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Rubežienė, V.; Abraitienė, A.
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LT-48485 Kaunas, Lithuania; audrone.sankauskaite@ftmc.lt (A.S.); sandra.varnaite.zuravliova@ftmc.lt (S.V.-Ž.);
vitalija.rubeziene@ftmc.lt (V.R.); ti@ftmc.lt (A.A.)
* Correspondence: julija.pupeike@ftmc.lt

Abstract: The way to improve the properties (resistance to washing, delamination, and rubbing off)
of the PEDOT:PSS coating applied on wool fabric without reduction of its electrical conductivity by
introducing a commercially available combination of low formaldehyde content melamine resins
into the printing paste is presented in this paper. Primarily, to improve the hydrophilicity and
dyeability of wool fabric, the samples were modified using low-pressure nitrogen (N2) gas plasma.
Two commercially available PEDOT:PSS dispersions were used to treat wool fabric by the exhaust
dyeing and screen printing methods, respectively. Spectrophotometric measurements of the color
difference (∆E*ab) and visual evaluation of woolen fabric dyed and printed with PEDOT:PSS in
different shades of the blue color showed that the sample modified with N2 plasma obtained a more
intense color compared to the unmodified one. SEM was used to examine the surface morphology
and a cross-sectional view of wool fabric that had undergone various modifications. SEM image
shows that the dye penetrates deeper into the wool fabric after plasma modification using dyeing
and coating methods with a PEDOT:PSS polymer. In addition, with a Tubicoat fixing agent, HT
coating looks more homogeneous and uniform. The chemical structure spectra of wool fabrics coated
with PEDOT:PSS were investigated using FTIR-ATR characterization. The influence of melamine
formaldehyde resins on the electrical properties, resistance to washing, and mechanical effects of
PEDOT:PSS treated wool fabric was also evaluated. The resistivity measurement of the samples
containing melamine-formaldehyde resins as an additive did not show a significant decrease in
electrical conductivity, while the electrical conductivity was maintained after the washing and
rubbing test as well. The best results of electrical conductivity for investigated wool fabrics before
and after washing and mechanical action were determined for samples subjected to the combined
processing–surface modification by low-pressure N2 plasma, dyeing by exhaust with PEDOT:PSS,
and coating by the screen-printing method of PEDOT:PSS and a 3 wt.% melamine formaldehyde
resins mixture.

Keywords: conductive textiles; PEDOT:PSS; wool fabric; coated textile; electrical properties; wearing
properties

1. Introduction

The next major advancement in technology in the contemporary period will likely
be wearable electronics and conductive materials, which will surpass portable devices.
Conductive fabrics can be utilized to incorporate sensors capable of sensing and responding
to external stimuli [1–5]. The stimuli and responses can have a variety of causes, including
chemical, thermal, magnetic, and electrical [1]. The development of lightweight, flexible
parts and fibrous structures with a high electrical conductivity that can withstand the
stresses of wearing, and caring for the textile is a critical obstacle to the success of wearable
e-textile technology [2,6]. In fact, there are several obstacles to be overcome in the quickly
expanding field of electronic textiles, or e-textiles, due to the rigidity and weight of metal-
lic conductors [2,7]. Electrostatic discharge terminology glossary (ESD ADV1.0) defines
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conductive materials as “a material that has a surface resistance of less than 1.0 × 104 Ω
or volume resistance of less than 1.0 × 104 Ω”. In order to combine electronic devices,
such as sensors [8–12], antennas [7,13], and energy storage devices [14–16], new technology
has been used in textile construction. Electrostatic discharge (ESD) is a very common and
easily attainable phenomenon in the realm of alternative nonmetal-based conductive fab-
rics [17–20]. Components for smart textiles need to have a conductivity that is significantly
higher than the electrostatic discharge range to replace metallic conductors in fabrics that
effectively transmit information and support computing. According to the ESD Associa-
tion standard [21], dissipative materials have conductivities between 1 × 10−11 S/cm and
1× 10−4 S/cm. Contrarily, conductive materials are those that have conductivity greater
than 1 × 10−4 S/cm (Figure 1). To create lightweight materials that potentially replace
metallic fabrics, higher conductivity must be combined with good mechanical qualities [21].
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ylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) can be used to create conduc-
tive coatings or tracks on textiles [22]. These ICPs can be applied to textiles through con-
ventional methods, such as exhaust dyeing, coating, or screen printing, and may be fixed 
with a binder or directly reacted with the functional groups of the fibers [23–28]. When 
creating electrically conductive textiles, it is crucial to take into account the characteristics 
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mechanical elements during daily use. In this study, wool fabric was modified with con-
ductive polymer PEDOT:PSS with low-formaldehyde melamine resins to create not only 
conductive but also flexible and wearable textile. Wool is a natural protein fiber composed 
of 18 amino acids with amino and carboxy groups and sulfur, linking adjacent macromol-
ecules by cross-disulfide bonds. Wool fibers are usually dyed with acid dyes. Because of 
the PSS negatively charged sulfonate ions (-SO3-) interactions with the cationic amine 
groups of the wool fibers, PEDOT:PSS is referred to as a “conducting acid dye” [25,29] 
that may attach to protein fibers and dye them in various shades of blue [27]. There are 
several advantages for the PEDOT:PSS water-soluble polyelectrolyte system for textile ap-
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Conductive textiles can be made using natural and chemical fibers with conduc-
tive additives, such as conductive polymers, metals, oxides, and carbon. Intrinsically
conductive polymers (ICPs), such as polyaniline (PANI), polypyrrole (PPy), and poly(3,4-
ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) can be used to create con-
ductive coatings or tracks on textiles [22]. These ICPs can be applied to textiles through
conventional methods, such as exhaust dyeing, coating, or screen printing, and may be
fixed with a binder or directly reacted with the functional groups of the fibers [23–28].
When creating electrically conductive textiles, it is crucial to take into account the character-
istics of wearing comfort, breathability, flexibility, softness, resilience to repeated washings,
and mechanical elements during daily use. In this study, wool fabric was modified with
conductive polymer PEDOT:PSS with low-formaldehyde melamine resins to create not
only conductive but also flexible and wearable textile. Wool is a natural protein fiber
composed of 18 amino acids with amino and carboxy groups and sulfur, linking adja-
cent macromolecules by cross-disulfide bonds. Wool fibers are usually dyed with acid
dyes. Because of the PSS negatively charged sulfonate ions (-SO3-) interactions with the
cationic amine groups of the wool fibers, PEDOT:PSS is referred to as a “conducting acid
dye” [25,29] that may attach to protein fibers and dye them in various shades of blue [27].
There are several advantages for the PEDOT:PSS water-soluble polyelectrolyte system for
textile applications, including electrical conductivity, applicability with traditional tex-
tile technologies, commercial availability, water solubility, stability, and high visible light
transmittance [30]. A disadvantage influenced by the solubility of the conductive polymer
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component polystyrene sulfonate (PSS) in water causes the formed coating to peel off from
the textile, thus decreasing its resistance [22,23,29] to wet treatments. It is also important to
evaluate the ability of the PEDOT:PSS coating on wool fabric to retain its conductivity and
resistance to rubbing and washing [31–35]. Physical and chemical testing, as well as color
change measurement, can help to determine the durability of PEDOT:PSS coating on textile
materials under different processing conditions and inform about the most appropriate
treatment with this conductive polymer [31,36]. Modification, etching, activation, cleaning
and hydrophilicity of the wool fiber surface were performed using low-pressure nitrogen
(N2) gas plasma [37–40]. Scanning electron microscopy (SEM) was used to analyze the
surface morphology, defects, contaminants, and roughness of textile materials. It helps
to characterize the microstructure of fibers and yarns, as well as the surface texture and
finish of textiles [34,35,40,41]. FTIR-ATR spectroscopy was used to identify the chemical
bonds present in the sample and to determine the chemical composition of the investigated
sample [37,42–45].

The novelty of this work is to design and characterize electrically conductive textiles
coated with a formulation containing a water dispersion of PEDOT:PSS as a conductive
additive and increased resistance to mechanical and wet effects such as dry rubbing and
washing.

2. Materials and Methods

A 100% wool fabric used as the substrate for this research was acquired from JSC
“Drobė” (Kaunas, Lithuania). The Junior Plasma System 004/123 (Europlasma, Oudenaarde,
Belgium) is a low-pressure plasma apparatus that was used to modify the wool fabric
samples with N2 gas. The chosen process parameters were as follows: processing duration
of 3 min, pressure of 0.4 mbar, discharge power of 200 W, and N2 gas flow of 0.01 L/min
(Figure 2).
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Figure 2. Junior Plasma System 004/123 (Europlasma, Oudenaarde, Belgium).

The PEDOT:PSS commercial products Clevios F ET and Clevisios SV3 (Heraeus Hold-
ing GmbH, Hanau, Germany) were chosen because of their suitable chemical composition
and viscosity for our dyeing/coating methods. The PEDOT:PSS with ethylenediol (5–10%)
commercial additive water dispersion Clevios F ET was used to dye wool fabric samples
that had not been treated, or that had been treated with N2 plasma (13 cm × 20 cm) in
various shades of blue using the exhaust dyeing method (Figure 3a). Using Clevios F ET
at various pH levels, dyeing was performed at 90 ◦C for 30 min. After dyeing, samples
were dried in a lab drying-thermosetting machine called the TFOS IM 350 (Roaches Inter-
national, Batley, UK) for three minutes at 100 ◦C. The Clevios F ET dyed and undyed wool
fabrics samples were printed using the flat screen-printing method with the commercial PE-
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DOT:PSS water dispersion Clevios S V3 (Heraeus Holding GmbH, Hanau, Germany) and
dried at 100 ◦C for 3 min in a drying–thermosetting machine TFOS IM 350. Cross-linking
can be used to stabilize films and improve delamination on the fabrics. However, some of
them, such as glycidoxy propyltrimethoxysilane (GOPS), require high curing temperatures
(140 ◦C for 1 h) and have an adverse impact on conductivity values [46]. Our research has
shown that wool fabric turns yellow at temperatures above 105 ◦C. Melamine formalde-
hyde resin systems are used for textiles to produce highly durable coatings, especially for
impregnation against moisture [41]. For this reason, some of the investigated samples were
treated with a low formaldehyde content melamine resin named Tubicoat fixing agent
HT (CHT Germany GmbH, Tübingen), which does not require high curing temperatures
and can improve the properties of PEDOT:PSS coatings on wool fabric, such as washing
resistance, delamination resistance, and mechanical resistance, without compromising it
electrical conductivity [41,43,44].
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laboratory dyeing apparatus, Ahiba Nuance ECO (b).

Clevios S V3 and 3 wt.% Tubicoat fixing agent HT were used to screen print the wool
fabric samples for this purpose. The samples were then dried at 100 ◦C for 5 min in a lab
drying–thermosetting machine called the TFOS IM 350. The codification of samples treated
using different methods is shown in Table 1.

Table 1. Codification of samples processed by various methods.

Code of
Sample F PF S PS FS PFS SH PSH FSH PFSH

Modifications Clevios
F ET

Plasma/
Clevios F

ET
Clevios S

V3
Plasma/
Clevios S

V3

Clevios
F ET/

Clevios S
V3

Plasma/
Clevios F

ET/
Clevios S

V3

Clevios
S V3 +

Tubicoat
fixing

agent HT

Plasma/
Clevios
S V3 +

Tubicoat
fixing

agent HT

Clevios
F ET/

Clevios
S V3 +

Tubicoat
fixing

agent HT

Plasma/
Clevios F
ET/Clevios

S V3 +
Tubicoat

fixing
agent HT

2.1. SEM Analysis

SEM microscopy and FTIR-ATR (attenuated total reflection) spectroscopy have been
used to study the surface of fully coated samples. With scanning electron microscopy
(SEM), Quanta 200 FEG (FEI, Eindhoven, The Netherlands), at 20 keV (low vacuum),
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magnifications of 500× and 5000× work distances of 6.0 mm, low vacuum pressures of
80 Pa, and large-field detectors (LFD), the surface morphology of the coated wool fabric
was examined.

2.2. Fourier Transform Infrared Spectroscopy with Attenuated Total Internal Reflectance
(FTIR-ATR)

Utilizing FTIR-ATR spectroscopy (FTIR Perkin Elmer Frontier, MA, USA), chemical
bonding analyses of untreated and plasma-treated wool samples dyed with Clevios F ET
and coated with Clevios SV 3 were carried out. By analyzing the infrared spectra of the
tested samples, which were measured using FTIR-ATR spectroscopy in ATR reflection
mode (spectrum range: 600–4000 cm−1, resolution: 1 cm), it was possible to investigate the
structural modifications that had taken place in the samples.

2.3. Evaluation of the Durability of Conductive PEDOT:PSS Coating after Washing

Each without and with N2 plasma-modification samples after dyeing with Clevios
F ET and coating with Clevios SV 3 (see Table 1) were washed and dried 5 cycles. The
method used for the five wash cycles according to ISO 13688:2013 [47]. Samples were
washed with Scourotester Computex (Budapest, Hungary), washing temperature 40 ◦C
(method A1S) and duration 30 min (ISO EN 105-C06) [48]. Washed wool fabrics were line
dried in ambient atmosphere.

2.4. Color Fastness to Rubbing in the Conditioning Atmosphere

A testing instrument with two different sizes of rubbing fingers and a reciprocating
straight rubbing action was used to determine the color fastness against dry rubbing. The
specimen and rubbing cloth were subjected to a standard environment of (20 ± 2) ◦C and
(65 ± 4)% for at least 4 h prior to testing [49]. Each specimen was secured to the testing
device’s base such that its long axis would align with the device’s track. To minimize
specimen movement, a space was established between the baseplate of the test fixture and
the specimen and between the baseboard of the testing device and the specimen. When
laid flat on the tip of the finger, the weaving of a conditioned rubbing cloth is parallel to the
direction of finger rubbing. On the dry specimen, a track measuring 104 ± 3 mm in length
was rubbed 20 times in a straight line, 10 times forward and 10 times back, at a rate of one
cycle per second, with a downward force of 9 ± 0.2 N [50]. Following testing, the staining
of the rubbing cloth was evaluated using a grey scale for staining in proper lighting [51].

2.5. Evaluation of Color Change

The color change of dyed and coated samples after washing was evaluated on a grey
scale. Tests for color fastness were performed according to the grey scale for determining
changes in the color of textiles. Pairs of matte-finish gray color chips (or samples of matte-
finish grey fabric) make up the basic scale, which has five stages. An enhanced scale also
has four half-steps, making a total of 9 steps. The standard offers a precise colorimetric
scale definition that can be used to compare samples that may have altered with newly
prepared working referents [52].

2.6. Color Intensity Measurements

The color difference (∆E*ab) of the unmodified and modified plasma, Clevios F ET
dyed and Clevios S V3 printed samples (Table 1) after washing and rubbing tests were
evaluated with Datacolor Microflash MF 45 IR spectrophotometer (Datacolor AG, Rotkreus,
Switzerland) [53] (Figure 4). The wavelength range of the apparatus was: visible range
400–700 nm and infrared range 700–1100 nm, geometry type 0◦/45◦, illuminant and ob-
server conditions D65/10◦, area of view 3.2 mm, number of readings per sample—4 and
number of measured layers of fabric—4. The standard atmosphere temperature (20 ± 2) ◦C
and relative humidity (65 ± 4)% were used to keep the samples prior to testing [49]. The
standard deviation was roughly 1, and measurements were done on 5 elementary samples.
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Figure 4. Spectrophotometer Datacolor Microflash MF 45 IR.

The average of 4 readings per sample was recorded, and the standard deviation was
approx. ±1σ, namely, color yield (K/S), the substrate absorption function (K), the scattering
function of background (S), and the reflectance (R) in the visible spectrum (400–700 nm).
Other color parameters, such as L*, indicate the difference between darkness (where L* = 0)
and lightness (where L* = 100); C* represents the saturation/chroma of the color; a*, the
red/green coordinate is the difference between red (+a*) and green (−a*); h is the hue
angle (h sample minus h standard), which is the difference in hue; b* is the yellow/blue
coordinate, which is the difference between blue (−b*) and yellow (+b*).

2.7. Evaluation of Electrical Properties

Electrical resistance measurements, which are the inverse of electrical conductivity
measurements, were used to identify all fabrics created for this study. Before testing, the
specimens were left for at least 24 h in standard atmosphere conditions (20 ◦C and 65%
RH) [49]. The voltage measurements were provided in the same conditions. The linear
resistance was measured six times in 1 min, every 10 s, and the distance between the voltage
electrodes is (d) 10 cm, and a sample width of 2 cm (Figure 5). Measurements were made
according to the Four Point Kelvin method [54]. The electric current (I) is 0.01 ÷ 0.001 A,
the resulting voltage (U) and the sample resistance (R) is calculated according to Formula
(2), and the linear resistance (RL) is calculated according to Formulas (1 and 3) (Figure 6).
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Figure 6. Detailed scheme for the “four electrode−four wire method”; the four electrodes (contacts)
are visualized by the four nodes indicated in the scheme.

I is the applied current in amperes; U is the measured voltage in volts, and Im is the
current in the voltage measurement circuit (equivalent to zero)

R the resistance of sample (function of electrode spacing d) = RL × d, in ohm (1)

RCI1 and RCI2 are the contact resistances in the current circuit in ohms; RCU1 and RCU2
are the contact resistance in the voltage circuit in ohms; RW is the wire resistance in ohms.

RCI, RCV, and RW can be excluded due to the ”four electrode−four wire measurement”
so that the resistance of the specimen can be calculated by the simple formula

R = U/I (2)

The linear resistance RL, in ohm/m, is then calculated as

RL = R/d (3)

The distance d between the voltage electrodes is 10 cm.

3. Results
3.1. SEM Analysis

SEM images show the differences between unmodified and modified plasma wool
samples with different coating combinations, according to Table 1. SEM images show that
when comparing the samples without (S) and after plasma modification (PS, PFS), the
thickness of the sample (S) coating is thinner at 0.552 ÷ 0.743 µm, uneven, and delaminated
(Figure 7a,b), but after plasma modification of the sample (PS) we obtain a thicker coating
1.251 ÷ 1.416 µm, the sample is ignited more evenly, and the spaces between the threads
are filled with a coating (Figure 8a,b) [37]. After plasma modification of samples (PFS)
(Figure 9a,b), the coating is thicker at 1.193 ÷ 1.947 µm and more equal and well penetrated
on the other side of the fabric in comparison to samples (PS) [38–40] without initial dyeing,
the coating is only formed and visible on the surface (Figure 8b). Comparing samples
without (S, PS, PFS) and with Tubicoat fixing agent HT (FSH), the coating thickness is
1.662 ÷ 2.187 µm (Figure 10a,b) and looks more homogeneous and uniform than without
Tubicoat fixing agent HT (Figures 7–9).
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3.2. Evaluation of Conductive PEDOT: PSS Coating Durability after Washing Cycles

The photo images of plasma and PEDOT:PSS treated wool samples (F, PF, S, PS, FS,
PFS, SH, FSH, PFSH) before and after five washing and drying cycles are present in Table 2.
The color change analysis showed that the samples after plasma treatment are more than
half-steps [52] when compared to other samples: F with PF, S with PS, and FSH with
PFSH. This indicates that the plasma-treated samples became darker, possibly due to better
absorption of PEDOT:PSS. After five washes, the plasma-treated samples (PF, PS, PFS,
PSH) showed less color change compared to the untreated samples (F, S, FS, SH). Plasma
treatment cleaned the surface of the wool fabric, and we assume that it increased the yield of
absorbed PEDOT:PSS and resistance during washing as well [37–40]. When we compared
unwashed with sample after five washes cycles (F, PF, S, PS, PFS), according to gray scale a
color change was found about one stages or more [52]. Furthermore, comparing PEDOT:
PSS coated samples with (SH, FSH, PFSH) and without Tubicoat fixing agent HT (S, FS, PFS)
before and after five washes, the color change between washed and unwashed samples
was less than half-steps according to grey scale. The received results showed that Tubicoat
fixing agent HT increased the resistance to washing. The sample PFSH demonstrated the
highest wash fastness and the lowest color changes after five washes (Table 2).

Table 2. Sample photo images before and after 5 washing 40 ◦C and drying cycles [48].

Code of
Sample F PF S PS FS PFS SH FSH PFSH

Before
washing

After 5
washing

cycles
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without Tubicoat fixing agent HT. After dyeing with Clevios F ET, the color of the sample
(F) was so dull that it was difficult to evaluate the rubbing test result, but it became more
visible after plasma treatment (PF) (Table 3). Better dry rubbing resistance of samples (SH,
PSH, FSH, PFSH) was obtained when 3 wt.% of Tubicoat fixing agent HT was added to the
Clevios S V3 (Table 4). The tests carried out showed that the best resistance of rubbing was
obtained with the combined modification (PFSH): plasma treatment, PEDOT:PSS dyeing
and coating, and Tubicoat fixing agent HT adding (Table 4).

Table 3. Wool samples with different modifications after rubbing tests [50].

Code of
Sample F PF S PS FS PFS

Rubbing
cloth
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3.4. Measurements of Electrical Resistance

Comparison of plasma (160 Ω/cm) and no plasma (623 Ω/cm) treatments of wool
fabrics (Figure 11a) resulted in an approximately 4 times lower linear resistance (RL). The
pH change (2.2, 4, and 7) dyeing with Clevios F ET alone resulted in the lowest resistivity at
pH 7 (160 Ω/cm) and was not influence the resistivity of newly formed coating with Cevios
S V3 (Figure 11b). Plasma treatment, dyeing, and coating with PEDOT:PSS (sample PFS) re-
sulted in almost a factor of two times lower linear resistivity measurements (26 ÷ 28 Ω/cm)
compared with only coating Clevios SV 3 (sample S) (47 Ω/cm) (Figure 11a,b). Since chang-
ing the pH did not significantly affect the linear resistance reduction, we did not change
the pH in further tests and used the original Clevios F ET.
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The linear resistance (RL) of all samples with the same chemical modifications with
PEDOT:PSS after plasma treatment (PS, PFS, PSH, PFSH) were twice as low as without
plasma treatment (S, FS, SH, FSH) (Figure 12). This is due to the better affinity and binding
of PEDOT:PSS as a “conductive acid dye” [25] to the cationic amine sites of the wool
fiber after plasma treatment. Samples with Tubicoat fixing agent HT (SH, PSH, PFSH)
retained better electrical conductivity after washing and rubbing compared to those without
Tubicoat fixing agent HT (S, PS, FS, PFS) (Figure 12). It is assumed that Tubicoat fixing
agent HT as a cross-linker [55] affected the formed fabric surface film resistance to rubbing;
through this, the resistance (33 Ω/cm) did not increase (Figure 12). After rubbing and
washing testing, the PFSH sample linear resistivity values were, respectively, (37 Ω/cm)
and (65 Ω/cm), and had the lowest resistivity compared to the other samples (Figures 12
and 13). Similar resistance results were achieved by researchers of PANI-coated PET yarns
ranging from 1.02 × 103 Ω (PANI-spun 10 wt.%) to 1.53 × 106 Ω (PANI-spun 3 wt.%)
for a 10 cm long fiber [56,57]. In this report, a lower resistance of wool sample (PFSH)
in comparison to the in situ polymerization PPy coated fabrics was obtained using the
Tubicoat fixing agent HT and plasma treatment [55,56].
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3.5. Spectrophotometric Determination of Color Differences

Samples (S, PS, FS, PFS, SH, PSH, FSH, PFSH) of the wool fabric of different modifica-
tions references were compared with the same samples after washing and rubbing tests
and performing color differences tests with a spectrophotometer. The PFSH sample has
the least color difference (∆E*ab) before and after washing and rubbing, resulting in the
best resistance to washing and rubbing treatments. Samples (PS, PFS, PSH, PFSH) after
plasma modification compared to unmodified plasma (S, FS, SH, FSH) showed lower color
differences (∆E*ab) and better resistance to mechanical treatment and washing (Figure 14).
Providing the complex modification of sample (FS) dyeing with Clevios F ET and coating
Clevios S V3, a smaller color difference compared to samples (S) printed only with Clevios
S V3 was obtained (Figure 14).
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PSS-modified wool fabric samples by various methods.

Table 5 displays the measured L*, a*, b*, C*, and h coordinates and K/S values at the
maximum wavelength of 1100 nm. Color yield K/S shows a higher dyeing ability [58]
to PEDOT:PSS of the tested wool fabric samples (Table 5). The received results showed
that after plasma treatment, the values K/S of samples (PS, PFS, PSH, PFSH) were lower
compared to the unmodified K/S samples (S, FS, SH, FSH), as well as after washing and
rubbing tests (Table 5). Plasma modified sample (PFSH) compared with the unmodified
(FSH) was darker in color (L* = 36), had bluer (h = 240), more saturated colors (C* = 7),
and had greener (a* = −4) and bluer (b* = −6) shade (Table 5). After five washing cycles,
sample PFSH became yellowish (b* = 4), reddish (a*= 2), had a saturated color (C* = 5),
a darker (L* = 34) shade, and had higher dyeing ability (K/S = 36) (Table 5). The K/S
value determines the difference between the color strength of the sample PFSH reference
(K/S = 35) and of the same sample after the rubbing test (K/S = 37). After the rubbing test,
the sample PFSH color coordinates did not change much and were: darker (L* = 38), bluer
(h = 239), had the same saturated color (C* = 7), greener (a* = −4), and had a bluer (b* = −6)
shade (Table 5). The received results showed that plasma treatment increased wool fiber’s
ability to react with PEDOT:PSS. Furthermore, the Tubicoat fixing agent HT as cross-linker
enhanced the sample’s (PFSH)) resistance to washing and rubbing treatments [42].
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Table 5. Following washing and rubbing testing, we compared the L* a* b* C* h color coordinates
and the maximal K/S values of unwashed plasma and PEDOT:PSS treated samples.

Code of
Sample

Reference After 5 Washes After Rubbing Test
L* a* b* C* h K/S L* a* b* C* h K/S L* a* b* C* h K/S

S 43 −3 −7 7 246 50 46 −2 −5 5 243 0.065 45 −3 −5 5 244 65
PS 38 −2 −7 7 251 36 44 −2 −5 5 245 0.071 41 −2 −6 6 250 51
FS 40 −3 −6 7 242 44 35 −2 −3 3 232 0.038 41 −3 −5 6 242 55

PFS 37 −4 −6 7 240 33 36 −2 −5 5 242 0.035 38 −3 −5 6 239 40
SH 40 −2 −6 7 250 43 48 −2 −5 5 245 0.079 46 −3 −4 5 239 73

PSH 38 −2 −7 7 252 39 45 −2 −5 6 247 0.065 38 −2 −7 7 252 34
PFSH 36 −4 −6 7 240 35 34 2 4 5 240 0.036 38 −3 −6 7 239 37

Note: (±0.1) confidence intervals.

The sample PFSH with the best resistance to rubbing and washing was selected, and
additionally, 25 washing cycles were carried out, measuring the linear resistance and color
differences after every five washing cycles. The value of ∆E*ab shows that the magnitude
of the color differences after the washing cycles is not very wide; after 15 washing cycles,
the value remains almost constant at ∆E*ab of approximately eight. Moreover, the RL
of sample PFSH before washing was 33 Ω/cm (Figure 15). The RL steadily increased
to 120 Ω/cm when the 25 washing cycles were carried out, but the material was still
electrically conductive (Figure 15) and could be classified as a dissipative material and used
for protective workwear [59].
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3.6. Fourier Transform Infrared Spectroscopy with Attenuated Total Internal Reflectance
(FTIR-ATR) Mode Measurement

FTIR-ATR spectra of the chemical structure of the pristine Clevios S V3 and composi-
tion of Clevios S V3 + 3 wt.% Tubicoat fixing agent HT spectra are presented in Figure 16.
The principal absorption peaks of the PEDOT:PSS water dispersion in the form of Clevios S
V3 were discovered at 1160 cm−1, corresponding to the symmetric and asymmetric stretch
vibrations of the PSS sulfonic acid group, and the peaks were around 1030 cm−1, corre-
sponding to the asymmetric stretching vibrations of benzene sulfonate [39,55,60]. The C–S
bond stretching vibrations in the thiophene ring are responsible for the absorption peaks at
approx. 860 and 980 cm−1 [61,62], as well as the C–O–C stretching at 1061 and 945 cm−1 and
the C=C and C–C stretching in the quinoidal structure of PEDOT at 1272 cm−1 [35,63,64]
(Figure 16).
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IR spectra of sample Clevios S V3 + 3 wt.% Tubicoat fixing agent HT can be found in
melamine resin from the band between 3040 and 3300 cm−1, with poor signal intensity,
suggesting the potential O–H bond stretching vibration and N–H stretching vibration in
primary aryl amines. These bands demonstrated that the cross-linking of formaldehyde
and melamine was successful. The stretching vibration of C–H corresponds to the band of
2954 cm−1. Additionally, the methane vibration is represented by the new peak at roughly
1346 cm−1 [63,65]. The wavenumbers of amino-substituted triazines, which would exhibit
a distinct absorption band in the range 1680–1640 cm−1, can be because of the reduced
number of unreacted amino groups in the resin structure. The absorption band at 810 cm−1

corresponds to the out-of-plane bending vibrations of C–H bonds. Another clue that a tiny
amount of aldehyde is still not engaged in the cross-linking process of melamine resin is
the faint signal detected at 1720 cm−1 (a band characteristic for the C=O group) (Figure 16).

FTIR-ATR infrared spectra of plasma treated samples: dyed with Clevios F ET and
coated with Clevios S V3 (PFS) and Clevios F ET/Clevios S V3 + 3 wt.% Tubicoat fixing
agent HT are shown in Figure 17. As described in our previous study [66], FTIR-ATR spectra
of the wool surface after plasma treatment showed a decrease in aliphatic hydrocarbons (C–
C, C–H), oxidation of –S–S–, an increase in the number of amino groups -N-H2. This means
that the N2 plasma-treatment wool fabric samples have a more reactive and hydrophilic
surface, resulting in better absorption of the PEDOT:PSS polymer [67].

All of the peaks from the wool fiber covered with PEDOT:PSS were nearly identical
to the pure film of PEDOT:PSS dispersion (Figure 17). The principal peaks of the sample
(PS) absorption were located at 1161 cm−1 (sulfonic acid group of PSS), 1065–945 cm−1

(C–O–C stretching), 945 cm−1 and 860 cm−1 (C–S stretching), and 1270 cm−1 (C=C and
C–C stretching of the quinoidal structure of PEDOT) [64]. Specific wavelengths of specific
PEDOT:PSS absorption peaks were found in Clevios F ET and Clevios S V3 spectra. Peaks
at 1127 cm−1 (sulfonic acid group) and 1425 cm−1 (corresponding to the C=C and C–C
stretching vibrations coming from the thiophene ring) were also found, showing that the
PEDOT:PSS was successfully interpolated on the surface of the wool fabric (Figure 17).
Similar PEDOT:PSS peaks were found by Mingwei Tian et al. on cotton fabric surfaces at
1517 cm−1 and 1300 cm−1 [35]. Similar spectra to Figure 16 are found on sample PFSH near
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3272 cm−1 and 1537 cm−1, 1346 cm−1 wavelength range. These results, when combined
with the signal at 1720 cm−1, which represents the stretching vibrations of the C=O, may
indicate that there are still a few unreacted O–H molecules in the polymer and a small
amount of aldehyde that is not yet involved in the cross-linking of melamine resin [44,45,63]
(Figure 17).
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4. Conclusions

The SEM images show that after plasma treatment dyeing with Clevios F ET and
coating with Clevios S V3 3 wt.% Tubicoat fixing agent HT composition, the resulting
coating is more rigid and evenly coated on the reverse side of the fabric. This may have
improved rubbing and washing resistance. Using only coating with Clevios S V3, the
surface coating is visible only on the surface. After plasma treatment, dyeing, and coating
with PEDOT:PSS commercial products named Clevious, the linear resistivity was almost
halved compared to coating with Clevios S V3 alone. The functional groups introduced
onto the surface after N2 gas plasma treatment, and Tubicoat fixing agent HT of wool fabric
were characterized by FTIR-ATR spectroscopy. The results of color difference measurement
show that N2 plasma treatment and melamine formaldehyde Tubicoat fixing agent HT
increased the resistance of PEDOT:PSS coated samples to washing and rubbing, and more
intense color and electrical conductivity retaining were received.
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