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Abstract: Anthropogenic microplastics (MPs) and nanoplastics (NPs) are ubiquitous pollutants
found in aquatic, food, soil and air environments. Recently, drinking water for human consumption
has been considered a significant pathway for ingestion of such plastic pollutants. Most of the
analytical methods developed for detection and identification of MPs have been established for
particles with sizes > 10 µm, but new analytical approaches are required to identify NPs below 1 µm.
This review aims to evaluate the most recent information on the release of MPs and NPs in water
sources intended for human consumption, specifically tap water and commercial bottled water. The
potential effects on human health of dermal exposure, inhalation, and ingestion of these particles were
examined. Emerging technologies used to remove MPs and/or NPs from drinking water sources
and their advantages and limitations were also assessed. The main findings showed that the MPs
with sizes > 10 µm were completely removed from drinking water treatment plants (DWTPs). The
smallest NP identified using pyrolysis–gas chromatography–mass spectrometry (Pyr-GC/MS) had a
diameter of 58 nm. Contamination with MPs/NPs can occur during the distribution of tap water to
consumers, as well as when opening and closing screw caps of bottled water or when using recycled
plastic or glass bottles for drinking water. In conclusion, this comprehensive study emphasizes the
importance of a unified approach to detect MPs and NPs in drinking water, as well as raising the
awareness of regulators, policymakers and the public about the impact of these pollutants, which
pose a human health risk.

Keywords: drinking water treatment plant; microplastics; nanoplastics; tap water; bottled water;
quantification; toxicological effect

1. Introduction

Global plastic production, including fossil-based plastics, post-consumer recycled
plastic, and bio-based plastics rose to 390.7 million tons in 2021 [1]. From approximately
300 million tons of plastics manufactured annually [2], it was estimated that 13 million tons
of plastic waste enter rivers and oceans [3]. Due to the resistance of plastic waste to degra-
dation, it currently causes a serious pollution for the environment [4]. The management
of plastic waste is very deficient, for example, 9% of global plastic waste is recycled, 12%
incinerated, and 79% disposed in landfills, dumps, and oceans [5]. Only 5.5 million tons of
post-consumer recycled plastics were reintroduced to the European economy in 2021 [1].

In the aquatic environment, due to the continuous abiotic degradation, plastic items
(macroplastics) eventually break down into smaller fragments less than 5 mm in size to a
few nanometers, typically known as microplastics (MPs) and nanoplastics (NPs) [3,6–10].
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The recognized size ranges for MPs and NPs are still confusing. According to ISO/TR
21960:2020, “microplastic” stands for “any solid plastic particle insoluble in water with any
dimension between 1 µm and 1000 µm (=1 mm),” and “nanoplastic” is defined as “plastic
particles smaller than 1 µm” [11]. According to the Committee for Risk Assessment (RAC)
and Committee for Socio-Economic Analysis (SEAC), “microplastic” means “particles
containing solid polymer, to which additives or other substances may have been added,
and where ≥1% w/w of particles have (i) all dimensions 0.1 µm ≤ x ≤ 5 mm, or (ii) a length
of 0.3 µm ≤ x ≤ 15 mm and length to diameter ratio of >3” [12]. The term “particles” is
“a minute piece of matter with defined physical boundaries; a defined physical boundary
is an interface” [12]. Some authors defined the dimension of MPs according to the ISO
definition [6,8], whilst others reported a classification between <5 mm and 1 µm [3,9,13].
Other authors categorized NPs as plastic particles with dimensions < 100 nm [6,7,10]. In this
paper, we assumed that plastic particles with dimensions ranging between <5 mm and 1 µm
are MPs, while those measuring below 1 µm are NPs. The “microplastic” term should not be
used for natural polymers that have not undergone chemically modification, except in the
case of hydrolysis [12]. In accordance with their origin, MPs could be classified as primary
(resulting from anthropogenic activities, cosmetics, textiles, personal care products) and
secondary (derived from fragmentation of primary ones) [14]. MPs possess a hydrophobic
nature and a morphology of microbeads, fibers, foils, pellets or fragments, while NPs have
colloidal behavior [15].

The presence of MPs and NPs has been documented in the aquatic environment [16–22],
food [23–26], soil [27–29] and air media worldwide [30,31]. Artificial turf used in sports
fields and the degradation of larger plastic pieces from commercial packaging waste are
the primary contributors to the presence of MP pollution in European waters [32]. The
increase number in the number of scientific publications on the occurrence, detection,
characterization and impact of MPs and NPs on aquatic organisms and human health
indicates the true importance of these pollutants [33]. It is expected that MPs and NPs
may have unique reactivity and bioavailability for aquatic organisms [34]. MPs and NPs
remain in the environment for a long time due to their chemical stability after entering
water compartments and greatly affect the function of aqueous systems, being considered
ubiquitous pollutants [35,36]. However, in a natural aquatic environment, the microorgan-
isms immediately colonize the surface of MPs and NPs, which forms biofilm that alters
not only the physicochemical characteristics of MPs/NPs but also their mobility, stability,
bioreactivity, settlement, and fate in the environment [37–39]. The mechanism of biofilm
formation on the surface of MPs in a water environment involves (i) the attachment of
microorganisms to the surface of MPs, (ii) secretion of extracellular polymers (EPS) by
microorganisms, and, (iii) multiplication of microorganisms [39]. This biofilm occurs on
the surface of MPs and leads to their degradation through fragmentation.

Biodegradable polymers are plastic materials with high molecular weights that break
down into H2O, CO2, and microbial biomass final products over time with the help of
naturally occurring microorganisms [40]. It is important to note that there is a distinc-
tion between biodegradable plastics and bio-based plastics, which are obtained from
renewable resources as an alternative to petroleum resources but may not be biodegrad-
able [40]. Studies showed that if the conditions for assuring biodegradability are not met,
the biodegradable plastics contribute to the generation of MPs and NPs like conventional
plastic materials [41–43]. A promising approach for the total removal of MPs from aqueous
media could be the use of microorganisms [44,45]. Unfortunately, 100% degradation of
biodegradable materials cannot be reached under natural environments, so the occurrence
of biodegradable MPs could be an additional threat to the environment [40,46,47]. Accord-
ing to Wei et al. [48], biodegradable polymers produce more MPs in aqueous environments
compared to conventional polymers because they hydrolyze faster in basic environments.

Both conventional and biodegradable polymers can contain chemical contaminants
such as UV filters [49], preservatives, per- and polyfluoroalkyl substances (PFAS) [50] or
flame retardants [51–53], which are considered potential carriers of MPs due to their strong
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hydrophobicity [54]. The migration and deposition of chemical contaminants can occur due
to continuous fragmentation and an abundance of aged MPs [55] increasing the potential
risk to human health. In addition, MPs can bind or adsorb emerging pollutants from
the water environment, such as pharmaceuticals and personal care products [13,56–58],
heavy metals, polycyclic aromatic hydrocarbons [54], and antibiotics [59,60], based on the
specific polymer type, chemical and physical properties of MPs. Compared to MPs, NPs are
considered to pose an increasing potential risk to ecosystems and human populations due
to their higher specific surface-area-to-volume ratio, thus increasing the potential source of
chemical contaminants [61].

According to the World Health Organization (WHO), people should consume between
3.7 L and 2.7 L of liquids per day depending on their body weight [62]. Most of these
liquids comes from tap water or drinks made with tap water. A research paper reported
average concentrations of 94.37 MPs/L in bottled water and 4.23 MPs/L in tap water [63].
Recently, WHO has called for a more advanced assessment of plastic pollution in the
environment, following the fact that small plastic particles have been identified in 90% of
bottled water [64]. This includes the identification of the sources and pathways of MPs, as
well as the development of effective strategies to reduce plastic pollution and mitigate its
impact on human health. Human ingestion of MPs from water bottles can occur through
the use of disposable water bottles, bottles made from recycled plastic, or glass bottles [26].
The US Food and Drug Administration (FDA) has proposed tolerable levels of ingestible
contaminant from recycled plastic to be less than 1.5 µg/person/day [10]. However, the
potential daily ingested dose imposed by the FDA was exceeded for children and adults,
where intakes of 87.8 mg/kg/body weight and 40.1 mg/kg/body weight, respectively,
were reported [65]. According to Cox et al. [63], children and adults consume an average of
approximately 79,828 MPs and 97,827 MPs per year through drinking water. Other studies
have reported an annual intake of 2550–5100 MPs [62] or even 4.1 × 104 items [66] for the
average consumer. The most commonly ingested types of MPs from drinking water were
fibers and fragments [63].

The sources of drinking water for human consumption are tap water and bottled
drinking water. Tap water is supplied by drinking water treatment plants (DWTPs), which
play a vital role in ensuring water safety and meeting the social standards for human
consumption [67,68]. Recently, the presence of MPs in DWTP was reported [69–71] and
removal methods are still under investigation. From DWTPs, the unremoved MPs can
enter water compartments used for daily human drinking water consumption, causing
potential toxicological effects through ingestion, dermal exposure and inhalation [72–75].
Despite water being essential for life, few studies have been reported on the removal of
MPs and NPs from drinking water sources [75] and their impact on human health. The
risk of MPs uptake from drinking water is currently unpredictable. Furthermore, these
plastic particles add to the plastic potentially ingested through the consumption of other
foods/beverages, including sea salt, beer, food and seafood [76]. Until recently, significant
knowledge regarding the detection and identification of these plastic pollutants, especially
those in complex matrices present in raw and treated drinking water, was not available. This
situation is a consequence of various factors, including the varied chemical composition and
surface properties of MPs/NPs [77]. Additionally, distinguishing between NPs and natural
matter can be challenging, and the aggregation of NPs can lead to changes in the solution
ionic strength, which further complicates advanced characterization [78]. According to
reports from the Agency for Toxic Substances and Disease Registry (ATSDR), polystyrene
(PS) and polyvinyl chloride (PVC) are among the most carcinogenic contaminants [79].
The toxicological effects associated with MPs/NPs present in drinking water depend on
the duration and intensity of exposure, as well as the susceptibility, gender and age of the
host [73]. However, the toxicological mechanisms by which MPs/NPs affect human health
are still unknown.

Nevertheless, the investigation of naturally occurring MPs and NPs in drinking water
coming from treatment plants, tap and commercial water bottles in terms of quantification,
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toxicological effects on human health and methods of their elimination has not been fully
explored been fully explored. In a recent review conducted for the period 2016–2021, it was
reported that only nine studies had been devoted to the particle sizes and concentrations of
MPs detected in bottled drinking water [73].

The main objectives of this review are: (a) to evaluate the main technologies applicable
for removal of MPs/NPs from drinking water sources, such as DWTP, tap and bottled
drinking water, (b) to review the innovative analytical methods used for the detection of
MPs/NPs occurring in drinking water sources, and (c) to assess the potential toxicological
risks associated with the human consumption of MPs/NPs from drinking water sources.

2. Methodology

Our search strategy involved the analysis of the most recent papers published in the last
10 years using the Web of Science database, the search terms being “microplastics/nanoplastics”,
“microplastics/nanoplastics in drinking water”, “microplastics/nanoplastics in bottled wa-
ter”, “toxicological effect of microplastics/nanoplastics”. The bibliographic survey was
conducted by selecting papers based on their titles and abstracts, and later, analysis of the
full-length articles.

Figure 1 shows the overview of the review structure.
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Figure 1. Overview of the review structure.

The first part of the review presents the conventional physicochemical methods used
for removal of MPs and NPs from drinking water sources, such as coagulation–flocculation–
sedimentation (CFS), filtration, ozonation, membrane filtration technology and adsorption,
their performance and limitations, and new approaches for elimination of MPs and NPs.

Next, other physicochemical methods for removal of MPs and NPs, newly intro-
duced or that may be suitably combined depending on the complexity and diversity of
MPs/NPs in liquid media, are discussed. Multiple techniques are usually required to
obtain information about the concentration, chemical identification, and shape of NPs.
In this section, the newest methods based on mass determination and particle measure-
ment are discussed with respect to the concentration, morphology and polymer type of
MPs/NPs detected in DWTP, tap water or bottled drinking water. Methods based on
mass determination are pyrolysis–gas chromatography–mass spectrometry (Pyr-GC/MS)
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and thermal desorption–proton transfer reaction–mass spectrometry (TD-PTR/MS). Gen-
eral methods based on particle measurement include micro-Fourier-transform infrared
(µ-FTIR) spectroscopy, micro-Raman (µ-Raman) spectroscopy, single particle inductively
coupled plasma mass spectrometry (SP-ICP-MS), dynamic light scattering (DLS), scanning
electron microscopy–energy dispersive X-ray spectroscopy (SEM-EDX), and transmission
electron microscopy (TEM).

Subsequently, the potential toxicological effects of MPs/NPs from drinking water
sources on human health are assessed based on the size and concentration of MPs/NPs,
as well as other additives incorporated into bottled drinking water. Most studies have
been conducted on the exposure of marine organisms to commercial PS NPs purchased
from authorized institutions or polyethylene terephthalate (PET) NPs. This is because PS
NPs have been detected in the marine environment [80] and PET is the most widely used
material for manufacturing bottles and packaging [81,82]. Few studies have been dedicated
to investigating the effects of NPs released into drinking water sources on human health.

Finally, this paper highlights the main legal, technical, and social measures necessary
to reduce the risks associated with contamination of drinking water sources with MPs/NPs
and summarizes the key conclusions.

3. Results and Discussions
3.1. Physicochemical Methods for Removal of Micro- and Nanoplastics from Drinking
Water Sources

DWTPs are processes with multiple stages that provide safe drinking water for human
consumption [83]. Conventional methods used to remove MPs/NPs from DWTPs include
coagulation–flocculation–sedimentation (CFS), filtration [3,17,18,84], ozonation [19,85], and
chlorination [85]. The treatment process in a DWTP influences the quality of the drinking
water produced [72].

In this section, the most frequently used physicochemical methods for removing of
MPs/NPs from drinking water sources have been assessed (Table S1). The effectiveness
of MPs/NP removal from drinking water sources depends on various factors, such as
their physicochemical parameters (concentration, molecular weight, size, shape, age),
the adopted treatment method, the type and dosage of coagulant, the type of filtration,
water source, as well as the presence of mixture of natural compounds, named natu-
ral organic matter (NOM) [72]. Also, the old and worn components from the DWTP
could potentially be a potential source of MPs in drinking water [69]. Studies have re-
ported the successful removal of intentionally added MPs/NPs in water [3,17,54,78,85],
as well as those present in DWTPs [69–71]. Recently, it was demonstrated that MPs with
sizes > 10 µm can be completely removed from DWTPs, and over 80% of the removed MPs
had a dimension > 1 µm [86].

3.1.1. Coagulation–Flocculation–Sedimentation (CFS)

Coagulation is an important conventional method used for the removal of pollutants
from drinking water sources [54]. Most studies carried out for plastic contaminant removal
from drinking water have used spherical engineered particles, especially PS (Table S1),
without surface roughness or biofilm. A few studies have dealt with the monitoring
of small MPs (<10 µm) in drinking water [3,17,78]. The presence of NPs in drinking
water treatments has been reported [3], but their complete removal has not yet been
revealed. The mechanism of PS NP removal was attributed to physical retention and
straining processes [3].

PE MPs of three sizes (10–20 µm, 45–53 µm, and 106–125 µm), PS NPs (180 nm in size),
and PS MPs (1.2 µm in size) were removed from drinking water by conventional treatment
using coagulation–flocculation combined with sedimentation (CFS) and granular filtration
in the presence of Al2(SO4)3 and diallyldimethylammonium chloride (polyDADMAC) as
coagulant aid [17]. The results showed that granular filtration was more efficient than the
CFS method, resulting in a 99.9% removal rate for polyethylene (PE) MPs with dimensions
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ranging from 106 to 125 µm [17]. Additionally, the presence of biofilm increased the
efficiency of the CFS treatment, improving the removal of MPs from <2.0% to 16.5% [17].
The occurrence of biofilms can significantly modify MP characteristics (size, shape, and
density) and subsequently the efficiency of water treatment. Other authors demonstrated
that the biofilm formed on the surface of MPs/NPs increased the removal efficiency in
column experiments conducted with aged sand from 43% to 77% [17,78]. The explanation
consists in the presence of humic substances from NOM [87] facilitating the positively
charged coagulants to adsorb NPs with a negative surface charge [88,89].

Regarding the concentration of coagulant, the data showed that 20 ppm is the typical
maximum coagulant concentration used for effective drinking water treatment [17]. Alu-
minum sulfate [Al2(SO4)3] or alum, polyaluminum chloride (PACl) [(Al(OH)m Cl(3-m))n],
polyDADMAC, aluminum chloride (AlCl3), and iron chloride (FeCl3) are the most com-
monly employed coagulants in water treatment [17,54,71,88]. The effect of two conventional
coagulants, PACl and FeCl3, on NP removal from three bottled mineral waters and Lake
Geneva was investigated [88]. It was found that at lower doses required for the coagulation
of NPs, PACl was more effective than FeCl3 [88]. PACl is a conventional inorganic coagulant
preferred for the treatment of water because it assures a low concentration of residual metal
in treated water [83]. The efficiency of PACl was also reported by other authors [3].

The removal efficiency of engineered PE MPs from deionized water containing humic
acid in the presence of FeCl3·6H2O and AlCl3·6H2O and sodium bicarbonate (NaHCO3)
as a buffer followed by the ultrafiltration membrane technology was investigated by
Ma et al. [54]. AlCl3·6H2O was found to be more effective in removing PE MPs than
Fe-based salts. Both coagulant agents led to increased removal efficiency with decreased
particle sizes of PE MPs. However, a lower removal efficiency of 25.83% ± 2.91% after
coagulation and slight membrane fouling were recorded.

Other coagulants and coagulant aisd typically used in the CFS method, combined
with filtration, are alum at a concentration of 20 ppm and polyDADMAC at 0.5 ppm [17].
PolyDADMAC is a type of high-molecular-weight polymer coagulant aid that helps in
bridging and binding of particles, improving floc strength and achieving optimal floc size,
leading to a higher rate of sedimentation. The authors reported a significant difference in
the removal efficiency of the polyDADMAC coagulation aid (13.6% ± 6.8% for particle sizes
45–53 µm) compared to raw water and CFS treatment [17]. This behavior was explained
by the ability of polyDADMAC to bind the particles, strengthen the floc, and increase the
sedimentation rate [17].

Another strategy for removing engineered PE MPs with sizes ranging from 10 to
100 µm from synthetic water was to stain them with Nile red dye and use alum and
alum combined with cationic polyamine-coated (PC) sand as coagulants [90]. PC sand
(500 mg/L) combined with an alum dose of 20 mg/L showed the highest removal rate
(92.7%) compared to using alum alone. The dimension, shape and surface morphol-
ogy of the MPs played a significant role in the coagulation and flocculation mechanism.
The order of MP removal was observed to be elongated-rough (ER) > elongated-smooth
(ES) > spherical-rough (SR) > spherical-smooth (SS) based on the results of a flocculation
kinetic study [90].

An overall efficiency of 82.1–88.6% was achieved in a DWTP that utilized various
processes, such as coagulation–flocculation–sedimentation, sand filtration, ozonation, and
granular activated carbon (GAC) filtration, for the removal of MPs [68].

Instead, the use of aluminum salt coagulant combined with sand filtration led to
a removal efficiency of 93% ± 5% for MP removal (especially PS and polyester) in a
DWTP from Spain [69]. In another study [70], the pre-disinfection with liquid chlorine gas,
followed by the addition of alum coagulant (at a flow rate of 3000 L/h), purification with a
pulse clarification system, sand filtration, and post-disinfection steps led to 85% removal
efficiency in DWTPs.

Velasco et al. [71] compared the effectiveness of coagulant, sand filtration, and acti-
vated carbon (AC) for removing MPs such as synthetic fibers (cotton, viscose, and cellulose)
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from a DWTP. The results indicated that the use of PACl coagulant and AC filter led to a
higher removal efficiency of MPs (97 ± 3%). This removal efficiency was compared to a
lower rate of 89% when the coagulant was not used. Sand filtration already demonstrated
high removal efficiency (95% without coagulant and 92% with coagulant), emphasizing the
significance of this step [71]. However, other authors [68] reported that the sand filtration
played no significant role in the removal of MPs. They achieved a removal efficiency of
only 29.0–44.4% compared to coagulation/sedimentation methods. In terms of the shapes
of MPs eliminated, it was found that fibers accounted for 96% when the coagulant, sand,
and AC filtration were used [71]. In the case of CFS followed by ozonation integrated with
GAC, the percentage of fiber elimination ranged from 51.6% to 78.9% [68].

Disadvantages associated with the coagulation treatments include reduced removal of
MPs/NPs, high coagulant consumption [67], and increased presence of residual Al-based
salts in the case of Al coagulants, which can have adverse effects on human health [91].
While the CFS technique alone is insufficient for removing plastic pollutants from drinking
water, combining it with granular filtration techniques has been successful in removing
MPs/NPs larger than 100 µm from DWTPs [17]. Special attention should be given to the
configuration of DWTPs and operating parameters for the removal of both MPs and NPs
from drinking water.

3.1.2. Disinfection Technologies

During the process of disinfecting drinking water, MPs/NPs may pass through the
filter and enter the municipal water supply network, eventually reaching consumers’ taps.
To address this issue, ozonation and chlorination, which are frequently employed in water
treatment plants, have been proposed as potential methods for degrading MPs/NPs [85].

In one study [85], a concentration of 2.5 µg/L PS NPs in water was investigated to
determine the effectiveness of ozonation and chlorination technologies for the degrada-
tion and mineralization of PS NPs. The average ozone dosage in drinking water was
maintained at 4.1 mg/L, while 2.5 mg/L was the concentration of chlorine (in the form
of hypochlorite salts) for chlorination. After 30 min, ozonation resulted in the removal
of 96.3% of PS NPs, while chlorination only removed 4.2%. This significant difference
was attributed to the increased hydrophilicity of PS NPs, which occurred due to the intro-
duction of oxygen-containing groups on the surface during the ozonation treatment. It
has been demonstrated through Pyr-GC/MS that ozonation is more effective than chlo-
rination for the destruction of PS NPs from DWTPs. Chlorination, on the other hand,
resulted in the formation of a shorter macromolecular chain due to a destruction of a small
number of C-C bonds [85]. The Pyr-GC/MS spectrum of PS NPs after ozonation showed
several new signals at retention times of 2.286 min, 3.393 min, 11.992 min, 12.091 min,
16.294 min, 17.137 min and 20.046 min, which corresponded to acetic acid (CH3COOH),
phenol (C6H6O), acetophenone (C8H8O), hydroquinone (C6H6O2), methylbenzaldehyde
(C8H8O), dimethyl acetophenone (C10H12O), and phenylpropionic acid (C9H10O2), respec-
tively. In contrast, the spectrum of PS NPs after chlorination was identical to that observed
before this treatment (Figure 2) [85].

In another paper, ozonation and three successive filtration media involving rapid sand,
AC, and slow sand filtration were used for the removal of palladium (Pd)-labeled NPs
from real DWTPs [78]. A minor impact related to transport through columns was observed
when the NPs were pretreated with ozone. Slow sand filtration promotes biofilm formation
and results in high efficiency for NP removal (99.5%).

Conversely, the amount of MPs slightly increased in the treated water after the ozona-
tion process [68]. The authors explained the rise of MPs particles during ozonation as
a result of the destruction of residual organic matter attached to the MPs, as well as the
breaking of MPs due to the cutting force of the water flow.
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Figure 2. Pyr-GC/MS spectra of PS NPs, PS NPs after ozonation, PS NPs after chlorination, and the
seven mass spectra from PS NPs after ozonation. Reprinted with permission from [85]. 1—acetic
acid (CH3COOH), 2—phenol (C6H6O), 3—acetophenone (C8H8O), 4—hydroquinone (C6H6O2),
5—methylbenzaldehyde (C8H8O), 6—dimethyl acetophenone (C10H12O) and, 7—phenylpropionic
acid (C9H10O2).

3.1.3. Adsorption

Adsorption is widely used for the removal of contaminants from aqueous solutions,
being cost-effective and environmentally friendly [92–94]. The possible factors affecting
the removal efficiency of MPs/NPs by adsorption include: pH, temperature, adsorbent
types, dissolved organic matter (DOM), and ions [72]. pH and temperature are considered
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the two most important factors. pH affects the adsorption efficiency mainly by influencing
the charge on the surface of MPs and the adsorbent, whereas temperature can influence
the adsorbate diffusion rate and equilibrium capacity; higher temperatures led to high
MPs adsorption [72].

GAC is the most widely used adsorbent material in the drinking water purification
process due to its high surface area and porous structure [3,95]. The efficiency of positively
charged PS NPs hydrazine was evaluated following sand and GAC filtrations in the main
DWTP from Geneva (Switzerland), with and without coagulant agent [3]. An increased
removal of PS NPs was found in the case of GAC filtration compared to sand filtration,
explained by the adsorption capacity of GAG. By using PACl coagulant, the filtration
efficiency increased up to 99.4% ± 1.1%, because the retention of large NPs aggregates was
improved and surface charge of PS NPs was reduced, leading to repulsive forces between
NPs and filter media, thus improving both their retention and removal.

Another study on the removal of NPs from DWTP by using CFS and sand/GAC
filtration revealed a difference in the NP removal mechanism between those two techniques,
NPs of 200 nm being more efficiently removed by CFS, while some smaller NPs (50 nm)
were better removed by GAC filtration [84].

During the simulation of the dynamic adsorption process of engineered PS NPs by
GAC filtration of drinking water, characterized by a surface area of 759 m2/g and pore
volume of 0.357 cm3/g, a very stable structure of GAC was revealed, its abundant pore
structure of 3.09 nm and good regeneration (90% after the first cycle) making this adsorbent
effective for adsorption of PS NPs [14]. The addition of Ca2+ increased the ionic strength by
reducing the electrostatic repulsion between PS NPs. This behavior favors the aggregation
and retention of PS NPs in the GAC pores.

Recently, Sajid et al. [96] highlighted the role of metal–organic frameworks, bio-based
nanomaterials, carbon-based nanomaterials, and layered double hydroxides as adsorbents
for the elimination of MPs from aqueous media. In this vein, Martin et al. [97] exploited the
ability of iron oxide nanoparticles (IONPs), synthesized via green chemistry methods and
further coated with different hydrophobic or amphiphilic coatings, to separate, concentrate,
and remove NPs from water by magnetic separation. Thus, 1000-multifilament yarn of
30 µm diameter, PE nurdles and PE fibers were used as models for the removal of NPs
from freshwater and placed in contact with coated iron oxide nanoparticles (IONPs). All
PE nurdles and fibers were collected with a simple 2-inch permanent NdFeB magnet [42].

However, at the end of their use, the adsorbents must be regenerated by remov-
ing the adsorbed MPs/NPs; otherwise, they present a potential risk of returning to
the environment [72].

3.1.4. Membrane Filtration Process

Membrane filtration is currently employed to remove emerging pollutants from con-
taminated waters [98]. For instance, vacuum-assisted filtration with an inorganic filter
membrane (for example, Whatman Anodisc, 47 mm diameter, 0.2 µm pore size) was used
to separate NPs from bottled and tap water [62]. Consequently, the total amounts of
MPs particles found in tap water and plastic bottled drinking water ranged from 0.99
to 26 MPs/L [62]. In the case of the water deposited in glass bottles, the detected MPs
were below the limit of quantification (LOQ) by µ-FTIR analysis. The composition of
the detected MPs was: 38% PE, 25% PS, 22% and polypropylene (PP), polyamide (PA),
and polyurethane (PU) in small amounts [62]. The most commonly used polymers for
production of water bottles are PET for the body [16,99] and high-density polyethylene
(HDPE) for the caps [100,101]. However, the source of MPs/NPs contamination depends
on the bottle manufacturing technology.

Recently, Cherian et al. [102] reported the performance of three point-of-use (POU)
water treatment devices containing GAC, ion exchange (IX), and microfiltration (MF)
components used by consumers for optimal MP removal from drinking water. PE and PET
as fragments and nylon as fibers were used as spiked MPs. The study showed that the POU
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device containing GAC and IX did not effectively remove MPs. The POU device containing
GAC, IX and filtration membrane with pore size > 1 µm exhibited 78–86% and 94–100%
removal for polyvinyl chloride (PVC) and PET, respectively, while, the best performance
was reported in the case of the POU device including MF with pore size > 0.2 µm, GAC
and IX, when 100% PVC and 94% PET were removed. High nylon fiber removal was
observed in all POU devices. This study highlighted the importance of membrane- and
small pore-associated membrane filtration process for MP removal.

Ultrafiltration units are often installed as a single filtration stage in newly constructed
plants [103]. With pore sizes of about 10 nm, high NP removal efficiencies are expected
through such treatment processes. Barbier et al. [104] showed, for the first time, that the
nanofiltration process is more efficient than conventional methods (coagulation–flocculation,
settling, sand filtration, ozonation, GAC filtration, UV treatment, and chlorination) used to
remove MPs from DWTPs. Thus, by applying nanofiltration for MP removal from three
DWTPs, the authors reported concentrations ranging from 7.4 to 45.0 MPs/L in the inlet
water, while these decreased to 0.260 MPs/L in the case of outlet drinking water. The
overall removal rate was >99%, and the MPs identified were PP, PE and PET.

Even though drinking water treatment processes should minimize the chances of MPs
entering tap water, thus reducing their risk to consumers, membrane filtration can increase
the number of MPs/NPs in some cases. MPs/NPs can be released in the membrane filtra-
tion step and further adsorb halogenated by-products resulting from chemical purification,
thus becoming a secondary pollution during long-distance water transport [105]. For exam-
ple, a concentration of MPs/NPs of 67.81 ng/L was found after using membrane filtration
compared to 13.23 ng/L detected in tap water [106]. Membrane filtration is considered
to exhibit a high potential ecological risk due to the membrane destruction during water
filtration and clogged pores [106].

3.1.5. Other Technologies

Another suitable approach for removing low-density polyethylene (LDPE) suspended
on the water surface could be dissolved air flotation (DAF) water treatment. The purpose
of DAF is to diffuse the air in the form of fine bubbles in the drinking water, followed by
flotation of the suspended particles and their final removal by skimming [17]. The removal
efficiency of MPs and NPs was evidenced by the analysis of sediment captured by filtration
of 250–500 mL of raw water using filter membranes with various pore sizes (pore size of
25 nm for NPs with 180 nm particle size, and pore size of 200 nm for NPs with 1.2 µm,
10–20 µm, 45–53 µm, and 106–125 µm particle sizes) [17]. The filtration removal efficiency
was not dependent on the size of the plastic particles. For example, by using five different
sizes of fluorescent plastic particles, namely, 106–125 µm, 45–53 µm, 10–20 µm, 1.2 µm,
and 180 nm, the corresponding removal efficiencies were reported to be 99.9% ± 0.1%,
97.0% ± 3.0%, 86.9% ± 4.9%, 94.9% ± 0. 4%, and 98.9% ± 0.7%, respectively [17]. Removal
efficiency by filtration treatment was affected by multiple mechanisms, such as straining,
interception, gravitational sedimentation, diffusion, and particle attachment/detachment.

In addition to the traditional methods (filtration, coagulation, centrifugation, floccu-
lation, and disinfection) used to remove MPs/NPs from drinking water, new effective
methods involve the use of microorganism-based degradation, membrane separation with
a reactor, and photocatalysis [107].

A membrane bioreactor can be used as an effective technology in the treatment of
drinking water. For instance, the removal of PVC with a concentration of 10 particles/L
daily and size < 5 µm from synthetic water by using a membrane bioreactor was studied
by Li et al. [91]. Besides a removal rate of organic matter and ammonia over 80% and 95%,
respectively, higher membrane fouling and irreversible membrane fouling were observed
in the case of PVC contamination.

An eco-friendly and sustainable method for removing MPs from water involves using
visible light to activate a photocatalytic process [108]. This approach employs glass fiber
substrates to capture low-density MPs, such as PP, while also supporting the photocatalyst
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material. The process uses zinc oxide nanorods immobilized onto the glass fiber substrates
in a flow-through system to break down spherical PP MPs suspended in water via visible
light irradiation. After two weeks of this treatment, the average particle volume decreased
by 65%. Gas chromatography–mass spectrometry was used to identify the primary by-
products of photodegradation, which were found to be mostly non-toxic according to the
existing literature.

A new approach that could help remove MPs/NPs from contaminated water involves
using algal cells as bio-scavengers [109]. These cells bind the particles to their surfaces or
incorporate them into their own cells, filtering them from the water. The polluted biomass
can then be further processed downstream through microalgal cultivation, together with
sustainable biofuel production, ultimately destroying the MPs/NPs.

All the methods used to remove MPs/NPs from DWTPs require special attention,
considering the emergence of new MPs/NPs during the distribution network to tap water
consumers. Also, it is important to note that these technologies may not remove all MPs
from drinking water sources, and a combination of treatment methods may be necessary to
achieve the desired level of removal.

3.2. Analytical Methods for Monitoring Micro- and Nanoplastics in Drinking Water Sources

A critical evaluation of applicable methods used for the identification and quan-
tification of MPs/NPs was recently performed by Cella et al. [110], Ivleva et al. [111],
Liu et al. [112] and Lee et al. [113]. Criteria used for the quantitative evaluation of the
quality of MP concentration data were well reviewed by Koelmans et al. [114]. In this
section, the sensitive methods based on mass or particle size needed for identification and
quantification of MPs from DWTPs, tap water and bottled drinking water sources have
been reviewed.

Table 1 shows the characteristics of MPs/NPs found in drinking water sources
in terms of size, concentration, polymer type or morphology monitored by different
analytical techniques.

Table 1. Characteristics of MPs/NPs identified in drinking water sources.

Source Method Characteristics of MPs/NPs Polymer Type Ref.

Three DWTPs FTIR and Raman Concentrations of 443 ± 10, 338 ± 76 and
628 ± 28 particles/L PET, PP, PE [16]

1200 L to 2500 L water from
DWTPs (sampled in 2014

in Germany)

µ-FTIR microscopy
coupled to a FPA

detector

Four blank samples contained
45 ± 22 fibers, 18% were black and 78%

were transparent;
DWTPs show 0.7 fibers/m3, with sizes

ranging from 50 to 150 µm

Control: PP, SAN
DWTPs: PE, PA, PES, PVC

or epoxy resin
[115]

DWTP, Germany µ-Raman
MPs size varying from 50 to 5000 µm;
Shape of MPs: 83.3 % fragments and

16.7% fibers

37.8% PE, 31% PP and
24.4% PS were the most
commonly found plastic
in the analyzed samples

[116]

38 samples were collected from
different tap waters from China µ-Raman

Concentration of MPs was varying from 0
to 1,247 particles/L

Distribution of MPs according to different
size classes was:

31.25 to 100% for 1–50 µm;
1.47 to 31.25% for 50–100 µm; 1.72 to

31.25% for 100–300 µm; 1.18 to 7.69% for
300–500 µm; 1.72 to 11.76% for

500–5000 µm

26.8% PE, 24.4% PP, 22%
compounds of PE and PP,

7.3% polyphenylene
sulfite (PPS), 6.5% PS,

3.3% PET, and 9.8% other

[117]

DWTPs LDIR, optical
microscopy

MPs decreased after pre-treatment
(80–99%); Size of MPs ranging from

20 to 500 µm; concentration of
2 MPs/L

PA, PET, PE, rubbers,
chlorinated PE [118]
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Table 1. Cont.

Source Method Characteristics of MPs/NPs Polymer Type Ref.

Two DWTPs and ten tap water
samples (from Iran)

Density separation
techniques, digestion,
observation, µ-Raman

and FTIR, and SEM

An average of 22–51.8 MPs/m3 for DWTPs;
A high concentration of particles in tap

water (85–390 MPs/m3) compared to those
found in DWTPs

PS [119]

Two tap water samples
(collected from Saudi Arabia) µ-FTIR First sample: 1.8 MPs/L

Second sample: <LOQ PE [62]

159 samples of tap water
collected between January and
April of 2017, from 14 countries

FTIR

Concentration ranging from 0 to 61 MPs/L,
with an overall mean of

5.45 MPs/L;
98.3% MPs were identified as fibers, and
the remaining particles were identified as

fragments or films

Not mentioned [120]

Tap water sample (from China) FTIR, AFM-IR and
Pyr-GC/MS

The most frequently occurring particles
had a size ranging from 58 to 255 nm, and a

concentration between 1.67–2.08 µg/L
PE, PP, PS, PVC, PA [121]

Two brands of bottled water in
PET bottles

TD-GC/MS combined
with TFU;

super-resolution optical
nanoscopy with

microsphere lens; DLS

Size ranging between 66–605 nm

Degradation products of
PET: phthalate derivatives

and ethyl
p-ethoxybenzoate

[122]

Mineral water bottles (0.5 L)
consisted of transparent PET,

with cap made of white HDPE
SPES and µ-Raman

Size distribution: fewer than 10% of particles
have a dimension of 0.38 ± 0.03 µm, and

fewer than 9% of particles have a dimension of
1.04 ± 0.14 µm

HDPE, PET [123]

Four mineral water bottles FTIR
Concentrations ranging from <1 MP/L to

317 ± 257 MPs/L, with particle
sizes ≥ 11 µm

PE, PP, PS, polyester, PVC,
EvOH, and PA [124]

32 samples were collected from
21 different brands of mineral

waters (from Bavarian location)
µ-Raman

Single use PET bottles: 2649 ± 2857 MPs/L
Reusable PET bottles: 4889 ± 5432 MPs/L

Glass bottles: 6292 ± 10,521 MPs/L
Single and reusable PET: 95% of the plastic

particles < 5 µm and 50% < 1.5 µm
Glass bottle: ~15% of plastic particles were

between 5 µm and 10 µm,
and ~7% > 10 µm

PET for PET water bottle;
PE (46%), PP (23%) and a

styrene-butadiene-
copolymer (14%) for glass

water bottle

[125]

Ten mineral waters, either still or
sparkling, in PET plastic bottles

(from Catania, Italy)

SEM, density, statistical
analysis

MPs with a mean diameter of
2.44 µm ± 0.66 µm were detected on

PET surface
Not mentioned [65]

Drinking water stored in PC and
PP bottles (from China)

LDIR chemical imaging
system, TEM

53 to 393 particles/mL during
100 opening/closing cycles PC, PP [126]

63 drinking water samples
collected from decentralized

refill kiosks in the Mexico City
ATR-FTIR 11 to 860 MPs/L from which: 65% were

fibers, 28% fragments, and 7% films
PET, PA, vinyl polymers,
polyacetals, cellophane [127]

Focal plane array (FPA), styrene acrylonitrile (SAN), tangential flow ultrafiltration (TFU), dynamic light scattering
(DLS), single particle extinction and scattering (SPES), atomic force microscopy–infrared spectroscopy (AFM-IR),
ethylene vinyl alcohol (EvOH), polyamide (PA), polycarbonate (PC), laser direct infrared (LDIR), ATR-FTIR
(attenuated total reflectance–Fourier-transform infrared spectroscopy).

3.2.1. Methods Based on Mass Determination

The most used laboratory methods for MP/NP identification based on mass determi-
nation are Pyr-GC/MS [85,121,128,129], TD-GS/MS [122], SP-ICP-MS [9], surface-enhanced
Raman spectroscopy (SERS) [130], ICP-MS [131], MALDI-ToF/MS [132], TD-PTR/MS [133],
quantitative proton nuclear magnetic resonance (q1H NMR) HPLC [134], and differential
scanning calorimetry (DSC) [135]. Scarce results have been reported regarding the detection
of MPs in drinking water sources, possible due to a lack of standardized methods, limits
of quantification, high cost of analytical tools, as well as variety of plastic pollutants in
drinking water sources [76]. The analytical methods developed for the investigation of NPs
are still uncertain, mainly due to limitations in laboratory workflow and the low sensitivity
of analytical tools, which result in limited signals [136,137].
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Funck et al. [128] developed a method for quantification of MPs from 3500 L water
collected from DWTP by Pyr-GC/MS analysis using cascade filtration with mesh sizes of
100 µm, 50 µm and 10 µm and a platinum filament having dimensions of 20 mm × 5 mm
for sample application. Thus, the quantification limits for PS and PE were 0.03 µg and 1 µg
with a relative standard deviation of 11%.

A recent study has reported the quantification of NPs found in bottled water down to
1 nm [122]. Huang et al. [122], developed a new method based on thermal desorption (TD)
into a gas chromatography–mass spectrometry (GC/MS) system coupled with tangential
flow ultrafiltration (TFU) and evaporation techniques. The principle consisted in the
concentration of NPs in retentate fluids by dewatering and desalting, thus preventing
the loss of solids. The authors demonstrated the presence of PET-degradation products
(from bottles) during a thermal mechanism and exposure to light. The advantages of this
TD-GC/MS technique compared with other techniques were a higher resolution analysis
without the use of organic solvent, low sample volume for NP determination, and analysis
time (27 min per sample) [122].

Li et al. [121] successfully used a sequential filtration with inorganic filters, followed
by identification of chemical groups using a micro-zone through atomic force microscopy
(AFM) coupled with infrared spectroscopy (AFM-IR), and, finally, employed Pyr-GC/MS
for the identification of polymer in tap water [121]. The authors quantified NPs ranging
from 58 nm to 255 nm as polyolefins, PS, PVC, PA, and some plastic additives.

A suspension of PS22 model NPs conjugated with AuNPs@gel at a concentration
of 1 × 1012 particles/L was used for the development of the SP-ICP-MS method to quantify
NPs up to 1 µm and a concentration of 8.4 × 105 NPs/L in drinking water and tap water
samples [9]. The strategy of using SP-ICP-MS for the detection and quantification of NPs in
water sources is based on the oxidation signature of aged plastic debris, and the conjugation
of carboxyl groups from the surface of NPs particles with functionalized positively charged
metal (gold)-containing NPs (AuNPs).

Lin et al. [130] confirmed that PE particles were gradually released over time in plastic
cup and bottled mineral water samples during irradiation by using of SERS. Analysis of
the signal spectrum collected in 15 s revealed that the PE concentrations measured for
plastic cups and bottles were 3751 ± 0.19 ng/mL and 1522 ± 0.21 ng/mL, respectively,
after 240 min. The detection limit for NPs was 1.6 ng/mL when copper oxide/silver NPs
(CuO/Ag NPs) were used as SERS substrate (Figure 3). Similar concentrations of MPs
ranging from 1.67–2.08 µg/L were found in tap water by using Pyr-GC/MS [121].

A nanowell-enhanced Raman spectroscopy (NWERS) substrate, composed of self-
assembled SiO2 sputtered with silver films (SiO2 PC@Ag), was developed for PS NP
detection from tap and bottled drinking water, with a size < 200 nm and a limit of detection
(LOD) of 5 µg/L [138].

Realistic PET NPs from bottled water labeled with an iridium-containing organic
molecular agent were detected in liver, spleen, lung and kidney via inductively coupled
plasma mass spectroscopy (ICP-MS) [131].

Asymmetric flow-field flow fractionation (AF4) and multiangle and dynamic light
scattering (DLS-MADLS) methodologies were used by Villacorta et al. [139] for monitoring
PET NPs from plastic water bottles. To tackle the real NP sample without metal contamina-
tion, the authors used diamond burrs to obtain uniform and representative samples with a
size of about 100 nm for the investigation of potential health risks.

3.2.2. Methods Based on Particle Determination

The best-known methods used in the laboratory for MP/NP identification based on
particle determination are FTIR [16,119,121,124], µ-FTIR [62,115], µ-Raman [116,123,125],
SERS [130], SEM [65] and DLS [88]. An LDIR chemical imaging system is also a useful
analytical tool based on the µ-FTIR technique for detection of the number of MPs, polymer
types and sizes of MPs in the case of diameters > 20 µm [118,126].
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An interesting review on the statistics of MP presence in drinking water sources,
published in 2020, reported an average concentration of MPs in conventional water sources
of 2.2 × 103 items/m3, with an identified particle size usually > 50 µm [86].

Pivokonsky et al. [16] studied the removal capacity of plastic particles at three DWTPs
and their concentrations in treated water. Plastic fragments and fibers were the most
common shapes found in drinking water. These fragments are supposed to occur in
drinking water during the breakdown of macroplastics, while fibers could be supplied
from the discharge of washing machines into sewage waters.

The aggregation of positively charged PS NPs with a diameter of 15 nm and a specific
surface area of 40–60 m2/g at a concentration of 10 mg/L introduced into three types of
commercial bottled mineral waters was observed at a point of zero charge (pzc), pHpzc of
9.9 ± 0.1 [88]. Positively charged PS NPs have been reported to be difficult to coagulate
and remove from surface and mineral drinking waters [88].

Various treatments applied in DWTPs, as well as different analytical tools and geo-
graphic location, led to different concentrations of MPs. µ-FTIR spectroscopy is a suitable
technique for the identification and classification of MPs, with sizes ranging between 25
and 500 µm [62]. Microplastics, such as PE, followed by PS, and PET, were identified
using µ-FTIR in 17 out of 30 samples [62]. In treatment sludge from a DWTP (Germany),
a volume of 1000 m3 raw water intake was analyzed by µ-Raman spectroscopy to detect
the abundance and type of MPs with sizes > 50 µm over a period of 3 h. A figure of
196 ± 42 MPs/m3 was found [116]. Similar concentrations (338–628 MPs/L) were reported
from another three DWTPs by using FTIR and Raman spectroscopy [16]. µ-Raman and SEM
allowed the detection of 6614 ± 1132 particles/L, from which the predominant types were
PET, PE, PP, polyacrylamide (PAM), PS and PVC [68]. Interesting was the presence of PAM
MPs in the treated water, denoting its use in the removal of suspended particles. However,
it is considered that the product derived from PAM is more toxic than to polymers and the
dosage of PAM should be according to the regulations in force [83]. Small concentrations of
MPs were detected by using LDIR and optical microscopy techniques at various stages of a
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DWTP (2 MPs/L) [118], purification and density separation followed by FTIR and SEM
revealing concentrations of 0.022–0.051 MPs/L [119]. Additionally, µ-FTIR coupled with
an FPA detector detected 0.7 MPs/m3 [115].

The concentration of MPs in water can vary depending on the source and treatment
processes. Tong et al. [117] conducted a study in which particles larger than 300 µm were
found in 38 tap water samples. Fragments were found to be the most common morphotype
in most tap water samples, followed by fibers and spheres. Plastic particles found in tap
water may originate from the use of PE and PP in pipes used for distributing drinking
water. It is possible that the water treatment process does not effectively remove or break
down larger particles. A comparative study addressing the amount of MPs detected in
DWTPs and tap waters showed high concentrations of MPs in tap waters compared to the
levels found in DWTPs [119], implying the possible release of MPs from plastic pipes.

According to the research conducted by Zhang et al. [17], 81% of MPs were found in
159 samples of tap water, while 93% of MPs were detected in 259 samples of bottled drinking
water from 11 different brands. MPs/NPs can contaminate bottled drinking water when the
screw cap is opened and closed [101,123] or due to degradation compounds associated with
PET [122]. The larger plastic particles found in bottled drinking water, compared to those
found in tap water, are attributed to the types of material used for the bottles and caps [16].
For example, the opening of a plastic bottle can produce 0.46–250 MP particles/cm [140].
Weisser et al. [124] also found that 81% of MPs detected in bottled drinking water were
attributed to abrasion of the PE-based cap sealing material. Thick-necked plastic bottles
were found to release more MPs than thin-necked glass bottles [126]. Plastic food packaging
is also a considerable source of the release of MPs/NPs [22,50,110,141]. On average, isolated
MPs weighing 3 mg to 38 mg were detected in each consumer plastic food container [141].

The dimension of plastic particles detected in bottled drinking water varies from 58
to 255 nm [121], 66–605 nm [122], and ≥11 µm [124]. In a remarkable study conducted
by Oßmann et al. [125], plastic particles < 5 µm in size were identified in water packaged
in single-use PET, reusable PET and glass bottles. The MPs found in glass bottles were
explained based on the age of the bottle. The authors prepared the water samples for
µ-Raman spectroscopy analysis by mixing an equimolar amount of 250 g/L ethylenedi-
aminetetraacetic acid tetrasodium salt (EDTA) corresponding to Ca2+ and Mg2+ ions in
water with the water sample, for 15 min, by adding 3 mL of 100 g/L sodium dodecyl sulfate
(SDS), then vacuum filtration through an aluminum-coated PC membrane filter with pore
size of 0.4 µm. Of interest is the high concentration of 384 ± 468 MPs/L found in the blank
sample, in which PP, PS, PE and PET were identified.

Single-particle extinction and scattering (SPES) determines the number and size distri-
bution of particles. Quantitative and qualitative analyses of NPs released in drinking water
plastic bottles under realistic conditions show that the PE sealing of the bottles released
particles with a size distribution ranging from several hundreds of nanometers to about
1 µm, and estimated a mass release in the order of a few tenths of nanograms per open-
ing/closing cycle [123]. The physicochemical characteristics of the produced secondary
NPs were influenced by mechanical stress, making their identification difficult. The combi-
nation of SPES and µ-Raman represents the minimum set of techniques required for the
application of NP quantification and identification methodologies in simple matrices, such
as drinking water. The size distribution of NPs released from a package measured using the
SPES technique showed 10–90% distribution for population A of D10_A = 0.38 ± 0.03 µm
and D90_A = 1.04 ± 0.14 µm, respectively [123] (Figure 4).

A novel qualitative characterization of PET MPs derived from PET bottled water was
proposed by Asamoah et al. [142], who analyzed the optical surface roughness together
with the speckle contrast of the rough MPs. The use of an optical sensor prototype to detect
the flat, nearly flat, curved, and rough MPs prepared from commercial PET plastic and
PET bottles in water is promising for the development of a portable optical sensor capable
of real-time detection of MPs and NPs in an aqueous environment. The optical behavior
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evaluated by specular reflection technique detected the residence time of MPs in water, the
rate of pollutant adsorption, as well as the hydrodynamics and aerodynamics of MPs.
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Figure 4. SPES histograms performed for measuring the size of NPs released from three opening–
closing cycles—1, 10, and 50 times—at a volume of 15 ± 0.3 mL per sample. Dotted lines are
the boundaries of population A and B particle size distributions indicated in terms D10 and D90as
calculated from SPES histograms [123].

Overall, these methods based on particle determination provide valuable information
for identifying and quantifying MPs and NPs in drinking water. However, it is important
to use multiple analytical techniques and to validate the results with other methods to
ensure accurate and reliable identification.

3.3. Potential Toxicological Effects of Micro- and Nanoplastics from Drinking Water Sources on
Human Health

Assessing the clear health effects of MPs/NPs on marine organisms and humans
is a huge challenge among researchers [64,79]. The potential human health risks posed
by exposure to MPs and NPs are continuously explored, but few published papers have
been related to direct human health effects. Most research reports have involved animal
studies, mathematical modeling or in vitro cell culture, so there is still a lack of data on
direct human exposure and effects.

Since the existence of MPs and NPs has been proven in food, water, air and consumer
products, human exposure to MPs/NPs can occur through ingestion (primary route), in-
halation and dermal contact [143]. MPs/NPs could be initially ingested by marine species
(lower trophic levels) and further bioaccumulate, potentially leading to human exposure.
The existence of MPs and NPs in organisms can cause oxidative stress, cytotoxicity, neuro-
toxicity, inflammatory lesions, increased uptake or translocation, metabolic disturbances,
reproductive issues and increased cancer risk in humans [144]. Health risks depend on the
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concentration, exposure period, route of exposure and the physicochemical properties of
the particles [66].

The entrance of MPs and NPs into the human body could additionally involve the
introduction of other associated substances incorporated into plastics, such as plasticizers,
stabilizers, opacifiers, flame retardants, antistatic, conductive or medical additives or sub-
stances considered endocrine disruptors [145], which can migrate from the matrix due to
depolymerization and leaching processes, leading to possible cytotoxicity and inflammatory
response. A study performed by Tisler and Christensen [146] on reusable plastic (PE and
biodegradable PE) and glass sport bottles revealed the migration of >400 plastic-related
compounds over 24 h into drinking water, among which plasticizers, antioxidants, and
photoinitiators were predominant. Among the toxic chemical additives potentially exist-
ing in MPs/NPs that impose high concern for human health are phthalates, bisphenol
A (BPA), brominated flame retardants (BFR), triclosan, bisphenone and organotins [147].
BPA is an important chemical used as a monomer for PC [148], antioxidant or plasti-
cizer in PP, PE, PVC, epoxy resins and coating used to line the packaging of food and
beverage cans [149,150]. It has been reported that BPA migrates out of PC, epoxy resins and
other consumer plastics [151] and may contaminate food products and drinks [152,153],
producing adverse effects on human health, such as liver and pancreatic function alterna-
tion and respective changes in insulin resistance. BPA leaching also affects the development
of offspring in the wombs of pregnant women, causing issues with brain function [154,155]
and inhibiting thyroid hormone-mediated transcription by acting as an antagonist [156].
Some authors reported the onset of obesity and cardiovascular disease [157,158].

In respect to the simultaneous assessment of three surfactants, 4-nonylphenol (4-NP),
BPA, and triclosan (TCS) in bottled water, the data show that an adult can ingest 340 ng/day
of 4-nonylphenol (4-NP), 165 ng/day of BPA and 7 ng/day of TCS [148]. While 4-NP can
come from HDPE and PVC containers, BPA can come from PC baby bottles and TCS is
widely used as a preservative and antimicrobial agent in personal care products [159]. An
adult could ingest 1410 ng/day of 4-NP, 148 ng/day of BPA, and 10 ng/day of TCS when
drinking tap water [148]. Daily BPA intake for infants was three times higher than that for
adults [148]. According to Directive 2011/8/EU, the import of PC bottles from countries
outside of the European Union was prohibited from 1 June 2011, and a total ban on the
use of BPA for manufacturing baby bottles was introduced in the European Union on
1 March 2011 [151].

While BPA is not intentionally added during the manufacturing of PET bottles, studies
have suggested that the bottle cap, recycled PET or exposure to heat and ultraviolet
radiation could lead to its release in water [160]. Another study reported the presence of
BPA in PET bottled drinking water, and leaching increased with temperature [151]. For PC
bottles exposed to hot water, an increase in the rate of BPA migration up to 55-fold was
observed [155]. While there is not a significant risk to human health from exposure to BPA
in drinking water, attention should be paid to the cumulative daily dose in the body.

Phthalate esters are employed as plasticizers to improve the flexibility of various plastic
materials, much used in manufacturing PVC and plastisol [161] and PET bottles [162]. The
potential harmful effects of phthalate esters on human health consist in abnormal sexual
development and birth defects [163], while they have also been reported to induce adverse
cellular changes in fish [147]. The presence of 17 phthalate esters was reported in drinking
water stored in PET bottles without any threat to human health [162]. In other study [164],
the phthalate ester identification was assigned to cross-contamination from the laboratory.
However, it is recommended that an investigation into the additives released from water
plastic bottles from a toxicological perspective should be carried out over the long term.

According to the results of in vitro tests on marine species, MPs have been shown to
accumulate in the gills, stomach, and metabolic organs of crabs [165].

MPs larger than 10 µm are unlikely to be transported through an intact intestinal
barrier [7,166]. In this regard, Gao et al. [131] suggested that PET NPs produced by
mechanical action on bottled water could not be identified in the liver, spleen, lungs, or
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kidneys of mice, which indicates that they cannot penetrate the intestinal barriers when
injected intravenously.

Animal model studies reported the accumulation of NPs in the placenta [167]. Aghaei
et al. [74] were the first authors to demonstrate that the MPs and NPs in drinking water
pose risks to human pregnancies in late gestation. After exposing fetuses to PS both as
MPs and NPs with sizes of 5 µm and 50 nm, respectively, in a concentration of 106 ng/L, a
12% decrease in fetal weight was observed. However, the risks to embryo–fetal develop-
ment associated with unintended ingestion of MPs/NPs require extended investigations.

Once they enter the body, MPs might translocate to distant tissues through the
circulatory system, causing a systemic inflammatory response, blood cell cytotoxicity
through internalization [168], pulmonary hypertension [169], vascular inflammation or
occlusions [170], and decreased organ function, as well as an increased risk of neoplasm
due to deoxyribonucleic acid (DNA) damage [171].

In another paper, the ability to induce reactive oxygen species (ROS) and DNA dam-
age were evaluated after the exposure of two human lymphoblastic cell lines to PET NPs
removed from drinking water bottles [139]. Preliminary research revealed cellular up-
take, but without the induction of significant biological effects, and thus no potential
health hazard.

On the contrary, Ji et al. [172] demonstrated that the size of PET NPs (20 nm, 60–80 nm,
and 800 nm) obtained by a process of mechanical breakdown and dispersing agents (SDS
and bovine serum albumin (BSA)) used for NP stabilization has an important role in in vivo
toxicity studies. Thus, PET pieces cut from mineral water bottles have been shown to affect
the hatching rate, heart rate, and ROS generation in the development of zebra fish. The
BSA-dispersing agent was found to induce a higher level in heart rate abnormalities and
more severe oxidative damage from the PET NPs than SDS.

Cell damage caused by extrinsic toxic plastic materials can be evaluated by some typi-
cal examinations, such as rupture of the cellular membrane by strong positive charge [173],
interference with DNA synthesis, or organelle activities after uptake [174], resulting in cell
death due to necrosis or apoptosis [175]. Choi et al. [175] examined the in vitro toxicity of
PE MPs of different shapes and sizes, such as 1–100 µm for HDPE and ranging between
25–75 µm and 75–200 µm for LDPE, on cultured cells, including immune cells (human
mast cells [HMC-1], peripheral blood mononuclear cells [PBMCs], red blood cells [RBCs],
rat basophilic leukemia cells [RBL-2H3]), non-immune cells (cervical cancer cells [HeLa]),
and human dermal fibroblasts [HDFs]. Their results showed that the HDPE particles with
relatively smooth surfaces did not produce significant cytotoxicity in cells, but induced an
immune response in PBMCs and enhanced PBMC differentiation, while the LDPE particles
with sharp edges (higher curvature change) caused increased cytotoxicity under direct
cell–microplastic interaction, inflammatory response, hemolysis, and ROS production at
high concentrations (Figure 5).

Magri et al. [176] mentioned that combining of alternative methodologies, such as
metabolomics, with standard biological assays (i.e., cell viability and ROS production) is an
important approach to acquire preliminary valuable information on cellular metabolism to
facilitate the prediction of potential effects of plastic NPs on human health. Metabolomics
is a powerful tool for studying cellular metabolism and can be used to identify changes
in metabolite levels in response to exposure to plastic NPs. The authors used pulsed-
laser ablation of solid PET films in water to form PET NPs (size distribution in the range
of 10 and 80 nm) of similar surface and shape irregularity, broad size distribution, and
chemistry to those of particles in the environment [104]. They found a binding capacity of
about 3% w/w NPs for PET NPs with levofloxacin, an antibiotic defined as an emerging
contaminant in aqueous environments and demonstrated that these nanoclusters are not
toxic to heterogeneous human epithelial colorectal adenocarcinoma cells (Caco-2) in the
short term, but affect the cells metabolism as a compensatory response to oxidative stress,
suggesting long-term risks.



Polymers 2023, 15, 2425 19 of 30Polymers 2023, 15, x FOR PEER REVIEW 20 of 31 
 

 

 
Figure 5. Correlation of physical aspects of PE MPs with statistical data and in vitro toxicity results. 
CCK-8: cell counting kit-8; WST-8: water-soluble tetrazolium salt-8. Reprinted with permission from 
[175]. 

The cytotoxicity of PE and PS MPs was evaluated in vitro in cell lines T98G and HeLa 
(cerebral and epithelial human cells) exposed for 24–48 h to different contaminant levels 
of 10 ng/mL to 10 µg/mL under the same conditions [177]. Oxidative stress explains the 
toxicity of PE and PS MPs at the cell level, being significant in the case of PE MPs for T98G; 
however, PS showed higher ROS generation in both cell lines. 

The effect of engineered aminated PS NPs (model particles) on human liver HepG2 
hepatocytes was investigated by Banerjee et al. [178]. They found that the uptake of NPs 
with sizes of 50 or 100 nm by HepG2 liver cells was higher than 1000 nm particles. Addi-
tionally, short-term exposure to aminated PS NPs resulted in cell toxicity, while those with 
sizes between 500–5000 nm induced apoptosis [178]. 

Organic matter found in commercial drinking water was analyzed by various analyt-
ical methods, such as solid residues, after freeze-drying treatment of drinking water, using 
analytical methods including dry ash, centrifugation, Raman analysis, and electron mi-
croscopy [179]. The study found a concentration of 0.25–2.0 mg/L organic matter. It was 
proved that the stress applied to the plastic bottle did not significantly increase the con-
centration of organic matter within one month, and the organic matter did not affect the 
viability of human intestinal cells [179]. However, the study suggested that prolonged ex-
posure to nanoscale material in drinking water could potentially lead to the accumulation 
of NOM in the human body over time. 

The potential toxicological effects on test organisms, as well as the use of biodegrada-
ble MPs as vector for other chemical pollutants and microorganisms, have been reported 
[43]. However, there is a serious concern regarding the management of bioplastics and 
MP contamination, particularly with regard to fragmentation, degradability, and toxicity, 
and their interaction with other chemical contaminants present in aqueous media [41]. 
Since most MPs/NPs are hardly biodegradable or non-biodegradable, they clearly remain 

Figure 5. Correlation of physical aspects of PE MPs with statistical data and in vitro toxicity
results. CCK-8: cell counting kit-8; WST-8: water-soluble tetrazolium salt-8. Reprinted with
permission from [175].

The cytotoxicity of PE and PS MPs was evaluated in vitro in cell lines T98G and HeLa
(cerebral and epithelial human cells) exposed for 24–48 h to different contaminant levels
of 10 ng/mL to 10 µg/mL under the same conditions [177]. Oxidative stress explains the
toxicity of PE and PS MPs at the cell level, being significant in the case of PE MPs for T98G;
however, PS showed higher ROS generation in both cell lines.

The effect of engineered aminated PS NPs (model particles) on human liver HepG2
hepatocytes was investigated by Banerjee et al. [178]. They found that the uptake of
NPs with sizes of 50 or 100 nm by HepG2 liver cells was higher than 1000 nm particles.
Additionally, short-term exposure to aminated PS NPs resulted in cell toxicity, while those
with sizes between 500–5000 nm induced apoptosis [178].

Organic matter found in commercial drinking water was analyzed by various ana-
lytical methods, such as solid residues, after freeze-drying treatment of drinking water,
using analytical methods including dry ash, centrifugation, Raman analysis, and electron
microscopy [179]. The study found a concentration of 0.25–2.0 mg/L organic matter. It
was proved that the stress applied to the plastic bottle did not significantly increase the
concentration of organic matter within one month, and the organic matter did not affect
the viability of human intestinal cells [179]. However, the study suggested that prolonged
exposure to nanoscale material in drinking water could potentially lead to the accumulation
of NOM in the human body over time.

The potential toxicological effects on test organisms, as well as the use of biodegradable
MPs as vector for other chemical pollutants and microorganisms, have been reported [43].
However, there is a serious concern regarding the management of bioplastics and MP
contamination, particularly with regard to fragmentation, degradability, and toxicity, and
their interaction with other chemical contaminants present in aqueous media [41]. Since
most MPs/NPs are hardly biodegradable or non-biodegradable, they clearly remain intact
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inside the living organisms for a long time. The prolonged exposure of the human or other
organisms to MPs/NPs may lead to chronic irritation, inflammation, cellular proliferation,
and necrosis, and may compromise immune cells [144,180].

Comprehensive studies are needed to establish a clear health-risk assessment for
exposure to MPs and NPs, as it is fundamental to set the reference method of investigation
to monitor each source of human intake.

4. Conclusions and Future Perspective

The removal efficiency of MPs/NPs from drinking water treatment plants varies
depending on the treatment processes applied. The size of MPs detected in DWTPs ranges
from 1.2 µm to 2000 µm. Most studies on MPs/NPs have focused on investigating PS NPs
models due to their prevalence as debris in water. However, further analytical development
is required to monitor real NPs that have been isolated and/or preconcentrated from more
complex matrices. Few studies have reported the detection of NPs present in drinking water
bottles. A standard that is kept under the same conditions as drinking water is needed
to quantify the concentration of NPs in drinking water. Additionally, studies should also
investigate the interaction between NPs and other sources, such as food.

In the future, the amount of MPs/NPs in tap water and bottled drinking water are esti-
mated to unfortunately expand as a consequence of the continued degradation and fragmen-
tation of plastics in the environment. The manufacturing technology of reusable drinking
bottles (PET, glass) should be carefully examined to decrease the concentration of MPs/NPs
in the water packaged in the respective containers. The European Chemicals Agency
(ECHA) has proposed far-reaching restrictions on the use of MPs in products marketed
in the EU to reduce their release into the environment, as a part of the circular economy
plan [35]. The risks associated with MP/NP pollution derived from drinking water sources
should be mitigated by applying legal, technical, and social measures [6–8,30,63,73,132],
such as:

• setting sampling and monitoring standards for MPs/NPs
• reducing the production of non-biodegradable plastic items
• reducing single-use plastic
• implementing the circular economy using biodegradable plastic items
• using the “refuse, reduce, reuse, and recycle” concept
• innovation for plastics that do not need reusable, recyclable, or compostable materials
• total removal of MPs/NPs from DWTPs
• designing innovative packaging technologies to unscrew bottle caps in other ways,

such as easy-to-open caps
• the use of bio-inspired technology related to biomimetics involving the design of

advanced systems or devices inspired by nature, where principles from interdisci-
plinary fields such as engineering, chemistry and biology are applied to the devel-
opment of materials, synthetic systems or instruments with functions that mimic
biological processes [181]

• raising people’s awareness of the toxicological effects of MPs/NPs.

In addition to improving multiple interventions and management to prevent the
release of plastic related to the removal of MPs/NPs from water infrastructure, other
effective measures are necessary to eliminate MPs/NPs directly at the source. A green
prevention technology was proposed by the GoJelly Project, which developed a prototype
microplastics filter for commercial and public use, employing jellyfish mucus as the main
raw material [182]. The use of special household water systems, such as Lint LUV-R and
Showerloop, is effective in filtering out microfibers at the domestic level [182]. Synthetic
fibers could also be captured in the washing machine by means of laundry balls, such as
Cora Ball and Fibre Free [183].

Research is still needed to establish an acceptable upper limit for the concentration of
various NPs in drinking water through toxicity assessment, unification of various analytical
protocols for NP/MP identification and development of testing standards. In the meantime,
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it should not be assumed that any level is safe. Toxicity assessment of various MP and
NP types of different chemical composition, size and shape should be studied promptly
to evaluate concerns regarding human exposure to these particles. Extensive studies are
required to establish an explicit health-risk assessment for exposure to MPs and NPs, as a
clear distinction of plastic particles entering the human body from different sources (water,
air, food, drugs, skin) cannot be achieved. Awareness of MP/NP pollution of drinking water
sources should increase among European regulatory bodies, decision-makers, practitioners
and researchers.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/polym15112425/s1. Table S1: Physicochemical methods
used to remove MPs/NPs from drinking water.

Author Contributions: Conceptualization, M.R. and R.N.D.-N., data curation, A.-M.P. and A.-C.B.;
funding acquisition, C.P.; methodology, E.M. and A.-M.P.; project administration, M.R.; validation,
E.M.; visualization, C.P. and A.-C.B.; writing—original draft, M.R. and R.N.D.-N.; writing—review
and editing, M.R. and R.N.D.-N. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by EU Horizon 2020 (InNoPlastic), GA no. 101000612.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: R.N. Darie-Nit,ă acknowledges the Romanian Academy.

Conflicts of Interest: The authors declare no conflict of interest.

List of Acronyms and Abbreviations

MPs microplastics
NPs nanoplastics
DWTPs drinking water treatment plants
Pyr-GC/MS pyrolysis–gas chromatography–mass spectrometry
RAC Committee for Risk Assessment
SEAC Committee for Socio-Economic Analysis
EPS extracellular polymers
PFAS per- and polyfluoroalkyl substances
WHO World Health Organization
ATSDR Agency for Toxic Substances and Disease Registry
PS polystyrene
PVC polyvinyl chloride
CFS coagulation–flocculation–sedimentation
TD-PTR/MS thermal desorption–proton transfer reaction–mass spectrometry
µ-FTIR micro-Fourier-transform infrared spectroscopy
µ-Raman micro-Raman
TD-GC/MS thermal desorption–gas chromatography–mass spectrometry
SP-ICP-MS single particle inductively coupled plasma mass spectroscopy
SERS surface-enhanced Raman spectroscopy
ICP-MS inductively coupled plasma mass spectroscopy
MALDI-ToF/MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
DLS dynamic light scattering
SEM-EDX scanning electron microscopy–energy-dispersive X-ray spectroscopy
TEM transmission electron microscopy
PET polyethylene terephthalate
NOM natural organic matter
polyDADMAC diallyldimethylammonium chloride
PE polyethylene
PACl polyaluminum chloride
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Al2(SO4)3 aluminum sulfate
AlCl3 aluminum chloride
FeCl3 iron chloride
NaHCO3 sodium bicarbonate
PC polyamine-coated
ER elongated-rough
ES elongated-smooth
SR spherical-rough
SS spherical-smooth
GAC granular activated carbon
Pd palladium
DOM dissolved organic matter
IONPs iron oxide nanoparticles
LOQ limit of quantification
AF4 asymmetric flow field flow fractionation
DLS-MADLS multiangle and dynamic light scattering
PA polyamide
PU polyurethane
HDPE high-density polyethylene
POU three point-of-use
IX ion exchange
MF microfiltration
PVC polyvinyl chloride
LDPE low-density polyethylene
DAF dissolved air flotation
SAN styrene acrylonitrile
PES polyester
PPS polyphenylene sulfite
FPA focal plane array
TFU tangential flow ultrafiltration
LOD limit of detection
EvOH ethylene vinyl alcohol
LDIR laser direct infrared
PC polycarbonate
AFM-IR atomic force microscope-infrared spectroscopy
ATR-FTIR attenuated total reflectance Fourier-transform infrared spectroscopy
NWERS nanowell-enhanced Raman spectroscopy
ILs ionic liquids
PAM polyacrylamide
EDTA ethylenediaminetetraacetic acid tetrasodium salt
SDS sodium dodecyl sulfate
BPA bisphenol A
BFR brominated flame retardants
4-NP 4-nonylphenol
TCS triclosan
DNA deoxyribonucleic acid
ROS reactive oxygen species
BSA bovine serum albumin
HMC-1 human mast cells
PBMCs peripheral blood mononuclear cells
RBCs red blood cells
RBL-2H3 rat basophilic leukemia cells
HeLa cervical cancer cells
HDFs human dermal fibroblasts
Caco-2 human epithelial colorectal adenocarcinoma cells
ECHA European Chemicals Agency
PAN poly(acrylonitrile)
PMMA poly(methyl methacrylate)
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PVA poly(vinyl alcohol)
PEVA ethylene (vinyl acetate) copolymer
AC activated carbon
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