistent with the
reported ones [34,44]. The Eg dir./Eg ind. values of CuO-PVA/CS films decrease to 3.72 eV
and 3.12 eV as CuO concentration is upraised to 20 wt%. Moreover, it is clear that both
0.5 wt% and 1.0 wt% CuO-PVA/CS films possess second bandgap values of 4.79 eV and
4.57 eV, respectively, as illustrated in Figure 4a. This finding reveals that the absorption
happens as a result of charge transfer between two different energy levels. The first
transition occurs between the molecular orbits of the host matrix, while the other electronic
transition takes place between the created energy state due to CuO particles and those
of the host matrix. Similar findings were recorded in previous works [21,45]. So, the Eg
narrowing mainly results due to localized states and defects created between the highest
occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)
of the PVA/CS blend due to CuO doping [42,46]. Similarly, Heiba et al. concluded that
4 wt% of Cd0.9Mg0.1S nanofillers led to a reduction in the Eg of PVA/CMC blend from
5.4 eV to 5.02 eV [44]. Additionally, the Eg of the PVA/CMC/GO blend was reduced to
3.34 eV using 1.0 wt% of Fe3O4 doping [13]. Formerly, we modified the optical bandgap of
PVA/Gr from 5.38 eV to 4.78 eV by Fe2O3 doping [47].
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Figure 3. (a) Wavelength dependence of the transmittance (T) and (b) absorbance (A) spectra of blank
and different CuO-PVA/CS films.

Table 2. Direct/indirect bandgap, Urbach energy and refractive index of CuO-PVA/CS films.

CuO wt% Direct Eg dir. (eV) Indirect Eg ind. (eV) Eu (eV) n @ 650 nm

0 5.38 4.67 0.48 1.20
0.5 4.21 3.45 0.52 1.31
1.0 4.13 3.38 0.60 1.39
5.0 3.97 3.29 0.69 1.49

10.0 3.90 3.22 1.24 1.83
20.0 3.72 3.12 1.79 2.25

The defects and localized energy states created in CuO-PVA/CS films could be proved
by investigating the Urbach energy (Eu) (Equation (2)). It shows the exponential dependence
of the absorption coefficient and photons energy (hν). Eu is estimated (Table 2) by plotting
lnα vs. hν, as illustrated in Figure 5. It was noticed that Eu grows from 0.48 eV (blank
PVA/CS) to 1.79 eV (20 wt% CuO-PVA/CS). The increase in Eu indicates the growth of
localized states and defects that works as trapping centers in the forbidden region of the
PVA/CS host [48]. Similar evidence is reported in the literature [13,25,49]. As an original
result, the optical bandgap of PVA/CS is tailored by CuO doping for a lot of optical and
environmental applications.

The optical performance of such material is mainly established by investigating the
refractive index (n* = n-iK) to dictate its applications. The real (n) and imaginary (K) parts
describe the dispersion behavior of the electromagnetic wave within the material. Both n
and K at the swept wavelength (λ) are calculated using Equations (3) and (4), respectively.
The wavelength dependence of n and K of blank and CuO-PVA/CS films are illustrated in
Figure 6a,b, respectively. According to Figure 6a, it is noted that n follows the absorbance
performance (Figure 3b). In other words, n decreases steeply upon raising λ in the UV
region, whereas it remains semi-steady in Vis/NIR regions. Moreover, it is seen that the n of
PVA/CS is enhanced as a result of CuO doping, which proposes it for updated applications
in optical and optoelectronic devices. For instance, n increases from 1.2 (blank PVA/CS) to
2.25 (20 wt% CuO-PVA/CS) at 650 nm. The improvement in the n value refers to the growth
in the films’ density and intermolecular bonds due to CuO doping [27,50,51], whereas n
remains quasi-steadily in low photons energy due to films’ restricted absorbance in this
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region, whereas, according to Figure 6b, K declines with increasing λ in the UV region,
whereas it increases gradually in visible-NIR regions. Furthermore, K increases as the CuO
content is increased. These findings could be understood on the basis of the increment of
the dispersion as a result of the reflectance increase due to defects’ growth [51].
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Based on the absorption coefficient α and n, σopt. of CuO-PVA/CS samples was
determined (Equation (5)) and illustrated in Figure 7. It is observed that σopt. of the films
behaves in a similar way to the optical absorbance (Figure 3b). As λ is red-shifted to longer
values in the UV region, σopt. decreases steeply, while it behaves steadily in the Vis/NIR
regions. In contrast, σopt. increases upon increasing the CuO content in the PVA/CS
host. For example, at 650 nm, σopt. enhances from 2.56 × 1010 s−1 (blank PVA/CS) to
9.85 × 1010 s−1 (20 wt CuO-PVA/CS). The σopt. enhancement is understood on the basis
of the increment in created electrons as a result of the absorption increase of the incident
photons [27,52]. The increase in absorption is also reinforced by the growth in the defects,
as discussed in Eu findings. These findings are very consistent with reported data [21,53,54].
Shamekh et al. proved that σopt. of PVA was pronouncedly enhanced by MgO doping.

The dielectric parameters (εr and εi), together with the surface/volume energy loss
functions (SELF/VELF) of the blank and CuO-PVA/CS films, have been determined. These
constants are investigated to nominate their possible participation in many fields as su-
perconductors and energy storage devices. εr associates with traveling wave dispersions
within such material, while εi relates to the dissipated energy rate through their propa-
gation [21]. εr, εi, SELF and VELF were calculated by Equations (6) to (9) and presented
in Figure 8a–d, respectively. According to εr spectra (Figure 8a), it follows the refractive
index n performance. εr decreases steeply as λ is red-shifted in the UV region, whereas
it remains semi-constant in the visible-NIR regions. Furthermore, εr rises as CuO con-
tent is increased to 20 wt%. For example, εr enhanced from 1.43 (blank PVA/CS) to 5.08
(20 wt% CuO-PVA/CS) at λ = 650 nm. The enhancement in εr results due to the increase
in the dispersion as a result of a defects increase (Urbach energy findings). On the other
hand, the imaginary part εi of the film performs similarly to the extinction coefficient K
(Figure 6b). εi decreases greatly as λ increases in the UV region, while it increases slowly in
Vis/NIR region for small CuO contents (≤5 wt%) and increases pronouncedly for the high
CuO contents (10 and 20 wt%). Moreover, εi increases as the CuO content is raised. This
behavior refers to polarization and dipole motion fluctuations [26,55,56]. Similar findings
are reported in the literature [26,57,58]. Moreover, it is noticed that SELF and VELF spectra
perform in a similar way. Both SELF and VELF values increase noticeably as λ is red-shifted
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to longer wavelengths in the Vis/NIR regions. Moreover, it is noted that at any λ, the
VELF value is larger than the SELF value, which indicates that the energy loss by the
traveling electrons within the films due to the doped CuO particles is larger than those
traveling on their surfaces. In addition, both SELF and VELF increased upon increasing the
CuO contents. This increment in SELF and VELF refers to growth in vacant energy levels
generated in the host band gap [59]. Similar behavior is noticed El-naggar et al. [26]. They
showed SELF and VELF increase of the PVA/PVP upon increasing SnS2/Fe concentration.
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Figure 6. (a) n and (b) K vs. wavelength of CuO-PVA/CS films.
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Moreover, the dispersion parameters of the blank and CuO-PVA/CS films are exam-
ined by a single oscillator model (WDD model; Equation (10)) in the normal dispersion
region. Investigating Eo and Ed are essential parameters to nominate the applications
of the prepared films in communication systems and spectra analysis devices [21]. The
values of Eo and Ed are found from (n2 − 1)−1 plots vs. (hν)2 as depicted in Figure 9a,
where the slopes equal −1/(E0Ed) and the intersections equal E0/Ed. Table 3 includes Eo
and Ed values. Both Eo and Ed values increase upon increasing the CuO content in the
host PVA/CS. This increase in the dispersion energies refers to the increase in the optical
transition strength of the system bonds [60].

Table 3. Dispersive parameters of CuO-PVA/CS films.

CuO wt% Ed (eV) E0 (eV) n∞ λ0 (nm) S0 (m−2) ε∞ εL
(N/m*)

× 1057 (kg−1.m−3)

Blank PVA/CS 1.49 4.14 1.16 302.8 3.85 × 1012 1.35 2.33 4.01
0.5 1.89 4.06 1.21 306.2 5.01 × 1012 1.47 2.79 5.37
1.0 2.20 4.14 1.24 301.7 5.78 × 1012 1.53 2.85 5.21
5.0 2.54 4.24 1.26 297.2 6.62 × 1012 1.58 2.92 5.09

10.0 7.27 4.58 1.55 243.2 2.38 × 1013 2.41 4.52 7.88
20.0 21.13 6.76 1.98 216.9 6.25 × 1013 3.94 5.37 8.85
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Figure 8. (a) Real, (b) imaginary dielectric constant. (c) SELF and (d) VELF of CuO-PVA/CS films.

Furthermore, the infinite refractive index (n∞), the infinite dielectric constant (ε∞), and
the average oscillator strength (S0)) of the blank and CuO-PVA/CS films are determined
on the basis of the Sellmeier oscillator relations (Equations (11) to (15)). By plotting
(n2 − 1)−1 vs. λ−2 (Figure 9b) and equating the slopes with 1/S0 and the intersections with
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1/S0λ2
0, the values of λ0, n∞, S0 and ε∞ are obtained and listed in Table 3. While N/m*

and εL are obtained by plotting n2 vs. λ2 (Figure 9c), where the slopes
(
= e2

4π2C2ε0

N
m*

)
and intersections (=εL) as listed in Table 3. It is obvious that all optical behaviors of the
PVA/CS blend are altered with CuO doping. For example, ε∞ of the blank PVA/CS film is
greatly enhanced from 1.35 to 3.94 (20 wt% CuO-PVA/CS film). The enhancement in εL
and ε∞ refers to the dispersion lattice vibrations as a result of CuO particles [37]. Similar εL
and ε∞ findings related to polystyrene filled with manganese (III) chloride were found by
Al-Muntaser et al. [37], while N/m* of the blank PVA/CS film is duplicated due to 20 wt%
of CuO doping. This result is reasonable as a result of the increment of the free carriers due
to CuO doping [21]. Our results are compatible with the literature [61,62].

The nonlinear optical behavior of blank and CuO-PVA/CS samples is explored to
recommend their probable applications in nonlinear optical devices. Optical materials
with the optical nonlinearity character play an effective role in many applications such
as ultrafast lasing switching, frequency converters and telecommunications [21,63]. The
nonlinear optical response arises because of the nonlinear polarization that occurs owing
to intense electromagnetic wave exposure [21,64,65]. Based on Equations (16) to (18), χ(1),
χ(3) and n2 are calculated and presented in Figure 10a–c, respectively. It is noted that χ(1),
χ(3) and n2 behave semi-steadily in the Vis/NIR regions, whereas they rise rapidly upon
increasing hν in the UV region. In addition, as the CuO content is increased to 20 wt%,
χ(1), χ(3) and n2 increase noticeably. For instance, at 4.0 eV, χ(1) of the blank PVA/CS film
is enhanced from 0.17 esu to 1.36 esu via 20 wt% CuO doping, while χ(3) and n2 of the
blank film are enhanced about by three-order of magnitude at the same incident photons
energy. These findings are compatible with previous works [25,26,64]. For example, the Ali
group found that the nonlinear optical constant of PVA was enhanced pronouncedly by
fullerene doping [25]. The obtained nonlinear optical findings of the CuO-PVA/CS films in
this study nominate their applications in nonlinear optical devices [65].
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4. Conclusions

The solution casting method was followed to fabricate blank and CuO doped in
polyvinyl alcohol/chitosan (PVA/CS) blends. The effect of CuO concentrations (0, 0.5,
1.0, 5.0, 10.0 and 20.0 wt%) on PVA/CS structure and linear/nonlinear optical character-
istics is discussed in detail. Scanning electron microscope examinations disclose obvi-
ous changes in the surface morphologies of PVA/CS film owing to CuO doping. FT-IR
measurements prove noticeable modifications in PVA/CS structure due to CuO doping.
Noticeable modifications in absorption band’s locations and intensities of CuO-PVA/CS
films as compared with the blank one. The linear/nonlinear optical parameters were
discussed. The transmittance of the PVA/CS blend reduces as a result of CuO increasing to
20.0 wt%. The optical bandgap (Eg dir./Eg ind.) decreases from 5.38/4.67 eV (blank PVA/CS)
to 3.72/3.12 eV (20.0 wt% CuO-PVA/CS). This decrease in the optical bandgap is inter-
preted in terms of defects and created states, as verified by Urbach energy investigations.
The refractive index, optical conductivity and dielectric constants of PVA/CS are clearly
enhanced due to CuO doping, which nominates it for updated applications in optoelec-
tronic devices. The CuO doping role in the dispersion performance of PVA/CS has been
investigated using a single oscillator and Sellmeier oscillator relations. For instance, the
infinite dielectric constant is greatly enhanced from 1.35 (blank PVA/CS) to 3.94 (20 wt%
CuO-PVA/CS film), whereas the concentration of free carriers/effective mass of blank
PVA/CS film is duplicated. The nonlinear optical parameters of PVA/CS are also enhanced
via CuO doping. χ(3) and n2 are improved by about three orders-of-magnitude at 4.0 eV
incident photons energy. These novel findings nominate CuO-PVA/CS films for updated
optical applications.
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