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Abstract: It is a great challenge to develop low-cost and dopant-free polymer hole-transporting
materials (HTM) for PSCs, especially for efficient air-processed inverted (p-i-n) planar PSCs. A
new homopolymer HTM, poly(2,7-(9,9-bis(N,N-di-p-methoxylphenyl amine)-4-phenyl))-fluorene
(denoted as PFTPA), with appropriate photo-electrochemical, opto-electronic and thermal stability,
was designed and synthesized in two steps to meet this challenge. By employing PFTPA as dopant-
free hole-transport layer in air-processed inverted PSCs, a champion power conversion efficiency
(PCE) of up to 16.82% (0.1 cm2) was achieved, much superior to that of commercial HTM PEDOT:PSS
(13.8%) under the same conditions. Such a superiority is attributed to the well-aligned energy levels,
improved morphology, and efficient hole-transporting, as well as hole-extraction characteristics at the
perovskite/HTM interface. In particular, these PFTPA-based PSCs fabricated in the air atmosphere
maintain a long-term stability of 91% under ambient air conditions for 1000 h. Finally, PFTPA as
the dopant-free HTM was also fabricated the slot-die coated perovskite device through the same
fabrication condition, and a maximum PCE of 13.84% was obtained. Our study demonstrated that
the low-cost and facile homopolymer PFTPA as the dopant-free HTM are potential candidates for
large-scale production perovskite solar cell.

Keywords: fluorene-based hole transporting polymer; dopant-free; air-processed; inverted perovskite
solar cells

1. Introduction

Over the past few years, encouraging progress has been made in the field of organic-
inorganic hybrid perovskite solar cells [1–7]. The power conversion efficiency (PCE) of
the organic-inorganic halide perovskite solar cells (PSCs) has rocketed to a certified record
of 25.8% [8,9], indicating its great potential to compete with traditional silicon solar cells
in near future. Substantial effort has been carried out to push the PSC performance to its
theoretical limit, including fabrication techniques, device architectures, functional compo-
nents based on new materials in perovskite layer and charge-transporting layers [10–14].
Two types of device architectures have been widely employed for PSCs: normal (n-i-p)
and inverted (p-i-n) configurations, with each type featuring different advantages and
challenges. The n-i-p PSC devices currently have superior PCE but typically use transparent
electron transport layers (ETLs) of metal oxides that require high-temperature fabrication
methods and doped hole transport materials (HTMs) that can introduce device degradation
pathways. Moreover, these n-i-p architecture PSCs suffer from a large degree of J − V
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hysteresis. As an alternative, the emerging inverted PSCs with a p-i-n architecture use
p-type and n-type materials deposited at relatively low temperatures by solution processing
as bottom and top charge transport layers, respectively [15–18]. The inverted PSCs have
shown many advantages, such as high efficiencies (as high as >25% using self-assembly
hole-extraction layer) [19–23], low-temperature processing on flexible substrates, and, fur-
thermore, negligible J − V hysteresis effects. Thus, p-i-n PSCs are typically employed
in silicon/perovskite [24] and perovskite/perovskite [25] two-terminal tandem devices,
which is essentially important for the future of commercial PSC technology.

For inverted PSCs, HTMs not only greatly improve hole extraction and transport from
the perovskite layer to electrode, but also have a significant impact on the crystallinities and
morphologies of perovskite film, which could boost the PCE and stability of devices [26–28].
Especially to achieve superior long-term stability of PSCs, it is necessary to develop efficient
dopant-free HTMs. Fundamentally, highly efficient dopant-free HTMs for inverted PSCs
have several basic requirements, such as suitable energy levels for perovskite materials,
high hole mobility and conductivity, high chemical and thermal stability, excellent film
processing ability and film stability [29–31]. Since in the inverted devices, HTM is deposited
before the perovskite layer, the surface properties of the HTM layer significantly affect
the polycrystalline film quality of the perovskite layer. Thus, excellent wettability with
perovskite precursor solutions is an essential prerequisite for promoting the crystallization
process of perovskite [31,32]. In addition, a weak absorption coefficient in the visible to
near-infrared region and high photostability in the ultra-violet region are highly desirable
for dopant-free HTMs in p-i-n devices because the light passes through the HTM layer
before being absorbed by the perovskite layer [31,32].

Dopant-free polymer HTMs have attracted much attention due to their advantages
such as high heat resistance, high hydrophobicity, excellent film-processing ability, and
compatibility with the scale roll-to-roll printing technique [32,33]. More importantly, the
amorphous nature and strong intrachain charge transfer along the conjugated backbone
result in a good balance between high mobility and good film quality, rather than a trade-off
for small-molecule HTMs. Although plenty of efficient dopant-free D-A copolymeric HTMs
have been reported [34–36], most of them were utilized in n-i-p device stacks. Except for
their high costs, D-A copolymers also absorb some sunlight in visible region when they
are applied to the p-i-n PSCs. It should be noted that the majority of highly efficient PSCs
based on D-A type copolymers are fabricated inside a glove box filled with costly inert gas
to avoid moisture, which is incompatible with the low-cost and large-scale manufacturing
of PSCs in ambient conditions.

The state-of-the-art p-i-n device architectures use fullerene or related derivatives as ETLs
and dopant-free polymeric HTMs such as poly[bis(4-phenyl)(2,3,6-trimethylphenyl)amine]
(PTAA). However, its low hole transporting ability and high hydrophobicity require ad-
ditional dopants and wetting treatment for PTAA, which unavoidably reduce the device
performance reproducibility [37]. In the case of PEDOT:PSS, a widely used classic water-
soluble conducting polymer HTL in inverted PSCs, its acidic and hygroscopic nature
can degrade the perovskite layer and corrode anodes, reducing the stability of the solar
cells [38]. Furthermore, the mismatched energy level between the valence band of per-
ovskite materials and the work function of PEDOT:PSS could lead to severe non-radiative
recombination, limiting the VOC as well as the photovoltaic performance. To date, the
inverted PSCs using pristine PEDOT:PSS as the HTL achieved a PCE of 15.05% [39], which
is far less than the other dopant-free polymeric HTL, such as PTAA, PII2T8T and poly[3-(4-
carboxybutyl)-thiophene-2,5-diyl] (P3CT) [40].

On the other hand, most of the reported highly efficient PSCs were fabricated in
a well-controlled glovebox free from moisture and oxygen. Large-scale manufacturing
in ambient processing conditions remain challenging both in lab and in factory, because
polycrystalline perovskite materials are extremely sensitive to moisture and oxygen in
ambient air. Several recent advances in the development of air-processed PSCs mainly
focus on the control of the processing of perovskite materials. But little attention has been
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paid to dopant-free polymeric HTMs in the inverted PSC devices fabricated in air. Our aim
is to develop low-cost, highly efficient dopant-free polymeric HTM, which is suitable for
air-processed PSCs.

Herein, we introduce a novel homopolymer, poly(2,7-(9,9-bis(N,N-di-p-methoxylphenyl
amine)-4-phenyl))-fluorene (denoted as PFTPA, see in Scheme 1). PFTPA exhibits matched
energy alignment with adjacent perovskite, superior hydrophobicity, and high hole mobility.
As a preliminary result, the dopant-free PFTPA-based air-processed p-i-n PSCs exhibit a
champion power conversion efficiency (PCE) of 16.82% (0.1 cm2) under a 100 mW cm2

AM1.5G solar illumination and maintain a long-term stability of 91% under ambient air
conditions for 1000 h. These results suggest the great potential of homopolymer PFTPA
HTMs for future low-cost large-scale and flexible PSCs application.
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2. Materials and Methods
2.1. Synthesis of PFTPA
2.1.1. Synthesis of 4,4′-(2,7-Dibromo-9H-fluorene-9,9-diyl)bis(N,N-bis(4- methoxyphenyl)
aniline) (2BrFTPA)

In a two-necked round bottom flask (50 mL), 2,7-dibromofluorenone (1.50 g, 4.40 mmol),
4,4-dimethoxytriphenylamine (10.85 g, 35.5 mmol) and methylsulfonic acid (4 mL) were
mixed. The mixture was heated to 140 ◦C and kept refluxing for 12 h. Then, the reaction
system was cooled to room temperature and the solidified raw products were dissolved
with dichloromethane. This mixture solution was washed by saturated saline in turn.
The organic phase was dried with anhydrous sodium sulfate before dichloromethane was
removed. The crude product was further purified by silica gel column chromatography
and recrystallized from a mixed solvent of ethyl acetate/hexane to obtain 2BrFTPA as a
white solid (4.10 g, yield 75%). 1H NMR (400 MHz, CDCl3) δ = 7.53 (d, J = 8.1 Hz, 2H),
7.49–7.41 (m, 4H), 7.03 (d, J = 8.8 Hz, 8H), 6.90 (d, J = 8.8 Hz, 4H), 6.79 (d, J = 9.0 Hz, 8H),
6.74 (d, J = 8.7 Hz, 4H), 3.76 (s, 12H) ppm. 13C NMR (101 MHz, CDCl3) δ = 156.06, 153.96,
147.54, 140.73, 138.01, 135.69, 130.72, 129.45, 128.60, 127.00, 121.78, 121.56, 119.67, 114.77,
64.55, 55.57 ppm. MALDI-TOF-MS (m/z): Calculated for C53H42Br2N2O4: 928.15; Found:
928.11 [M]+.

2.1.2. Polymerization of PFTPA

Bis-(1,5-cyclooctadiene) nickel (130 mg, 0.48 mmol), 2,2-Bipyridine (76 mg, 0.48 mmol),
1,5-cyclooctadiene (52 mg, 0.48 mmol) and anhydrous DMF (5 mL) were added into a
25 mL thick pressure-resistant Schlenk reaction tube, heated to 80 ◦C under the protection
of nitrogen and stirred for 30 min. Monomer 2BrFTPA (370 mg, 0.40 mmol) was dissolved
in 8 mL of anhydrous toluene, bubbled with nitrogen for 10 min to remove the air in the
solution, and then added to the reaction tube. The reaction system was heated to 80 ◦C and
stirred for 24 h. Bromobenzene (2 mL) was added for end capping and stirring continued at
80 ◦C for 12 h; then, it was dropped into the mixed solution of methanol/hydrochloric acid
(v/v = 2/1). The catalyst was then filtered and removed. The filter cake was redissolved
with chloroform (15 mL), dropped into the mixed solution of methanol/acetone (v/v = 4/1),
and reprecipitated to obtain the solid crude product. The solid crude product was put
into Soxhlet extractor, extracted successively with petroleum ether and dichloromethane,
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and yellow green PFTPA film (260 mg, yield 70%) was formed on the bottle wall after
removing dichloromethane by rotary evaporation. 1H NMR (400 MHz, CDCl3) δ = 7.76 (m,
2H), 7.61 (m, 4H), 7.07 (m, 4H), 6.94 (m, 8H), 6.75 (m, 12H), 3.72 (s, 12H) ppm. GPC (THF,
polystyrene standard, 35 ◦C): Mn = 12.2 kDa, Mw = 29.9 kDa, PDI = 2.46.

2.2. Device Fabrication and Measurement

Materials: A modified PEDOT:PSS solution was prepared by mixing 1 mL of PE-
DOT:PSS (HC Starck, Baytron P AI 4083), 60 mg of sodium polystyrene sulfonate (molecular
weight ~70,000, Sigma-Aldrich, Shanghai, China), and 5 mL of deionized water and stirring
for 10 min. A CH3NH3PbI3 precursor solution was prepared by dissolving a 1.2 M PbI2
(Sigma-Aldrich, Burlington, MA, USA) and a 1.2 M CH3NH3I (Greatcell Solar Materials,
Beijing, China) in dimethylformamide (DMF) and stirring at 70 ◦C for 30 min. After cooling
to room temperature, solid NH4Cl was added to the solution with a concentration of
0–20 mg/mL, and the solution was then stirred for 30 min at room temperature. PFTPA
was dissolved in toluene and a 0.5 mg/mL solution was prepared for standby.

Device Fabrication: Patterned ITO glass was cleaned in detergent (Deconex 12PA
detergent solution), deionized water, acetone, and isopropanol sequentially by ultrasoni-
cation and then treated with UV-ozone for 15 min. For control devices, PEDOT:PSS was
dropped onto the ITO glass substrate through a syringe filter (0.2 µm RC filter) and spin
coated at 5000 rpm for 20 s. For target devices, PFTPA in toluene was deposited on ITO by
spin coating at 5000 rpm for 30 s. The substrate was then heated on a hotplate at 150 ◦C
for 10 min in air. After cooling to room temperature, the substrate was put on a piece
of Halyard TERI Wiper. A total of 20 µL of CH3NH3PbI3 solution was dropped on the
substrate. Then, a N2 gas flow was applied to the substrate from a plastic tube with an
inner diameter of 4 mm. The tube was perpendicular to the substrate and the outlet of
the tube was 1 cm above the substrate. The flow rate of the N2 gas was adjusted using a
flowmeter. The solution spread on the substrate and the superfluous solution flowed off
the substrate while blowing. The color of the substrate changed from yellow to dark brown
in 10 s. Then, the tube was moved around the substrate to dry the film at the edge. Next,
the substrate was heated at 100 ◦C for 30 s. PC61BM in chlorobenzene (20 mg mL−1) and
PEIE were spin coated onto the CH3NH3PbI3 layer at 1000 rpm for 30 s. Finally, a 100 nm
Ag was evaporated onto the BCP layer through a shadow mask to produce an active area
of 0.1 cm2 [33,38].

For the perovskite solar cells made using slot-die coating, ITO glass was cleaned and
PFTPA was spin-coated on the substrate as described above. A 0.65 M CH3NH3PbI3
solution with a 10 mg/mL NH4Cl additive was coated onto the modified PFTPA layer
using a slot-die coater with a setting speed of 8 mm/s. The temperature of the printer bed
was set to 60 ◦C. N2 gas with a flow rate of 20 L/min was used to dry the film while coating.
PC61BM, PEIE, and Ag layers were deposited as described above.

Device Characterizations: The optical absorption of the perovskite samples was mea-
sured using a UV-vis spectrophotometer (Shimadzu UV-1750, Kyoto, Japan). The steady-
state photoluminescence (PL) spectra were obtained using a PL microscopic spectrometer
(HITACHI, F4600, Tokyo, Japan). The time-resolved photoluminescence (TRPL) was mea-
sured at 780 nm using excitation with a 510 nm light pulse from Edinburgh FLS980. The
photocurrent density-voltage curves of the perovskite solar cells were measured using a
solar simulator (Oriel 94023A, 300 W) and a Keithley 2400 source meter. The intensity
(100 mW/cm2) was calibrated using a standard Si solar cell (Oriel, VLSI standards). All the
devices were tested under AM 1.5G sun light (100 mW/cm2) using a metal mask of 0.1 cm2

with a scan rate of 10 mV/s.

3. Results and Discussion
3.1. Synthesis and Design Principle

The chemical structure and synthetic route toward PFTPA are shown in Scheme 1.
The design of PFTPA was inspired by 2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-
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9,9′-spirobifluorene (Spiro-OMeTAD), the most explored HTM. Spiro-OMeTAD contains
a spirobifluorene core and four diphenylamine end groups. Its twisted structure ensures
high solubility and facilitates the process of the HTM film, but leads to large intermolecular
distance and weak intermolecular interaction resulting in its low charge mobility. On
the other hand, Spiro-OMeTAD possesses a wide bandgap and a deeper HOMO energy
level than many other reported dopant-free polymeric HTMs. Therefore, PFTPA was
successively designed by reducing the rigidity of the spirobifluorene core to 9,9-diphenyl-
fluorene and extending the conjugated length from one spirobifluorene unit to polyfluo-
rene. The key monomer of 2BrFTPA was obtained by refluxing 2,7-dibromofluorenone and
4,4-dimethoxytriphenylamine (OMeTPA) in methylsulfonic acid without any expensive
catalyst with a high isolated yield. Eventually, the homopolymer, PFTPA, was obtained by
Yamamoto polymerization according to monomer 2BrFTPA. Detailed synthetic procedures
and structural characterizations of monomer and PFTPA were described in the Experimen-
tal Section. The chemical structure of 2BrFTPA was confirmed by 1H NMR, 13C NMR and
MALDI-TOF mass spectrum measurements as shown in Figures S1–S3. The target poly-
meric HTM was readily soluble in common organic solvents such as chloroform, toluene,
and chlorobenzene (CB). The average molecular weights (Mn and Mw) and polydispersity
index (PDI) of PFTPA were measured via gel permeation chromatography (GPC). The
weight-average molecular weight (MW) was 29.9 kDa with a PDI of 2.46. Note that the lab
synthesis and purification cost of 2BrFTPA and PFTPA are both very low. For example,
the total cost for PFTPA is estimated at 16.74 USD/g (the lab synthesis and purification
cost is summarized in Table S1), which is much lower than that of many other reported
dopant-free polymeric HTMs and shows a promising scale-up strategy for commercial
production.

3.2. Thermal, Photophysical and Electrochemical Properties

Thermal properties of polymeric HTMs have an important impact on the stability
of PSC devices. Thermal properties of PFTPA were characterized via thermogravimetric
analyzer (TGA) and differential scanning calorimeter (DSC). As shown in Figure 1a, PFTPA
displayed an outstanding thermal stability with decomposition temperatures (Td, 5%
weight loss temperature) of 367 ◦C. The DSC curves display the temperature-time data of
the second heating circle as shown in Figure S5; the glass phase transition temperature
(Tg) of PFTPA is about 200 ◦C. Both TGA and DSC results indicate that PFTPA can be
maintained in amorphous states during the thermal annealing process, which is essential
for device fabrication and device operation stability.

Normalized ultraviolet visible (UV-Vis) absorption spectra and photoluminescence
(PL) spectra of PFTPA in dilute dichloromethane solution (10−5 M) and spin-coated thin
films are shown in Figure 1b, and the corresponding data are summarized in Table 1. The
maximum absorption wavelengths of PFTPA in solution and film state are 307 nm and
310 nm, respectively. The long wavelength absorption edges are estimated to be 421 nm and
434 nm, respectively. The absorption spectra of PFTPA in a dichloromethane solution and
thin film are very similar in shape, while the absorption spectrum in film is slightly broad-
ened compared to the spectrum in the solution, indicating that no strong intermolecular
π-π stacking exists. The fluorescence emission peaks of PFTPA in dichloromethane solution
and thin film are 431 nm and 489 nm, respectively, and the corresponding Stokes shifts are
9397 cm−1 and 11,808 cm−1, respectively. A larger Stokes shift will benefit the hole-injection
of HTMs and the efficiency of PSC devices. According to the initial absorption wavelength
of the absorption spectrum of PFTPA in dilute dichloromethane solution (λEdge), the optical

band gap of PFTPA is calculated at 2.95 eV by equation Eopt
g = 1240/λedge. The absorbance

of PFTPA as a wide bandgap homopolymer is mainly located in the near ultraviolet light re-
gion, and PFTPA displays strong blue emission. Thus, in p-i-n PSC devices, the competitive
absorption of solar light by the hole transport layer and perovskite layer can be efficiently
avoided. Meanwhile, by converting UV light to blue emission, PFTPA could reduce the
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damage of UV irradiation to perovskite layer and increase the solar light density in the
visible region, leading to efficient absorption and conversion of solar light by PSC devices.
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Table 1. The photovoltaic performance of perovskite solar cells.

Scan Direction VOC (V) JSC (mA cm−2) FF (%) PCE (%) a

PFTPA
Reverse 1.13 19.66 75.7 16.82
Forward 1.12 20.08 72.5 16.30

Slot-die Reverse 1.08 19.50 65.7 13.84

PEDOT:PSS Reverse 1.00 19.87 69.5 13.80
Note: a, average value for PCE device according to 15 devices.

The transmittance of the hole transport layer in inverted PSC devices significantly
affects the utilization efficiency of sunlight by the perovskite active layer. The light transmis-
sion spectra of bare ITO substrate, ITO/PFTPA and ITO/PEDOT:PSS films were measured
(shown in Figure 1c). PFTPA has obvious light absorption in the range of 350–450 nm,
resulting in low light transmittance in this range. However, at the wavelength ranging
from 470 to 800 nm, its light transmittance is better than that of PEDOT:PSS, ensuring more
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sunlight can efficiently reach the perovskite active layer. Moreover, as discussed above, the
absorbed sunlight in the range of 350–450 nm can be partially down-converted to the blue
emission of PFTPA, which will also be absorbed by the perovskite layer.

Electrochemical cyclic voltammetry (CV) and differential pulse voltammetry (DPV)
were performed to determine the frontier orbital energy levels of PFTPA experimentally.
Figure 1d depicts the CV and DPV profile of PFTPA in a dilute DCM solution. As can
be seen, PFTPA showed a reversible oxidation process in the positive range. The onset
oxidation potential (EOX

onset) of PFTPA is estimated to be 0.34 V (vs. Ag/Ag+) with ferrocene
as the reference and the oxidation potential value of ferrocene of 0.10 V (vs. Ag/Ag+, see
in Figure S6). Usually, the HOMO energy level is calculated according to the following
Formula (1):

HOMO = −
(

EOX
onset − EFc/Fc+ + 5.1

)
eV. (1)

In the end, the HOMO energy level of PFTPA is calculated to be −5.34 eV, which is
deeper than that of spiro-OMeTAD (−5.01 eV) and PTAA (−5.1 eV). This value matches
the VB energy level (5.40 eV) of MAPbI3 well, which will benefit the efficient extraction of
the hole at the interface between the hole transport layer and the perovskite active layer. In
addition, the deeper HOMO levels of HTMs could benefit the higher open-circuit voltage
(VOC) of the PSC devices. The LUMO energy level of PFTPA is calculated to be −2.39 eV
by adding its optical band-gap energy (Eg = 2.95 eV) to its HOMO energy. Obviously,
PFTPA with much higher LUMO energy level than the conduction band (CB) energy level
of MAPbI3 (−3.9 eV) could block electron flow into perovskite more effectively.

3.3. Density Functional Theory Simulation of PFTPA

To further understand the molecular configuration and electron distribution of its
frontier molecular orbitals of PFTPA, density functional theory (DFT) simulation was
performed using Gaussian 09 at the B3LYP/6-31G(d,p) base set. In order to investigate
the twist angle of monomers in conjugated backbone of PFTPA, a model polymer with
three repeating units was adopted for theoretical simulation as shown in Figure 2. The
optimized geometry shows that the dihedral angles between the middle fluorene unit
and the left and right monomers are +33.74◦ and −33.72◦, respectively. This implies that
all the 4,4-dimethoxytriphenylamine groups are arranged in a helical manner around
the polyfluorene backbone. Thus, these 4,4-dimethoxytriphenylamine groups suppress
the π-π stacking between polyfluorene backbone, which explains the similar absorbance
spectra of PFTPA in solution and film state. The LUMO orbital of PFTPA is distributed
in the polyfluorene backbone, while the HOMO orbital is mainly located around the 4,4-
dimethoxytriphenylamine groups in one repeat unit. By plotting the molecular orbits
of HOMO-1, HOMO-2 and HOMO-3, all these HOMO orbitals are distributed in one
4,4-dimethoxytriphenylamine group due to the degeneracy of energy levels among the
monomers in PFTPA.

The electronic transition process and absorption spectrum of PFTPA in the dichloro-
methane solution was also theoretically simulated based on the time-dependent DFT
(TD-DFT) method, as shown in Figure S7 and Table S2. The absorption peaks of PFTPA
mainly originate from n-π* and π-π* transitions between 4,4-dimethoxytriphenylamine and
the polyfluorene backbone. For example, the maximum absorption peak near 310 nm and
the absorption shoulder account for the n-π* and π-π* transition absorption, respectively.
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3.4. Photovoltaic Performance of the PFTPA-Based PSC Devices

To evaluate its behavior as dopant-free HTM, PFTPA was incorporated without any
doping additives in inverted PSCs. PEDOT:PSS was used as HTM for control devices with-
out additives as well. We fabricated an inverted PSC device with the planar configuration
of ITO/HTLs/MAPbI3/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)/PEIE/Ag as
shown in Figure 3a. The perovskite layer was prepared in air environment by air blowing
assisted drop coating (BADC) [41]. PC61BM was used as an electron transporting layer,
and ethoxylated polyethyleneimine (PEIE) was used as a cathode modification layer to
improve charge extraction efficiency. As shown in Figure 3a, the HOMO energy level of
PFTPA and the LUMO energy level of PC61BM achieved good energy level matching with
the valence band and conduction band of MAPbI3, respectively, which effectively promotes
the extraction and transmission of photogenerated carriers at interfaces.

The J − V characteristic curves of the optimal perovskite device are shown in Figure 3b.
The open-circuit voltage (VOC) of the perovskite device based on the PFTPA is 1.13 V, the
short-circuit current (JSC) is 19.66 mA cm−2, the filling factor (FF) is 75.7%, and the PCE
reaches 16.82%. In comparison, the PCE of the control device based on PEDOT:PSS under
the same preparation conditions is only 13.80% because of the much lower VOC (1.00 V).
According to the operating principle of the perovskite solar cells, it can be determined that
the VOC of the device is affected by the band gap of the photoactive layer, the HOMO energy
level of the hole transporting layer and the LUMO energy level of the electron transporting
layer. Therefore, compared with PFTPA, the higher HOMO energy level of PEDOT:PSS
leads to the increased energy loss at the hole extraction interface and results in a much lower
VOC of the control device. Under a fixed bias voltage (0.96 V), the stable output efficiency of
the champion device based on PFTPA is 16.65%, as shown in Figure 3c, which is consistent
with the PCE obtained in the J − V curves. The repeatability of device preparation is an
important index to evaluate the preparation method and material performance. The PCEs
of 15 perovskite solar cells based on PFTPA and PEDOT:PSS are counted, as shown in
Figure 3d. Both of them show a narrow statistical distribution, indicating that the above
devices have good repeatability. Additionally, PFTPA as the dopant-free HTM has been
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applied to the slot-die coated inverted PSCs. As a preliminary result, the slot-die coated
inverted PSCs at a device area of 0.1 cm2 showed a max PCE of 13.84% with a JSC of
19.50 mA cm−2, a VOC of 1.08 V, and an FF of 65.7% (Figure S13 and Table 1). It should be
mentioned that as a preliminary result, PCEs of the dopant-free PFTPA-based air-processed
p-i-n PSCs maintain a long-term stability of 91% under ambient air conditions for 1000 h
(see Figure S8). These results suggest the great potential of homopolymer PFTPA HTMs for
future low-cost large-scale and flexible PSCs application.
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3.5. Morphology Analysis of Perovskite Films

The effects of PFTPA and PEDOT:PSS as HTM substrates on the growth quality of
perovskite crystals were systematically studied by means of scanning electron microscopy
(SEM) and thin film X-ray diffraction (XRD) as shown in Figure 4. Owing to the low
solubility of PFTPA in polar solvents, it was possible to fabricate a high-quality perovskite
crystalline film on its surface by using the solution-processing method. The contact angle
between HTM and DMF was measured (Figure S9). The measured contact angles on
ITO, PEDOT:PSS and PFTPA were 9.3◦, 18.4◦ and 77.6◦, respectively. This discrepancy
in contact angle may result in different morphology of the solution-processed perovskite
film. That is, the lesser wettability toward DMF of the PFTPA surface would suppress
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the heterogeneous nucleation and thus facilitate the grain boundary migration in grain
growth, leading to large grain sizes of the resulting polycrystalline perovskite film. To
further confirm their good crystal qualities, SEM images of the perovskite films deposited
on the top of ITO, PEDOT:PSS or PFTPA substrate were given. The perovskite crystal sizes
on PFTPA or PEDOT:PSS-modified ITO substrate were significantly larger (Figure 4a,b)
than that on the bare ITO substrate (Figure 4c). The average grain size deduced from SEM
images was 158.3 nm, 233. 3 nm and 271.9 nm for perovskite crystals on ITO, PEDOT:PSS
and PFTPA, respectively (Figure S10). According to XRD patterns (Figure 4d), three films
displayed similar diffraction peaks at 14.12◦, 28.36◦ and 31.81◦, assigned to the (110), (220)
and (310) planes of perovskite, respectively. The appearance of the intense XRD peaks
of the perovskite film deposited on PEDOT:PSS and PFTPA substrates further indicated
their good crystallinity. The grain sizes of perovskite crystals on ITO, PEDOT:PSS and
PFTPA substrates estimated according to XRD profiles were 163.7 nm, 231.9 nm and
276.5 nm, respectively. The grain size distribution trend based on XRD profiles is consistent
with the SEM test results. It should be mentioned that the perovskite crystals grown on
PFTPA substrates were more compact and uniform, while the perovskite crystals grown
on PEDOT:PSS substrates had more obvious crystal boundary defects (dot-line circling in
Figure 4a,b). These defects lead to carrier recombination and non-radiative recombination,
which lead to energy loss, reduction in FF and VOC of PSC devices, and ultimate effect
on the photovoltaic performance of the devices. At the same time, boundary defects like
pinholes provide channels for water vapor infiltration, which can often compromise the
performance of PSC devices, especially their stability [42].
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The morphological characteristics of perovskite films also include atomic force mi-
croscopy (AFM). As shown in Figure S11, the root mean square (RMS) roughness of per-
ovskite films on PFTPA and PEDOT:PSS substrates are 16.22 nm and 17.22 nm, respectively.
At the same time, more obvious holes can be observed in the latter. As crystal boundary
defects, these holes also lead to the degradation of the performance of PSC devices. The
above characterization results consistently show that PFTPA as the hole transport layer is
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more conducive to the growth of crystalline perovskite films on its surface. In the end, PSC
devices based on PFTPA hole-transporting layer show higher FF and PCE.

3.6. SCLC Measurements of PFTPA for Its Hole-Transporting Morbility

In order to further verify the hole-transporting characteristics of polymeric HTM
PFTPA, a hole-only device based on PFTPA was fabricated and tested. The device structure
is ITO/PEDOT:PSS/PFTPA/MoO3/Ag. Space charge limited current (SCLC) method
was used for this measurement. The J − V characteristic curve of the hole-only device is
shown in Figure S12. The fitting calculation of hole mobility of PFTPA (µh) was carried out
according to the simplified Mott-Gurney formula:

J =
9
8

ε0εrµh
V2

L3 , (2)

where J is the current density, ε0 represents the vacuum permittivity, and εr is the relative di-
electric constant (assuming εr = 3 for organic materials) [43], V represents the bias voltage ap-
plied to the device, L represents the thickness of the hole transport layer (about 80 nm), µh is
the hole mobility. The calculated hole mobility of PFTPA is 1.12 × 10−5 cm2 V−1 s−1, which
is higher than the reported hole mobility of PEDOT:PSS of 6.86 × 10−6 cm2 V−1 s−1 [44].
Based on the above characterization results, PFTPA benefits from its unique 4,4-
dimethoxytriphenylamine helical side group structure to enhance the carrier transport
efficiency between molecules, which makes it show more efficient carrier transport ca-
pacity than PEDOT:PSS, and the corresponding perovskite cell devices achieve higher
photovoltaic performance.

3.7. Steady-State PL and TRPL Measurements

Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) of
the HTMs/MAPbI3 films were conducted to further analyze and understand the charge ex-
traction and transmission process at the hole transport layer/perovskite interface, as shown
in Figure 5. For steady-state PL spectra, the quenching of luminescence intensity indicates
the efficient separation of photogenerated carriers, so the carrier extraction efficiency at
the interface can be qualitatively analyzed. Based on the above principle, the area integral
of the steady-state PL spectrum emission peak was calculated. The photoluminescence
intensity of PFTPA/MAPbI3 and PEDOT:PSS/MAPbI3 thin films decreased to 26.3% and
25.4% of that of pure MAPbI3 thin films, respectively, indicating that both PFTPA and
PEDOT:PSS showed high carrier extraction efficiency as hole transport materials. The
photoluminescence lifetime of the hole transport material/perovskite films was charac-
terized by TRPL spectra. The shorter the lifetime, the more efficient the hole transport
process at the interface. As shown in Figure 5b, the TRPL spectrum is excited by a 510 nm
wavelength and collected at a 770 nm wavelength. Both perovskite single-component films
and HTM/perovskite bilayer films have a fast and a slow decay process, which are fitted
by the following double exponential formula, and then the average luminescence lifetime
(τavg) is calculated:

I(t) = A1exp
(
− t

τ1

)
+ A2exp

(
− t

τ2

)
+ A0, (3)

τavg =
A1τ2

1 + A2τ2
2

A1τ1 + A2τ2
. (4)
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Figure 5. (a) The steady-state PL spectra and (b) time-resolved PL (TRPL) spectra of the
HTMs/MAPbI3 films with excitation at 510 nm.

Fast decay luminescence lifetime of perovskite single-component films (τ1) and
slow decay luminescence lifetime (τ2) are 3.1 ns and 24.8 ns, respectively. The aver-
age luminescence lifetime (τavg) of a perovskite single-component film is 21.4 ns. For a
PEDOT:PSS/MAPbI3 bilayer film, τ1 and τ2 are 2.5 ns and 13.0 ns, respectively, with a τavg
of 11.4 ns. The τ1 and τ2 of PFTPA/MAPbI3 bilayer films are 2.8 ns and 14.5 ns, respectively,
and PFTPA/MAPbI3 bilayer films display a τavg of 12.5 ns. Compared with pure perovskite
films, the luminescence lifetime of the hole transport layer decreases significantly, that is, the
photogenerated hole transport process is more efficient. Meanwhile, PEDOT:PSS/MAPbI3
bilayer films have shorter luminescence lifetime, which indicates that the charge transfer
process at the interface is more efficient. The above steady-state PL and TRPL test results
show that PEDOT:PSS, as a hole transport material, is slightly better than PFTPA in hole
extraction and transport. However, the performance test results of perovskite solar cells
prepared in this chapter show that the perovskite solar cells based on PFTPA have better
photovoltaic performance, which may be related to the good film-forming property of
PFTPA, the improvement of perovskite crystal growth quality and the more matching
energy level structure.

4. Conclusions

In summary, a dopant-free polymeric HTM PFTPA was synthesized by a simple
and efficient two-step method. The polymer takes polyfluorene as the main chain
backbone and 4,4-dimethoxytriphenylamine as the side chain. Its hole mobility reaches
1.12 × 10−5 cm2 V−1 s−1. When PFTPA is applied to inverted planar perovskite solar
cells, its good film-forming property promotes the growth of MAPbI3 films with high
crystallinity. At the same time, due to its matching HOMO energy level, the VOC of the
champion device reaches 1.13 V, and the PCE becomes 16.82%, which is much higher
than the control device using PEDOT:PSS as HTM (PCE = 13.80%). This work provides a
new idea for the design and synthesis of dopant-free polymeric HTMs. In terms of device
preparation methods, the preparation of HTLs and a perovskite photoactive layer of devices
are completed, performed in an air environment, with lower equipment requirements and
manufacturing costs. This method is of great significance for the development of low-cost
large-size perovskite solar cell devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15122750/s1. Figure S1: 1H NMR spectrum of 2BrFTPA in
CDCl3; Figure S2: 13C NMR spectrum of 2BrFTPA in CDCl3; Figure S3: MALDI-TOF MS spectrum of
2BrFTPA; Figure S4: 1H NMR spectrum of PFTPA in CDCl3; Figure S5: DSC curves of PFTPA recorded
at a heating rate of 10 ◦C/min and a cooling rate of 20 ◦C/min; Figure S6: The cyclic voltammetry (CV)
curve of Ferrocene measured with Ag/Ag+ as the reference electrode in acetonitrile; Figure S7: The
overlay of TD-DFT simulation and experimental UV-vis spectra of PFTPA; Figure S8: The longtime
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device stability of PFTPA-based PSC; Figure S9: The measured contact angles of DMF (a) on ITO
substrate, (b) on PEDOT:PSS substrate and on PFTPA substrate; Figure S10: The perovskite crystal
size distribution; Figure S11: AFM height images (size: 5 µm × 5 µm) of perovskite on (a) PFTPA
and (b) PEDOT:PSS substrates; Figure S12: The J − V curve of hole-only device based on PFTPA;
Figure S13: The J − V curve of slot-die coated perovskite device based on PFTPA; Table S1: The
synthetic cost analysis of PFTPA in this study; Table S2: The calculation results of TD-DFT.
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