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Abstract: The synthesis of efficient and sustainable heterogeneous Pd-based catalysts has been an
active field of research due to their crucial role in carbon–carbon coupling reactions. In this study, we
developed a facile and eco-friendly in situ assembly technique to produce a PdFe bimetallic hyper-
crosslinked polymer (HCP@Pd/Fe) to use as a highly active and durable catalyst in the Ullmann
reaction. The HCP@Pd/Fe catalyst exhibits a hierarchical pore structure, high specific surface area,
and uniform distribution of active sites, which promote catalytic activity and stability. Under mild
conditions, the HCP@Pd/Fe catalyst is capable of efficiently catalyzing the Ullmann reaction of aryl
chlorides in aqueous media. The exceptional catalytic performance of HCP@Pd/Fe is attributed to its
robust absorption capability, high dispersion, and strong interaction between Fe and Pd, as confirmed
by various material characterizations and control experiments. Furthermore, the coated structure of
a hyper-crosslinked polymer enables easy recycling and reuse of the catalyst for at least 10 cycles
without any significant loss of activity.

Keywords: hyper-crosslinked polymer; PdFe nanoparticles; high stability; hydrogenation; Ullmann
coupling reaction

1. Introduction

Organic synthesis heavily relies on carbon–carbon coupling reactions as a versatile tool
to produce complex structures from easily accessible building blocks in diverse ways [1–3].
While significant progress has been made in transition metal-catalyzed cross-coupling reac-
tions between aryl halides and organometallic reagents, such as Suzuki, Stille, Negishi, and
Hiyama coupling reactions, in the past few decades [4–7], Ullmann biaryl synthesis remains
a straightforward method because of its effectiveness and minimization of undesirable
by-products, facilitating the synthesis of various biaryl groups from aryl halides, without
the requirement of preformed organometallic species [8–12]. However, the traditional
Ullmann coupling reaction has been carried out under harsh reaction conditions, such as
high temperature, extended reaction times, use of toxic solvents, and strong bases [13,14].
Despite extensive research on Ullmann coupling reactions, there remains a significant scope
to explore recoverable catalysts, mild reaction conditions, and a wider substrate range in
this field [15–17].

Metal-mediated reactions remain the most widely used approach for constructing
aryl–aryl bonds. However, these reactions often require high temperatures (above
100 ◦C), resulting in energy consumption and environmental concerns [18]. The chal-
lenge is further compounded when coupling reactions involve aryl chlorides owing to
their higher dissociation energy compared to C–Br or C–I bonds. Despite attempts to
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use single metallic catalysts to promote the Ullmann coupling reaction of chloroarenes
under ambient conditions, these attempts have largely been unsuccessful [19,20]. Recently,
Hajipour et al. reported on the successful use of an ortho-palladated complex as a catalyst
in the microwave-assisted reaction of different aryl halides (including chloroarenes) at
120 ◦C. The developed catalyst demonstrated good conversion rates of aryl halides to biaryls
in short reaction times, while being insensitive to oxygen. Similarly, another palladacycle
has been used to catalyze the homocoupling of aryl halides under microwave irradiation
at a reaction temperature of 130 ◦C, with most of them affording moderate to excellent
yields of biaryls when K2CO3 was used as the base and N-methyl-2-pyrrolidone (NMP)
as the solvent. Despite these advances, most solutions still require higher temperatures
and microwave conditions with higher energy consumption [21,22]. Recent studies have
shown that bimetallic catalysts (such as Pd–Au and Pd–Fe) tend to have better catalytic
performances than single metals due to their coordinated effect, making their development
a current trend [18].

Hyper-crosslinked polymers (HCPs) are a promising class of organic porous ma-
terials that possess remarkable features, such as high porosity, large surface area, well-
defined pore architecture, and tunable chemical composition. As a result, HCPs are ex-
cellent candidates for various applications, such as gas storage [23,24], heterogeneous
catalysis [25–27], and others [28–31]. In particular, HCPs show potential in the field of
metal catalysis, as they can provide well-defined microenvironments for incorporating
metal nanoparticles owing to their abundant pore structure, which promotes stable metal
particles [32–34]. In recent years, significant efforts have been devoted to the design and
fabrication of metal nanoparticles supported microporous organic polymers (MNP/MOPs)
composites. The use of MOPs as host matrices is beneficial not only because of their ability
to prevent MNP migration and aggregation but also due to the host–guest synergistic effect
that enhances catalytic activity [29]. Recent studies have shown that the bulk electron-rich
phosphine can effectively modify the electronic and spatial properties of palladium, promot-
ing cross-coupling reactions [35]. Additionally, the porous structure of HCPs ensures the
accessibility of the catalyst and facilitates the transportation and enrichment of substrates
to the MNP active sites [36].

For most metal-containing porous polymers (MCPPs), the ligand/metal complex
is present on the surface of the supports, resulting in increased cost and difficulty of
immobilization as well as the potential leaching of the active site during the reaction
process [25,28]. Recently, a simple approach has been proposed to overcome these lim-
itations by knitting rigid aromatic ligands through the Friedel–Crafts reaction to obtain
supported catalysts [37,38]. In the field of green chemistry, the development of one-pot
multistep transformations is of great interest in recent catalytic chemistry. These transfor-
mations have several advantages, such as the reduction of waste, energy, cost, and time by
decreasing the number of synthetic steps, thereby conserving chemicals and improving the
atomic economy [39].

This study presents a one-pot method for immobilizing the Pd–Fe alloy particles in
porous hyper-crosslinked polymers (HCPs) through the in situ knitting of metal-containing
ligands (Scheme 1). The resulting catalyst exhibits exceptional performance in Ullmann-
coupled reactions with various aryl chlorides, due to its unique coated structure and
metal-metal interaction, as the catalyst requires only 0.1 mol% Pd to achieve a 99% yield in
the Ullmann reaction, and its TOF reaches up to 376 h−1 under the mild reaction conditions.
Moreover, the catalyst can be reused for up to 10 cycles without significant loss of activity.
The authors suggest that the Pd–Fe metal–metal interaction may enhance the activity and
stability of the coupling reaction during the cross-linking process and that this method of
constructing low-metal content catalysts through HCPs may provide a promising strategy
for achieving efficient and environmentally-friendly C–C Ullmann coupling reactions.
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Scheme 1. Schematic diagram of the synthetic route of HCP@Pd/Fe.

2. Experimental Section
2.1. Materials

[Bis(diphenylphosphino)ferrocene]dichloropalladium (DPPF-Pd), biphenyl, FeCl3,
Dichlorobis(Triphenylphosphine)Palladium (PPh3-Pd), formaldehyde dimethyl acetal
(FDA), Bis(diphenylphosphino)ferrocene] (DPPF), 1,1-dichloroethane (DCE), methanol,
4-nitrophenol (4-NP), NaBH4, and other chemical reagents were purchased through
Sinopharmatic Reagent Co., LTD (Shanghai, China).

2.2. Synthesis of HCP@Pd/Fe

In this study, DPPF-Pd (0.5 mmol) was dissolved in 5 mL of dichloromethane (DCM)
with biphenyl (3 mmol) and FDA (6 mmol). Next, FeCl3 (12 mmol) was added under
vigorous stirring conditions. The reaction mixture was heated to 45 ◦C for 5 h, to achieve
the initial network structure, and then, refluxed at 80 ◦C for 19 h. The resulting solid
products were subjected to Soxhlet Extraction (methanol) at 100 ◦C until the extracted
liquid became colorless. The solid was then vacuum-dried at 80 ◦C for 24 h, and the
sample was identified as HCPs@Pd/Fe. HCPs@Fe was synthesized using DPPF instead of
DPPF-Pd, while HCPs@Pd was prepared with PPh3-Pd instead of DPPF-Pd, respectively.

2.3. Characterization

Fourier-transform infrared (FT-IR) spectra were acquired using the KBr disk method
on a Bruker Vertex 70 Spectrometer. Scanning electron microscopy (SEM) images and
energy dispersive spectrometer (EDS) element mapping were obtained on a FEI Sirion
200 field emission scanning electron microscope at an accelerating voltage of 10 kV. High-
resolution transmission electron microscopy (HR-TEM) images were captured using a
Tecnai G2 F30 microscope operated at an accelerating voltage of 200 kV. Atomic absorption
spectroscopy (AAS) was utilized to determine the metal content using a Perkin Elmer
AA-800 instrument. X-ray photoelectron spectroscopy (XPS) data were collected using a
Krato AXIS-ULTRA DLD-600 photoelectron spectrograph. The surface areas of polymer,
N2 adsorption isotherms (77.3 K), and pore size distributions were measured using Mi-
cromeritics ASAP 2020 M surface area and porosity analyzer, after degassing the samples
at 110 ◦C for 8 h under a vacuum.

2.4. General Procedure for the Ullmann Reaction

The Ullmann coupling reaction: In the Ullmann reaction protocol, chlorobenzene
(1 mmol) and K3PO4·3H2O (1.5 mmol) were dissolved in a methanol solution (2 mL,
VMeOH/VH2O = 1:1) in a 10 mL round bottom flask fitted with a reflux condenser. Then, the
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catalyst was introduced to the liquid mixture, and the resulting reaction was carried out
at 80 ◦C for 3 h. Following the reaction, the mixture was subjected to centrifugal filtration
to isolate the liquid phase, and the yield was analyzed via gas chromatography with a
capillary column. For recycling experiments, a 30 mg catalyst was employed. The solid
materials were washed with distilled water and ethanol at least three times, dried under a
vacuum, and reused in the subsequent run.

3. Results and Discussion
3.1. Fabrication and Characterization of HCP@Pd/Fe

The HCP@Pd/Fe catalyst was analyzed using Fourier-transform infrared spectroscopy
(FT-IR) to investigate its structural characteristics. The FT-IR spectrum (Figure S1) revealed
the symmetric and antisymmetric stretching vibration peaks of methylene at 2894 cm−1

and 2927 cm−1, respectively. Furthermore, the spectrum exhibited a series of bands at
1606–1288 cm−1, which can be attributed to the stretching vibration of the benzene ring
skeleton. The in-plane and out-of-plane bending vibration of the C–H bond of the ben-
zene ring were detected at 1290–910 cm−1 and 860–570 cm−1, respectively. These results
demonstrate the successful synthesis of the HCP@Pd/Fe catalyst.

The catalysts’ surface area and pore structure were examined by conducting nitro-
gen adsorption/desorption isotherm measurements at 77 K and the results are shown in
Figure 1. The adsorption isotherm curves of HCP@Pd/Fe and HCP@Fe show a steep
increase at low relative pressure (P/P0 < 0.01), indicating the presence of abundant microp-
ores, as shown in Figure 1a [34]. HCP@Pd/Fe, synthesized using hyper-crosslinking poly-
merization, exhibited a higher BET-surface area (402.8 m2·g−1) than HCP@Fe (384 m2·g−1),
which may be attributed to its larger proportion of micropores (as shown in Figure 1b).
Notably, the hysteresis loop and rapid increase in N2 adsorption for HCP@Pd/Fe and
HCP@Fe were observed at medium relative pressures (P/P0 = 0.7–0.9), suggesting the
presence of mesopores within the highly aggregated particles. Additionally, the pres-
ence of microporous structures was inferred from the high-pressure regime of Figure 1a,
which is consistent with the results in Figure 1b. The catalyst’s abundant multistage pore
structure is likely to facilitate mass transfer during catalytic reactions, thereby enhancing
catalytic activity.
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Figure 1. The nitrogen adsorption/desorption isotherm (a) and the pore size distribution (b) of
HCP@Pd/Fe.

The morphology of HCP@Pd/Fe was analyzed through SEM and TEM characteri-
zation and revealed a rough and porous surface with stacked holes and a uniform pore
distribution (Figure 2a,b). The energy dispersive X-ray spectroscopy (EDS) of HCP@Pd/Fe
confirmed the coexistence of C, P, Fe, Pd, and Cl, which were also uniformly distributed
throughout the material, as shown in the corresponding SEM-EDS elemental mapping
(Figure 2b–i). In order to confirm the arrangement of the two metals in the materials, TEM
images were obtained.
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Figure 2. SEM (a,b), SEM-EDS (c,d) and elemental mapping images of C (e), P (f), Fe (g), Pd (h), Cl (i)
for the catalyst HCP@Pd/Fe.

The HCP@Pd/Fe showed a uniform ellipsoidal structure, which was likely formed by
conjugate aromatic rings of DPPF-Pd (Figure 3a,b). High-resolution TEM images indicated
the presence of a micro-channel, and the metal particles were estimated to be approximately
10 nm in size (Figure 3c). The metal lattice stripes observed were attributed to the crystal
plane of PdCl2 (0.36 nm) and PdFe alloy (0.27 nm) (Figure 3d), indicating that this work
successfully prepared metal alloy active sites through a one-pot hyper-crosslinking method.

X-ray photoelectron spectroscopy (XPS) was utilized to analyze the surface elemental
composition and coordination states of different solids. The prepared catalyst exhibited P, C,
Pd, Fe, and trace Cl for HCP@Pd/Fe (Figure 4a), consistent with EDS mapping results. The
P 2p spectra of HCP@Pd/Fe were identified as an anchor species for immobilized, isolated
metals. Upon loading of the bimetal, the binding energy of P 2p in HCP@Pd/Fe slightly
shifted toward the lower energy direction (Figure 4b), indicating mutual interactions
between Pd and Fe, along with the electron transfer between the metals and coordinated P
atoms [40]. The fitted Fe 2p spectra of HCP@Pd/Fe were observed at a binding energy of
707.98 and 721.78 eV, which was 0.2 eV higher than HCP@Fe, suggesting that the chemical
state of Fe in the alloy was more active (Figure 4c). For the Pd element, the energy state of
Pd 3d 5/2 in HCP@Pd/Fe was found to migrate 0.9 eV to the high-energy region relative
to HCP@Pd (Figure 4d). These findings further demonstrate the synergistic interaction
among Pd, Fe, and P in the HCP@Pd/Fe alloy catalyst framework, which is conducive to
the promotion of the catalytic active sites [41,42].
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This current study reports on the catalytic performance of a newly developed PdFe-
based catalyst, HCPs@Pd/Fe, in Ullmann coupling reactions. The catalytic activity of
HCPs@Pd/Fe was compared to PdCl2 and two other Pd-based catalysts, HCP@Pd and
HCP@Fe. Results show that HCPs@Pd/Fe had the highest reaction yield (91%, Table 1,
entry 1), despite having a lower Pd content compared to PdCl2. Furthermore, the catalytic
activity of Pd was significantly enhanced by the introduction of Fe, as shown by the low or
no yield obtained with HCP@Pd and HCP@Fe (Table 1, entries 2–4). X-ray photoelectron
spectroscopy (XPS) characterization revealed that the Pd–Fe synergy and the interaction
between the metal and phosphine ligands improved the intrinsic activity of the catalyst
and facilitated the activation of the C–Cl bond. The PdFe alloy catalyst, constructed in situ,
provides a new design strategy for metal-catalyzed coupling reactions.

Table 1. Ullmann coupling reaction of chlorobenzene with different catalysts.
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Entry Catalyst Time (min) Pd (%) Fe (%) Yield (%)

1 HCPs@Pd/Fe 180 0.4 0.9 90.6
2 HCP@Pd 180 / / 35.4
3 PdCl2 180 60.0 / 67.3
4 HCP@Fe 180 / 1.2 trace

Reaction conditions: chlorobenzene (1 mmol), K3PO4·3H2O (1.5 mmol), catalyst (20 mg), and reaction time
(180 min).

Using HCPs@Pd/Fe as the model catalyst, we investigated the effects of different
solvents using the Ullmann reaction, and the findings are presented in Figure 5. It was
observed that the catalyst was most effective when K3PO4·3H2O was used as the base in
methanol and methanol solution, with yields of 64.5% and 91%, respectively. The yields
were significantly lower when solvents such as H2O, ethanol, DMF, and propanetriol
were used (Figure 5a). Further, we explored the impact of bases in methanol solution
(VMeOH/VH2O = 1:1, 2 mL), and observed that high activity could be achieved with NaOH,
(CH3)3COK, C2H5ONa, and KOH as bases (Figure 5b). In the presence of K3PO4·3H2O,
an optimized yield of 99% was achieved at 100 ◦C (Table S1, entry 3). Additionally,
the temperature had a significant effect on the Ullmann coupling reaction, with high
temperatures being favorable for the reaction (Table S1).

Using the optimized reaction conditions obtained in the preceding study, we investi-
gated the catalytic performance of several substrates in different coupling biaryls. In Table 2,
we report the results of our study on various substituted aryl halides. We found that the
catalytic system displayed good to excellent yields for various substituted aryl chlorides.
Notably, both electron-donating and -withdrawing groups were tolerated, producing a
yield above 80% (Table 2, entries 1–6). However, the reaction yield of o-chlorobenzene was
lower compared to that of p- and m-chlorobenzene, under the same reaction conditions,
which may be attributed to the steric effect of the group.
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Table 2. Catalytic performance in coupling reaction for substituted chlorobenzene over the
HCP@PdFe catalyst.

Entry Aryl Halides Biaryls Time (h) Yield (%)

1
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Ullmann reactions were carried out in air using 1 mmol substituted aryl chloride, 20 mg catalyst, 2 
mL solvent, 1.5 mmol K3PO4∙3H2O, and a reaction temperature of 100 °C. 

3.2. Filtration Tests 
In order to determine whether the Ullmann coupling reaction, using HCPs@Pd/Fe as 

the catalyst, followed a heterogeneous or homogeneous catalytic pathway, then, hot fil-
tration tests and kinetic studies were conducted [43,44]. After 60 min of reacting, the cat-
alyst was separated from the reaction mixture and only 0.1 ppm palladium was found in 
the filtrate, indicating minimal leaching of the catalyst. Furthermore, no reaction occurred 
when a new batch of the substrate was added to the filtrate, indicating that the catalyst 
was essential for the reaction. Kinetic studies (Figure 6a) showed that the reaction rate did 
not correlate with the amount of leached Pd species in the solution, indicating that the 
reaction was intrinsically catalyzed by a heterogeneous catalyst. 

To assess the recyclability of the catalyst, the homocoupling reaction of chloroben-
zene was carried out under the optimized reaction conditions. The reaction was per-
formed 10 times, and the catalyst was recovered by centrifugation after each reaction, 
washed with distilled water, and dried at 60 °C. The isolated yields after each run indi-
cated that the catalyst exhibited high stability and recyclability (Figure 6b). 
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not correlate with the amount of leached Pd species in the solution, indicating that the 
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formed 10 times, and the catalyst was recovered by centrifugation after each reaction, 
washed with distilled water, and dried at 60 °C. The isolated yields after each run indi-
cated that the catalyst exhibited high stability and recyclability (Figure 6b). 
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Ullmann reactions were carried out in air using 1 mmol substituted aryl chloride, 20 mg catalyst, 2 
mL solvent, 1.5 mmol K3PO4∙3H2O, and a reaction temperature of 100 °C. 

3.2. Filtration Tests 
In order to determine whether the Ullmann coupling reaction, using HCPs@Pd/Fe as 

the catalyst, followed a heterogeneous or homogeneous catalytic pathway, then, hot fil-
tration tests and kinetic studies were conducted [43,44]. After 60 min of reacting, the cat-
alyst was separated from the reaction mixture and only 0.1 ppm palladium was found in 
the filtrate, indicating minimal leaching of the catalyst. Furthermore, no reaction occurred 
when a new batch of the substrate was added to the filtrate, indicating that the catalyst 
was essential for the reaction. Kinetic studies (Figure 6a) showed that the reaction rate did 
not correlate with the amount of leached Pd species in the solution, indicating that the 
reaction was intrinsically catalyzed by a heterogeneous catalyst. 

To assess the recyclability of the catalyst, the homocoupling reaction of chloroben-
zene was carried out under the optimized reaction conditions. The reaction was per-
formed 10 times, and the catalyst was recovered by centrifugation after each reaction, 
washed with distilled water, and dried at 60 °C. The isolated yields after each run indi-
cated that the catalyst exhibited high stability and recyclability (Figure 6b). 
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was essential for the reaction. Kinetic studies (Figure 6a) showed that the reaction rate did 
not correlate with the amount of leached Pd species in the solution, indicating that the 
reaction was intrinsically catalyzed by a heterogeneous catalyst. 

To assess the recyclability of the catalyst, the homocoupling reaction of chloroben-
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formed 10 times, and the catalyst was recovered by centrifugation after each reaction, 
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Ullmann reactions were carried out in air using 1 mmol substituted aryl chloride, 20 mg catalyst, 2 
mL solvent, 1.5 mmol K3PO4∙3H2O, and a reaction temperature of 100 °C. 

3.2. Filtration Tests 
In order to determine whether the Ullmann coupling reaction, using HCPs@Pd/Fe as 

the catalyst, followed a heterogeneous or homogeneous catalytic pathway, then, hot fil-
tration tests and kinetic studies were conducted [43,44]. After 60 min of reacting, the cat-
alyst was separated from the reaction mixture and only 0.1 ppm palladium was found in 
the filtrate, indicating minimal leaching of the catalyst. Furthermore, no reaction occurred 
when a new batch of the substrate was added to the filtrate, indicating that the catalyst 
was essential for the reaction. Kinetic studies (Figure 6a) showed that the reaction rate did 
not correlate with the amount of leached Pd species in the solution, indicating that the 
reaction was intrinsically catalyzed by a heterogeneous catalyst. 

To assess the recyclability of the catalyst, the homocoupling reaction of chloroben-
zene was carried out under the optimized reaction conditions. The reaction was per-
formed 10 times, and the catalyst was recovered by centrifugation after each reaction, 
washed with distilled water, and dried at 60 °C. The isolated yields after each run indi-
cated that the catalyst exhibited high stability and recyclability (Figure 6b). 
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when a new batch of the substrate was added to the filtrate, indicating that the catalyst 
was essential for the reaction. Kinetic studies (Figure 6a) showed that the reaction rate did 
not correlate with the amount of leached Pd species in the solution, indicating that the 
reaction was intrinsically catalyzed by a heterogeneous catalyst. 

To assess the recyclability of the catalyst, the homocoupling reaction of chloroben-
zene was carried out under the optimized reaction conditions. The reaction was per-
formed 10 times, and the catalyst was recovered by centrifugation after each reaction, 
washed with distilled water, and dried at 60 °C. The isolated yields after each run indi-
cated that the catalyst exhibited high stability and recyclability (Figure 6b). 
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Ullmann reactions were carried out in air using 1 mmol substituted aryl chloride, 20 mg catalyst, 2 
mL solvent, 1.5 mmol K3PO4∙3H2O, and a reaction temperature of 100 °C. 

3.2. Filtration Tests 
In order to determine whether the Ullmann coupling reaction, using HCPs@Pd/Fe as 

the catalyst, followed a heterogeneous or homogeneous catalytic pathway, then, hot fil-
tration tests and kinetic studies were conducted [43,44]. After 60 min of reacting, the cat-
alyst was separated from the reaction mixture and only 0.1 ppm palladium was found in 
the filtrate, indicating minimal leaching of the catalyst. Furthermore, no reaction occurred 
when a new batch of the substrate was added to the filtrate, indicating that the catalyst 
was essential for the reaction. Kinetic studies (Figure 6a) showed that the reaction rate did 
not correlate with the amount of leached Pd species in the solution, indicating that the 
reaction was intrinsically catalyzed by a heterogeneous catalyst. 

To assess the recyclability of the catalyst, the homocoupling reaction of chloroben-
zene was carried out under the optimized reaction conditions. The reaction was per-
formed 10 times, and the catalyst was recovered by centrifugation after each reaction, 
washed with distilled water, and dried at 60 °C. The isolated yields after each run indi-
cated that the catalyst exhibited high stability and recyclability (Figure 6b). 
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Ullmann reactions were carried out in air using 1 mmol substituted aryl chloride, 20 mg catalyst, 2 
mL solvent, 1.5 mmol K3PO4∙3H2O, and a reaction temperature of 100 °C. 

3.2. Filtration Tests 
In order to determine whether the Ullmann coupling reaction, using HCPs@Pd/Fe as 

the catalyst, followed a heterogeneous or homogeneous catalytic pathway, then, hot fil-
tration tests and kinetic studies were conducted [43,44]. After 60 min of reacting, the cat-
alyst was separated from the reaction mixture and only 0.1 ppm palladium was found in 
the filtrate, indicating minimal leaching of the catalyst. Furthermore, no reaction occurred 
when a new batch of the substrate was added to the filtrate, indicating that the catalyst 
was essential for the reaction. Kinetic studies (Figure 6a) showed that the reaction rate did 
not correlate with the amount of leached Pd species in the solution, indicating that the 
reaction was intrinsically catalyzed by a heterogeneous catalyst. 

To assess the recyclability of the catalyst, the homocoupling reaction of chloroben-
zene was carried out under the optimized reaction conditions. The reaction was per-
formed 10 times, and the catalyst was recovered by centrifugation after each reaction, 
washed with distilled water, and dried at 60 °C. The isolated yields after each run indi-
cated that the catalyst exhibited high stability and recyclability (Figure 6b). 
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Ullmann reactions were carried out in air using 1 mmol substituted aryl chloride, 20 mg catalyst, 2 mL solvent,
1.5 mmol K3PO4·3H2O, and a reaction temperature of 100 ◦C.

3.2. Filtration Tests

In order to determine whether the Ullmann coupling reaction, using HCPs@Pd/Fe
as the catalyst, followed a heterogeneous or homogeneous catalytic pathway, then, hot
filtration tests and kinetic studies were conducted [43,44]. After 60 min of reacting, the
catalyst was separated from the reaction mixture and only 0.1 ppm palladium was found in
the filtrate, indicating minimal leaching of the catalyst. Furthermore, no reaction occurred
when a new batch of the substrate was added to the filtrate, indicating that the catalyst was
essential for the reaction. Kinetic studies (Figure 6a) showed that the reaction rate did not
correlate with the amount of leached Pd species in the solution, indicating that the reaction
was intrinsically catalyzed by a heterogeneous catalyst.
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Figure 6. Kinetic curves for the Ullmann coupling reaction of chlorobenzene (a), stability testing of
the HCP@Pd/Fe catalyzed Ullmann coupling reaction of chlorobenzenes (b).

To assess the recyclability of the catalyst, the homocoupling reaction of chlorobenzene
was carried out under the optimized reaction conditions. The reaction was performed
10 times, and the catalyst was recovered by centrifugation after each reaction, washed with
distilled water, and dried at 60 ◦C. The isolated yields after each run indicated that the
catalyst exhibited high stability and recyclability (Figure 6b).

4. Conclusions

In this study, a new approach for the synthesis of hyper-crosslinked polymer-coated
Pd–Fe alloy catalysts, in situ, was developed. The Pd–Fe alloys exhibited high catalytic
activity during the Ullmann reaction of chlorobenzene. The biphenyl yield was observed
to be 99% at 80 ◦C over 120 min and the catalyst could be recycled 10 times without any
significant loss of initial catalytic activity. The activity and stability of the bimetallic catalyst
were found to be higher than those of the monometallic catalysts, which could be attributed
to the interaction between the Pd–Fe metals, thereby promoting electron transfer and
enhancing catalytic activity. Furthermore, the polymer with various pores coated on the
active site of the metal enhanced the stability of the hyper-crosslinked polymer-coated
Pd–Fe alloy catalyst. The advantages of this novel catalyst include high efficiency, easy
and rapid separation of the used material, and green and mild reaction conditions, thereby
making it a potentially useful and attractive approach for industrial production.
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