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Abstract: The β-crystals of polypropylene have a metastable crystal form. The formation of β-crystals
can improve the toughness and heat resistance of a material. The introduction of a β-nucleating
agent, over many other methods, is undoubtedly the most reliable method through which to obtain
β-PP. Furthermore, in this study, certain newly developed β-nucleating agents and their compounds
in recent years are listed in detail, including the less-mentioned polymer β-nucleating agents and
their nucleation characteristics. In addition, the various influencing factors of β-nucleation efficiency,
including the polymer matrix and processing conditions, are analyzed in detail and the correspond-
ing improvement measures are summarized. Finally, the composites and synergistic toughening
effects are discussed, and three potential future research directions are speculated upon based on
previous research.

Keywords: polypropylene; β-crystal; β-nucleating agent; nucleating efficiency; synergism; composite;
future prospects

1. Introduction

Polypropylene (PP) was synthesized by Natta for the first time in 1954, and the Monte-
catini Company of Italy realized its industrialization in 1957. With the rapid development
of the PP industry, it has become the thermoplastic general resin with the largest output
and the widest use. The macroscopic properties of the material are derived from its mi-
crostructure, and the crystallinity, crystal form, and crystal structure of PP play a key role in
its properties. The crystalline structure of PP mainly includes α [1], β [2,3], γ [4], δ [5], and
the quasi-hexagonal state [6]. α- and β-crystals have been widely studied when compared
with the other crystal forms described. In its usual state, PP exists as an α-crystal and be-
longs to the monoclinic crystal system. Its molecular chain is left-handed, or right-handed
when around the central axis. The spiral conformation is the most stable crystal form
of polypropylene; meanwhile, the β-crystal belongs to the thermodynamic quasi-stable
and kinetically unfavorable crystal form, which requires special conditions in order to
obtain it. Padden and Keith first reported the quasi-hexagonal β-crystal of polypropylene
in 1959 [7]. Turner-Jones et al. [8] believed that the β-crystal was a hexagonal structure
crystal, which influenced the academic community for more than 20 years. It was not
until 1994 that Meille [9] and Lotz [10] independently established that the β-crystal was
a rhombohedral crystal structure, and that the unit cell parameters were a = b = 11.01 Å,
c = 6.5 Å, α = β = 90◦, γ = 60◦, and a density of 0.921 g/cm3. Due to their unique molecular
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structure, β-crystals have a great influence on the properties of materials, as well as on final
products such as the toughness, elongation at break, heat resistance, etc.

In the modification of the polypropylene crystal form, the increase in the toughness
caused by the β-crystal makes it a special focus in both academic and industry fields [11].
Chen et al. [12] investigated the mechanical properties of polypropylene homopolymer
(PPH), block copolymer (PPB), and random copolymer (PPR), and found that β-crystals
greatly improved the toughness of PPH and PPB—whether it was above or below Tg. In a
slightly different way, β-crystals may affect the dispersion effect of rubber, but they will
not affect the overall toughness of the material in PPR. According to the analysis of the
model in this study, the reasons for the high toughness of β-PP are mainly determined
by the following points: molecular weight; the density of molecules that are connected
between β-crystals (which are especially stable, and tend to form a hollow grid structure
when stressed); the arrangement of layers (which can effectively transfer and release stress);
and the β–α phase transition (where it is believed that the additional energy absorption
mainly comes from recrystallization and a local hardening of the microporous network
structure during phase transition) [12].

In addition, the existence of β-crystals allows β-PP to have better mechanical prop-
erties, especially in terms of the impact toughness and a better heat resistance than pure
PP [13,14]. It was found that the aging time of PP-Rβ, which has a better fatigue crack
expansion resistance, was 30% higher than that of PP-Rα [15]. Moreover, the effect of
β-crystals on the friction coefficient [16] is less than that of α-crystals.

The present review aims to summarize several aspects, including the influence of
β-crystals on the basic properties of materials (especially the toughness of polypropylene);
the many methods through which to obtain β-crystals; certain new β-nucleating agents
and compounds found in recent years; the influencing factors and improvement methods
for β-nucleating efficiency; the application of β-crystal polypropylene composites; and
certain potential research directions of β-PP that are detailed on the basis of the previous
summary [17,18].

2. Preparation Strategies of β-PP

The β-crystal is a thermodynamically unstable crystal form when compared with the
α-crystal. It is difficult to produce and to maintain a large number of stable crystal forms
under general processing conditions; instead, several special conditions are required.

2.1. Common Methods

The common methods that have been used up to the present, through which to obtain
β-crystals, are as follows:

1. Temperature gradient—This method not only affects the shape of spherulites but
also affects their internal structure. Although it has no effect on the nucleation of
spherulite, it can accelerate the transformation from a melting state to spherulite. The
density of the crystal nucleus is higher, and it is easier to form β-crystals in regions
with larger temperature gradients [19,20].

2. Shear induction—The most intuitive reason for this method’s existence is to cause
different degrees of orientation in the polymer molecular chains, thereby obtaining
polymers with different properties. Shearing can also induce the regular arrangement
of molecular chains, shorten the nucleation time, increase the nucleation density, and
induce oriented crystallization in the absence of nucleating agents [21].

3. Quenching and annealing—It has been found, according to previous research, that the
formation of β-crystals is evidently dependent on the quenching temperature [7,22].
A certain temperature range is beneficial for the growth of β-crystals [23]. The growth
of β-crystals is inhibited, and the growth rate decreases significantly or increases to
an α-transformation beyond the temperature range. Ma et al. [24] found that the com-
prehensive properties of a composite increased with an increase in the annealing tem-
perature, and partial β-crystals were formed synchronously. The annealing process
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causes a change in the microstructure and greatly improves the impact strength. At a
moderate temperature, it can induce the transformation of an α-crystal to a β-crystal.

4. UV light—Zhao et al. [25] found that there was an evident presence of β-crystals after
UV irradiation at 65 ◦C for 600 h, no matter if a pure PP or a composite with zinc
oxide were added. Indeed, it was finally proved that UV light is the real reason for
the formation of β-crystals.

2.2. Addition of β-Nucleating Agent

Adding a β-nucleating agent is considered to be the most effective method through
which to obtain β-crystals when compared with the above methods. The γ-crystal linear
trans quinacridone (E3B), which was discovered by Leugering [26] in 1967, can induce the
formation of β-crystals that have a nearly hexagonal crystal structure in PP at a particularly
low content. Unfortunately, PP is dyed red with the addition of E3B (which was the first
effective β-nucleating agent). There are many kinds of β-nucleating agents, including
inorganic substances [27–32], polycyclic aromatic hydrocarbons [26,33], organic acids,
salts [34–36], amides [37–39], and rare earths [40]; however, these agents have already been
summarized in previous studies [17,18].

Kβ is usually used to characterize the nucleation efficiency and the maximum β-crystal
content (Kβ), and the index is calculated by the wide-angle X-ray diffraction (WAXD)
spectrum. According to the research of Turner Jones et al. [41], the calculation formula is
as follows:

kβ =
Aβ(300)

Aβ(300) + Aα(110) + Aα(040) + Aα(130)
(1)

Aα (110), Aα (040), and Aα (130), respectively, represent the area of the diffraction peak
of the (110), (40), and (130) characteristic peaks of the α-crystal on the WAXD spectrum
when it corresponds to 2θ, and these are 14.1◦, 16.9◦, and 18.6◦, respectively. Aβ (300)
corresponds to the only (300) diffraction peak of the β-crystal, where 2θ is 16.1◦ (as shown
in Figure 1). It was disclosed that all the four samples exhibited two characteristic diffraction
peaks at 2θ =16.1◦ and 21.2◦, which correspond to the (300) and (301) crystal planes of the
β-form. Furthermore, the diffraction peaks at 14.1◦, 16.9◦, and 18.6◦ (which correspond to
α (110), α (040), and α (130)) were undetectable, indicating that all the four precursor films
were composed of almost pure β-crystals, as shown in Figure 1 [42].
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Of course, the content of β-crystals can also be calculated by a differential scanning
calorimetry (DSC) curve, but there are shortcomings to this calculation formula, which
were described in the study of [18]. In addition, it was found that the total crystallinity
value of the sample that contained a nucleating agent when measured by WAXD is higher
than that of the same sample measured by DSC. Kβ is usually calculated by researchers
according to the WAXD data. This is due to the fact that the crystal is thermally unstable
and that the “decrystallization” [43] occurs during the heating process of DSC.

2.2.1. New β-Nucleating Agents or Compounds for Polypropylene

A variety of new β-nucleating agents or compounds with a high β-nucleation effect
are listed in the table below. These agents have been found by researchers in recent
years through the activity and development of research. Different nucleating agents have
different efficiencies in inducing polypropylene to form β-crystals. Of course, the results of
these procedures are related to the type, even the brand, of polypropylene, as well as the
addition amount of the nucleating agent. Therefore, these differences are also explained in
the following table.

According to Table 1, the simplest type of β-nucleating agent is a kind of heat-treated
shell, and its main component is calcium carbonate. The addition of 5% of this β-nucleating
agent can obtain an 80.1% β-crystal conversion rate, and the mechanical properties are also
greatly improved, according to its description in the literature. This is a particularly cheap
and easy-to-obtain β-PP modification case. In addition, the industrialized nano-zinc oxide,
zinc tetrahydrate, and DCHT from Shanxi [44] can obtain β-crystals with a conversion rate
of more than 95%, which is an especially important choice for β modification.

Table 1. New β-nucleating agents or compounds.

Sequence Nucleating Agent Provider Kβ/% Polypropylene Category The Best Kβ

Amount Added % Reference

1 Calcium carbonate Heat-treated shell 80.1 Isotactic polypropylene,
grade F401 5 [45]

2 P-cyclohexylamide
Carboxybenzene Prepared in laboratory 96.96 Isotactic polypropylene,

grade T30S 0.05 [46]

3 Zinc tetrahydrate
Guangzhou Chenghe
technology company

(China)
97.2 Isotactic polypropylene,

grade T30S 0.1 [47]

4 Established lignin zinc salts Lignin powder 92.77 Isotactic polypropylene 0.2 [48]

5 Nano-zinc oxide Jing Rui new material
Co., Ltd. (China) 95.2 Isotactic polypropylene,

grade T30S 3 [49]

6
N,N′-dicyclohexylsuberoy

lamide and
N,N′-dicyclohexylsebacoylamide

Synthesized in
laboratory Not mentioned

Homopolymer, H649
Heterophasic

copolymer K 693
Random copolymer

R 605

Not mentioned [50,51]

7 Pimelic acid supported chemically
on treated keratin fibers Industrial waste 79 Isotactic polypropylene 0.5 [52]

8 Zinc suberate Synthesized in
laboratory 82 PPR powder,

brand T4401 0.2 [53]

9 Bulk molybdenum disulfide
Composites
Innovation

Centre (Canada)
Not mentioned Isotactic polypropylene Not mentioned [54]

10 Calcium tetrahydrate GCH Technology Co.,
Ltd. (China) 93.5

Impact resistant
polypropylene

copolymer brand j340
0.03 [55]

11
Cadmium bicyclo[2.2.1]hept-5-

ene-2,3-dicarboxylate
(BCHE30)

Synthesized according
to a patient

in laboratory
87 Isotactic polypropylene,

grade F401 0.1 [36]

12
N,N′-

dicyclohexylterephthalamide
(DCHT)

Shanxi
Provincial Institute of

chemical industry
(China)

0.95~1.0 Isotactic polypropylene,
grade S1003 0.05 [44]
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Table 1. Cont.

Sequence Nucleating Agent Provider Kβ/% Polypropylene Category The Best Kβ

Amount Added % Reference

13 Illite modified by
calcium heptaneate

Chemical modified
in laboratory 93.31 Isotactic polypropylene 5 [56]

14

N,N′-dicyclohexyl-1,5-diamino-
2,6-naphthalenedcarboxamide
chemically supported on the

surface of MWCNTs

Synthesized in
laboratory 93 Isotactic polypropylene,

grade T30S 0.05 [57]

15 Alkyl-substituted
benzoate alumina

Synthesized in
laboratory >80 Homopolymer 0.2 [58]

16

N1, N4-Bis (2,2-dimethylbutyl)
terephthalamide (TPA-CP)

N1, N4-Dicyclohexy
lterephthalamide (TPA-CA)

N1, N4-Dicyclopenty
lterephthalamide (TPA-CP)
N1, N6-Diphenyladipamide

(ADA-PA)

Synthesized in
laboratory Not mentioned Isotactic polypropylene

powder PP-HGD 0.2 [59,60]

17 Hexahydroxythalic barium
Synthesized according

to a patient
in laboratory

80.2 Isotactic polypropylene,
grade T30S 0.4 [61]

18

Silesquioxane functionalized with
N,N′-dicyclohexyl-2,6-

naphthalene
Dicarboxamide (SF-B01)

Department of organic
chemistry

UAM (Poland)
84.77 Isotactic polypropylene,

grade hp500n 0.25 [62,63]

As a simple and easy processing method, adding a nucleating agent is the most
direct and effective means through which to obtain β-PP. The induction mechanisms
of β-nucleating agents mostly conform to a heterogeneous nucleation mechanism. The
dispersion of a β-nucleating agent [64] in the matrix and orientation structure (or ordered
structure) of a polymer melt [65] are two key factors that affect the formation of β-crystals.
The former affects nucleation sites, while the latter determines β-crystal growth. According
to the research of Binsbergn [66–68], the nonpolar part of the nucleating agent forms
dents on the surface, and this can accommodate the embedding of polypropylene chain
segments, as well as arranging them in an orderly fashion. The nucleating agent acts as a
crystal nucleus that reduces the growth time of the crystal nucleus itself and accelerates
the crystallization rate significantly. A large number of heterogeneous crystal nuclei will
induce a large number of spherulites at the same time. A large number of spherulites will
also inevitably come into contact with other spherulites and stop them growing in the
process of their perfect growth, which results in most sizes of spherulites being smaller
than those obtained by the homogeneous nucleation of PP itself. Therefore, polypropylene
with a large number of spherulites that are of small size and high crystallinity is finally
obtained by adding a nucleating agent, and its performance is also greatly improved. The
crystallization process is shown in Figure 2.

In addition, the morphology of nucleating agents also plays an important role in
crystallization [44]. The researchers in a previous study [42] used four typical β-nucleating
agents; as such, four β-crystal morphologies were, respectively, obtained, as shown in
Figure 3 below. The β-isotactic polypropylene (iPP) precursor film is composed of “bundle-
like” lamellae without fully developed spherulites when in the presence of NAB83 (as
shown in Figure 3a). The β-hedrites were formed by adding Pa-Ca (shown in Figure 3b),
and the “flower-like” β-crystals were detected in the presence of WBG-II (shown in
Figure 3c). On the other hand, the β-iPP precursor film containing TMB-5 (shown in
Figure 3d) was composed of fully developed β-spherulites [42].
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On the other hand, a β-nucleating agent was chemically loaded onto the surface of
inorganic materials such as calcium carbonate, multilayer carbon nanotubes, and graphene.
The final composite not only has a high β-crystal content, but also excellent properties,
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which give full play to the synergistic effect between substances. The main content of this
will be mentioned in the following chapters.

2.2.2. Polymer β-Nucleating Agent for Polypropylene

Most of the β-nucleating agents used for research and commercialization are small
organic molecules; however, they have certain disadvantages at present. For example, they
are easy to agglomerate and have poor dispersibility during polymer processing. Certain
nucleating agents also need surface treatment or the addition of dispersants in order to
obtain a better dispersion effect, while others are easier to precipitate. Polymer β-nucleating
agents have gradually become a research hotspot in recent years. The following Table 2
lists some of the current polymer β-nucleating agents, as well as listing the type and brand
of polypropylene; furthermore, the additional amount of nucleating agent is the same as
the above.

Table 2. New polymer β-nucleating agents.

Sequence Nucleating Agent Provider Kβ/% Polypropylene Category The Best Kβ

Amount Added % Reference

1
Zinc polyacrylate

Potassium polyacrylate
Sodium polyacrylate

Synthesized in
laboratory

12
18
25

Isotactic polypropylene
powder
PP-HGD

0.3 [69]

2 Poly (acrylonitrile–
butadiene–styrene) (ABS)

Chimei Industrial
Co., Ltd. (Taipei,
Taiwan, China)

36.2 Isotactic polypropylene,
grade T30S 2 [70]

3
Liquid crystal polymer
ionomer with 5 sulfate
monomers (PBDPSi5)

Synthesized in
laboratory 97 Isotactic polypropylene 4 [71]

4
Linear polystyrene

Comb-like
branched polystyrene

Synthesized 70.4
55.1

Isotactic polypropylene,
grade T30S 1 [72]

5

Comb-like branched
polystyrene

Linear polystyrene
Star shaped polystyrene

Synthesized
49.52
21.17
7.45

Isotactic polypropylene,
grade T30S 1 [73]

6 Liquid crystal
polyester (PBDPS)

Synthesized in
laboratory 96.6 Isotactic polypropylene,

grade T30S 4 [74]

7 Novolac
Qinan adhesive
materials factory

(China)
20.8 Isotactic polypropylene,

grade F401 30 [75]

8
Polystyrene (PS)

Styrene acrylonitrile
copolymer (SAN)

PS from Taita
Chemical Corp

San from Mitsubishi
plastics, Inc., Japan

26
32

Isotactic polypropylene,
grade S1003 2 [76]

9 Liquid crystal polymer (LCP),
Vectra A950

Hoechst IBERICA
SA 23 Isotactic polypropylene 1 [77]

10 LCP-NA2 Synthesized in
laboratory 70

Isotactic polypropylene
powder

TPH-XB-075
1 [78]

The β-nucleation induction efficiency of polymers is generally low, and the addition
amount is usually more than 1%. At present, it is known that more than 90% of β-crystal
conversions produce a kind of liquid crystal with a special structure, but there is currently
no industrial product that can be compared with small-molecule organic or inorganic
β-nucleating agents. There is still more research work to be carried out.

The research of polymer β-nucleating agents is just starting to expand. It is of great
theoretical significance to systematically study the nucleation efficiency and nucleation
mechanism of polymer nucleating agents. At the same time, further investigation of the
two-phase or multiphase structure after adding polymer nucleating agents will actively
promote the development of new PP alloys with high performances.

Compared with the common methods, adding β-nucleating agents to obtain βPP
is indeed simpler and easier to implement. Many of the small-molecule and polymer
β-nucleating agents reported in the literature are listed. Among these β-nucleating agents,
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β-PP can be obtained by selecting the appropriate nucleating agent according to the re-
ported β-crystal conversion rate. Of course, industrially mature varieties such as nano-zinc
oxide, zinc tetrahydrate, and DCHT from Shanxi may be a better choice. On the other hand,
for the study of PP alloys, polymer β-nucleating agents may provide more research ideas
and directions.

3. Nucleating Efficiency of β-Crystals
3.1. Influencing Factors of β-Nucleating Efficiency

Different nucleating agents have different β-nucleation efficiencies in polypropylene,
even with the same addition amounts. On the other hand, a nucleating agent has differ-
ent β-nucleation efficiencies in different kinds of polypropylene with the same addition
amounts. This is related to the fact that the β-nucleation induction efficiency is affected by
many factors.

3.1.1. Chain Structure

It is a fact that chain irregularities are known to negatively affect β-phase formation.
Wang et al. [11] used several different isotactic polypropylene homo- and copolymers
based on the Ziegler–Natta and single-site catalysts, which differ mostly in chain-defect
concentration, to evaluate the β-nucleating agent “WBG” sensitivity’s chain structure
effects. They found that there was a higher sensitivity toward the chain regularity of
isotactic polypropylene, as well as a more limited impact strength increase.

In addition, long-chain branching also leads to the formation of a polycrystalline
state, which induces the formation of γ-crystals and inhibits the formation of β-crystals.
When a 5% long-chain-branched polypropylene (LCB-PP) is added to the system, the
formation of β-crystals is greatly inhibited. LCB-PP increases the crystal density through
the self-cleaning effect. Therefore, there are a large number of mixtures of the α and γ

phase in the system. They have a higher thermodynamic stability than β-crystals and are
more easily induced in systems with long-branched chains [79]. On the contrary, in a high
β-crystal-content system, the β-crystals, nucleating agents, and LCB induce particularly
small spherulite sizes. The introduction of a nucleating agent and a long-branched chain
improves the impact toughness without reducing the yield strength and elongation at the
break. When both exist at the same time, there is a synergistic toughening effect [80].

The processing effect and the change in morphology will cause a difference in the
β-crystal content [81–83]. The chain structure changes the number of crystal centers and
affects the spherulite size. The irregularity of the chain segments in the stereoscopic
and regional effects as well as the insertion of comonomers have a negative effect on the
β-crystal efficiency in the polymer matrix.

3.1.2. Ethylene Phase

Isotactic polypropylene includes the presence of homopolymers (PPH), block copoly-
mers (PPB), and random copolymers (PPR), as described in the study of [84]. Melt recrys-
tallization seems to occur only in PPs that stretch with little change in their crystallinity
in copolypropylene (coPP). The final molecular orientation of the stretched film showed a
significant linear downward trend, and the ethylene segment causes most of the copoly-
merized polypropylene to form many γ-crystals, which are transformed into α-crystals
after stretching [85]. It was found that the β-nucleation efficiency of both block copoly-
merized PPBs and homopolymerized PPHs was significantly higher than that of random
copolymerized PPRs. The half-crystal time of block copolymerized PPs was much lower
than that of random copolymerized PPRs. Some of the ethylene segments in a random
copolymerization reduced the crystallization rate [86,87]. The relative fraction of β-crystals
decreased with the increase in the ethylene comonomer content [88]. The reason for this is
not only related to lattice matching [89,90], but also to the important relationship that it
has with morphological characteristics, which depends on the molecular interaction at the
crystallization interface [91].
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Studies in recent years have found that the ethylene phase has a priority “selectivity”.
Peroxides preferentially attack the monotertiary hydrogen that is adjacent to one or more
ethylene units, those that are between ethylene units, or those at the end of polypropylene
blocks, resulting in the selective functionalization of ethylene-rich copolymers (which is
independent of the solubility parameters or decomposition rate of peroxides). Degradation
and functionalization mainly occur in the ethylene-rich phase [92]. On the contrary, the
content of β-crystals and the molecular weight decreases at the same time that the impact of
the mechanical properties gradually decreases with the increase in peroxide. The decrease
in the fracture strength is related to the decrease in the molecular weight and amorphous-
phase-chain entanglement. According to this, the degradation of peroxide is unfavorable
when attempting to obtain βPPR [93].

Fan et al. [94] observed different phenomena. Their Kβ value was up to 0.82 with
an increase in the dicumyl peroxide (DCP) content. It was unexpectedly found that the
β-nucleation increased, which may be related to the improvement in the stereoregularity
of controlled-rheological polypropylene random copolymers (CRPPR) with the increase
in DCP. It was found that the degraded PPRs have a thicker lamellar layer, which results
in a component with improved stereoregularity. The authors speculate that the possible
degradation mechanism has free radicals that are more likely to attack the tertiary carbon
atoms that are close to the ethylene comonomer. Furthermore, the ethylene unit is only
at the end, and there is basically no ethylene comonomer in the middle, thus improving
the stereoregularity of the degraded PPR and ultimately affecting the β-crystals of PPRs in
reactive extrusions.

According to the above studies, it was found that the ethylene phase and ethylene
chain in the polymer also had an important influence on the formation of polypropylene
β-crystals. Whether in copolymers or random copolymers, with the introduction of ethy-
lene segments, the intuitive result is that the β-nucleation sites or crystallization centers of
polypropylene are reduced. Therefore, the addition of a β-nucleating agent to polypropy-
lene that contains ethylene segments can usually only obtain a worse β-nucleating crystal-
lization effect than those of homopolymerized polypropylenes.

3.1.3. Polymorphism

Another problem affecting the nucleation effect of β-crystals is the coexistence of
different polymorphic forms of polypropylene in addition to the great influence of the
ethylene chain segment. It is well known that the α, β, γ, and other five crystal forms
of polypropylene, which are unstable and prone to crystal transformation, need certain
conditions (except for the conventional α-crystal) in order to be obtained. However, the
coexistence of different polymorphic forms will still affect the main crystal form, just as it is
difficult to obtain a 100% β-crystal PP [43,82]. It is possible to obtain γ-crystals [95,96] under
different crystallization conditions in both polymers and composites. Certain nucleating
agents, including β-nucleating agents, with a strong crystallization induction ability also
have a dual nucleation ability [11,97,98]. The increase in the α and γ-crystal content
leads to a decrease in the β-crystal content [99–101] when the total crystallinity is fixed.
Fu et al. [102] found that if the defects of the copolypropylene molecular chain cannot be
overcome by a large number of β-nucleating sites, then γ-crystals can be formed.

Based on the facts detailed above, the influence factors of α- or γ-crystals should be
minimized. Increasing the nucleation site of β-crystals or appropriate processing conditions
can make the induction effect of β-crystals dominant. This helps to obtain polypropylenes
with a high β-crystal content, despite other polymorphs of PP also existing.

3.1.4. Interface Action

There are different β morphologies with different nucleating agents, according to the
study of Yang et al. [41] The polymer crystallizes epitaxially on the surface of the nucleating
agent, which affects the folding and arrangement of the polypropylene segments, thus
forming different crystal forms [103].
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Köpplmayr et al. [104] studied the thermomechanical properties of βPP-multilayer
films, which were prepared by the uniform alternation of 128 layers of PPR and βPPR. It
was found that the single-layer interface showed a nucleation effect, and the content of
β-crystals increased with an increase in the number of layers. According to the temperature
dependence of the flexural modulus, the number of high rises will lead to an increase
in the stiffness in a large temperature range. PP and PE are incompatible systems [105].
Polymorphic PP is the infiltration phase, and PE is the infiltration layer when using them
in melt infiltration engineering. The competition between the surface-induced effect and
the shear-induced crystallization during the melt infiltration process produces a phase
morphology transition from string crystal to columnar crystal [106].

When the semicrystalline polymer is confined to isolated micro or nano domains in
the mixture, nucleation can control the whole crystallization dynamically in a sufficiently
small region; this has a positive contribution, especially for immiscible blends [107,108].

3.1.5. Processing Conditions

The processing of polymers is usually accompanied by processing conditions such as
the shear force, temperature, and pressure. The β-crystal is a thermodynamically unstable
form, and the processing conditions have a great influence on the formation of β-crystals in
the matrix. Inappropriate processing conditions will still inhibit the formation of β-crystals,
even if there is a highly efficient β-nucleating agent.

As mentioned above, it has been known that shear can induce polypropylene to
produce different crystalline states under different conditions [109]. Generally speaking,
β-crystals will gradually change into α-crystals, γ-crystals, or mesophases until they finally
disappear with the increase in the shear rate or processing rate [110–112]. Shear can pro-
duce β-cylindrical crystals, called β-cylindrutes, in the process of controllable rheological
polypropylene processing [113].

When stretching the film, voids [114,115] will be generated during biaxial stretching,
and the phase shape and crystal form will also change. In addition, obvious melt recrystal-
lization may occur during the stretching process [116]. However, the tensile process of an
injection-molded sample seems to produce different changes [117]. The surface shear region
is mainly oriented on α-crystals and partial γ-crystals, and the middle region is enriched
with β-crystals. In general, tensile deformation will promote the change in β-crystals to
α-crystals, and the change in volume will produce a uniform distribution of pores. The
porosity increases with the increase in the β-crystal content.

A continuous and orderly alternating of the α–β-crystal PP layer is formed by temper-
ature control in a multilayer PP sheet. A large number of β-crystal layers can be obtained by
isothermal crystallization at 130 ◦C and 50 ◦C/min, and the content of β-crystals is 24.6%
when this is performed. However, only α-crystals are formed when the cooling rate is
changed to 1 ◦C/min [118]. In the heat treatment process, β–α-transformation occurs. The
heat treatment temperature of oriented β-crystals is divided into three stages. The increase
in β-crystals comes from a secondary crystallization below the melting temperature of the
oriented β-crystal. When the temperature is between an α orientation and β orientation,
there is mainly an α orientation. When the temperature exceeds the α orientation, β-crystals
are produced again [119].

Pressure plays the role of a generalist in the presence of shear flow as shown in
Figure 4 [120]. A large number of β-crystals can be obtained in the range of a low pressure
of 5 MPa and a shear rate 0–24 S−1. Low shear can significantly inhibit the production
of β-crystals when the pressure and shear rate are 50–100 MPa and 3.2 S−1. There is no
β-crystal that can be produced when the pressure is 150 MPa. The processing window of
pressure and shear flow is summarized for the first time, and this provides an important
reference value for the processing conditions of βPP. In addition, pressure also induces the
formation of different crystalline states. When the pressure increases, the β- and γ-crystals
decrease and the β-nucleating agent can also induce the formation of γ-crystals in a wide
pressure range [121].
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This study also found that microwave irradiation can lead to the occurrence of β–α-
transformation [122]. Under microwave irradiation, the total crystallinity decreased by
5–6% with a decrease in the β phase. Parts of the β-crystals transformed into α-crystals,
and other parts were transformed into an amorphous state. The β phase decreased and the
impact gradually decreased due to the increase in the amorphous region.

3.2. Improvement in β-Nucleating Efficiency

The nucleation efficiency of β-crystals is affected by many factors. It is not an easy thing
to obtain a PP with a high content of β-crystals. In addition, during induction growth and
processing, β-crystals may be transformed into α-, γ-, or even mesophase crystals [123–125]
under different shear force and thermal conditions. How one is to improve the nucleation
efficiency of β-crystals and obtain a high content of β-crystal polypropylene has always
been the direction of people’s efforts.

3.2.1. Processing Conditions

Many things have two sides. Shear, temperature, and pressure inhibit the formation of
β-crystals as described earlier. Interestingly, they can also produce synergistic effects and
can promote β-crystal growth, including in a β-nucleating agent system that usually has
an optimal crystallization nucleation condition [126].

It was found that the synergistic effect of annealing and nucleating agents improved
the toughness of PPB [127]. The molecular chain dynamic capacity of the amorphous region
in the matrix determined the toughness of the material. Whether or not there is rigidity
in the material of α-crystals or the toughness of ductile β-crystals can be improved by
changing the distribution of different phases. The synergistic effect of nucleating agents
and annealing is more significant when seeking to improve this effect. Annealing promotes
the cavitation of the amorphous β-phase, and the subsequent shear of the crystalline
phase in PP is mainly achieved by increasing the number of rigid amorphous fractions
(RAFs) and decreasing the density of mobile amorphous fractions (MAFs). Therefore,
this will cause large-scale plastic deformation. In addition, the perfection of the crystal
also contributes to the cavitation before crystal shearing. These changes that are caused
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by annealing lead to a final change in the β-crystal structure and an improvement in the
material properties [128]. Of course, a proper addition and a sufficiently low cooling rate
also help β-crystal formation [129].

Solid-state tensile deformation induces crystallization. When the tensile temperature is
higher than the crystallization temperature, the β-lamellae are fractured and the columnar
structure is formed. With the increase in the temperature, β–α transition occurs based on
the existence of stress relaxation. The phase transition process of the crystal is beneficial for
improving the mechanical properties of the material, and solid-state stretching can improve
the toughness and strength [130].

3.2.2. Promotion of Homopolymers

Isotactic homopolymers usually obtain a higher β-crystal content than copolymers
and random copolymers, as mentioned above. Further studies have found that the crystal-
lization ability is also affected by the molecular weight and isotacticity. When the molecular
weight is above a certain degree, the higher the isotacticity and the wider the molecular
weight distribution, the stronger the β-crystallization ability is [131,132]. Therefore, the
introduction of homopolymers in copolymers must be a good choice.

Menyhárd et al. [133] studied the blend systems of iPP/sPP, iPP/rPP, iPP/PVDF, and
iPP/PA-6. They determined that the key factor for the formation of β-crystals is the α

nucleation efficiency of the second polymer. When the polymer has an α nucleation, the
crystallization temperature range is lower than that of β-PP. Based on this, the author draws
an important conclusion that has also affected many subsequent researchers, that is, the
content of β-crystals in the copolymer can be increased by adding homopolymerized PP.

The introduction of PPR into isotactic polypropylene or impact polypropylene com-
pound nucleating agents increases the impact strength of the system without reducing the
rigidity [81,134,135]. After the addition of isotactic PP, the site of β-crystals is increased,
and the homopolymer PP first becomes a β-nucleating center. The crystallization is then
induced by the β-nucleating agent so that the rigidity can be maintained, and the toughness
can be significantly improved.

3.2.3. Modification of Nucleating Agent

The improvement in the nucleating agent includes various means such as loading
to improve dispersion, catalystization, dynamic in situ reaction, and activation treatment.
The main purpose is to improve the dispersion of nucleating agents in the polypropylene
matrix by using various effective methods through which to obtain more crystallization
sites and to further improve the nucleation efficiency of β-crystals.

The dispersion of nucleating agents in a PP matrix is improved, and a synergistic
effect is produced by loading nucleating agents on different carriers [136,137]. For example,
pimelic acid reacts with calcium carbonate to form calcium pimelate, and this is then loaded
with nano calcium carbonate. The impact resistance of the system is greatly improved
because of the high content of β-crystals. The impact fracture surface appears, interestingly,
to be filamentary, although the impact fracture surface containing calcium pimelate and
complex is smooth [138].

The combination of nucleating agents is also an effective method. Zhu et al. [139] used
adipic acid to treat calcium carbonate (AA-RCC) and combined it with the rare earth β-
nucleating agent WBG. It was found that linear crystals begin to appear in the initial stage of
nucleation. The α-crystal appeared before the β-crystal. It grew outward symmetrically to
form a network structure with uniform density and a close arrangement with the passage of
time. Specially arranged α-crystals induced by AA-RCC as nuclei can induce the formation
of β columnar crystals. The α-crystal will gradually transform into a β-crystal when the
spherical crystal grows faster than the columnar crystal. The content of β-crystals was basi-
cally the same as those in the slow crystallization process when subjected to rapid cooling,
and this process is achieved by adding a 0.02% α-nucleating agent and a 0.2% β-nucleating
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agent in the field of industrial extruded pipes. The comprehensive performance of the pipe
was improved, which provides a new direction for pipe extrusion [140].

A bifunctional catalyst for the preparation of β-polypropylene was constructed by
introducing a β-nucleating agent of polypropylene into the Ziegler–Natta catalyst. The
catalyst had good stereospecificity for polypropylene, which can make the isotacticity of
the polymer reach 97–99%. The catalyst is sensitive to hydrogen and has a strong molec-
ular weight adjustability. The “fragmentation–refinement–dispersion” of the nucleating
agent can be achieved during the polymerization process through the “catalyst–polymer
morphology replication effect”. A β-crystal-modified PP with a nano size dispersion and a
more stable scale was obtained [141].

The main nucleating agent in a dynamic in situ reaction is carboxylate or fatty acid
salt [142–147]. One of the raw materials is liquid, and the reaction temperature is not high
(i.e., where the melting temperature of polypropylene can be satisfied). Liquid carboxylic
acids or fatty acids can be fully contacted with metal oxides during the dynamic melting
process. The generated nucleating agent is further dispersed in the polypropylene melt
through the shearing action of the twin screw, and this is performed in order to obtain a βPP
with good dispersion and an outstanding nucleation effect. This method also provides a
reference for other nucleating agents through which to solve the problem of agglomeration
and dispersion.

The surface activity treatment [148] of nucleating agents can also further improve
the nucleation efficiency, dispersion, and self-assembly aggregation [149] of β-nucleating
agents. A surfactant connects PP and nucleating agents to improve compatibility. In
addition, it was found that ultrasonic vibration can also improve dispersion and can
improve the efficiency of rare earth β-nucleation [150]. When the ultrasonic distance is
1 cm, the best dispersion and the highest nucleation efficiency are obtained.

3.2.4. Synergetic Effect

Researchers in recent years have invested more research in the β synergistic combi-
nation of nucleating agents and other materials. The combination of β-nucleating agents
and suitable materials can often obtain a synergistic effect, as well as further improve the
nucleation effect of the β-nucleating agents.

Synergistic materials with β-nucleating agents include MWNTs [151]; illite [56]; cal-
cium sulfate whiskers [152]; nano-silica particles [153,154]; the PA66 used in sandwich-
assembly interlayer PP [155]; TPE/calcium carbonate [156]; the polyhedral oligomeric
silesquioxane (POSS) amide group hydrogen bond reaction [157]; hydrotalcite (HT) [158];
and even new nanomaterials such as Mxene [159]. β-nucleating agents can maintain better
performances in the system via their synergistic effect with different materials. Induc-
ing β-crystals and increasing β-crystal content are the main reasons for the increase in
the toughness.

In summary, in addition to the nucleation efficiency of the nucleating agent itself, the
chain structure of polypropylene, the ethylene phase, processing conditions, and other
factors will affect the β-crystal conversion efficiency. Correspondingly, the nucleation
efficiency of the nucleating agent itself can be improved by modification or through syn-
ergistic compounding. Furthermore, the introduction of homopolymers can also increase
the crystallization sites and reduce the influence of the ethylene phase. At the same time,
the selection of appropriate processing conditions will help to obtain polypropylene with
higher β-crystal conversions.

4. Composite of PP with β-Nucleating Agents

At present, the application of polymers is mostly based on composite materials. The
introduction of a variety of inorganic fillers in the preparation process can overcome certain
shortcomings and can obtain composite materials with better comprehensive performances.
This field has achieved good development in recent years.
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Adding β-nucleating agents and impact polypropylene copolymers (IPCs) at the same
time can induce a synergistic toughening effect, although carbon nanotubes do have the
effect of inhibiting β-crystals [151,160]. Interestingly, in the PPR/SBS system, multilayer
carbon nanotubes act as a bridge between PP and SBS in order to absorb the impact
energy [161].

Graphene usually has a reinforcing effect on polypropylene [162]. Graphene nanosheets
modified by pimelic acid are used as effective β-nucleating agents. Chemical modification
increases the compatibility with polypropylene. The composite obtained a higher storage
modulus, and the impact strength increased by about one. Hyperbranched polyester-
grafted graphene oxide (GO) increased the content of the α phase and the average crystal
particle size, thus increasing the crystallinity of the system [163].

The toughness, elongation at break, and heat resistance of the wood-flour-filled
polypropylene composites were improved by introducing β-nucleating agents [164–168];
this also indicates the direction for the application of wood-flour-filled polypropylene composites.

Long-glass fiber-reinforced material is an important category of plastic in compar-
ison to steel. The impact strengths of β-PPR and β-LGF/PPR/MPPR are increased by
50.1% from 13.92 to 20.89 KJ/m2 after the introduction of a β-nucleating agent, which
further broadens the comprehensive performance of composite materials and expands their
industrial application range [169].

4.1. Toughening Mechanism of Composites

It has been concluded, according to certain studies, that the increase in the toughness
is mainly due to the contribution of β-crystals. The loose lattice structure makes the rubber
phase more dispersed, and it can further accommodate the hard segments of the toughened
rubber phase. The increase in the β-crystal content and the thickening of lamellae also
contribute to energy absorption [170–172]. On the other hand, β-grain refinement reduces
the stress concentration in the crystal region, while the rubber phase improves the impact
toughness. The homopolymerization sequence is easier to insert into isotactic PP when
seeking to consolidate this structure [173]. The presence of nucleating agents induces
the formation of different supramolecular structures. More perfect β-crystal structures
can improve the impact toughness, while the partial aggregation of β-crystals can also
compensate for the loss of strength [174]. In addition, inorganic nanoparticles act as stress
concentrators and establish stress fields around them. The stress field makes the adhesion
between the particles and the polymer matrix weak; thus, debonding occurs at the particle–
matrix interface. This leads to the release of strain constraints at the crack tip, which leads
to a large amount of plastic deformation and consumes a great deal of energy [175].

On the other hand, certain studies also believe that the toughness mainly comes from
the dispersion of the rubber phase and the improvement in the chain segment movement
ability. The particle size of rubber particles decreases after adding β-nucleating agents into
PPR. No matter whether the matrix crystal is an α or β-crystal, it has no main contribution
to the impact toughness. The actual contribution comes from the movement of the chain
segments in the amorphous region of polypropylene. The addition of β-nucleating agents
will increase the movement of the chain segment, which is temporarily attributed to the
combined effect of heterogeneous composition and morphology [176,177]. In addition, the
transformation from α-crystals to β-crystals reduces the plasticity of the PPR matrix, which
makes the matrix more amenable to shear yield during the impact process. Rubber with a
higher molecular activity and good dispersion at low temperatures contributes positively to
the shear yield of the PPR matrix, which greatly improves the impact toughness [178,179].
It is believed that the synergistic effect of a high β-crystal content and the good dispersion
of the rubber phase improves the toughness of the system [180–183]. The fuzzy-phase
interface and craze-shear band of β-crystals can absorb a great deal of energy. The 3D-
printed honeycomb materials also confirm this view [184]. The compound with the highest
β-crystal count has the strongest impact. High-impact composites can be prepared via the
synergistic effect because the addition of a nucleating agent reduces the addition of filler.



Polymers 2023, 15, 3107 15 of 23

4.2. Post-Consumer Polypropylene with β-Nucleating Agents

Post-consumer recycled (PCR) materials are “extremely valuable”. The waste plastics
generated after circulation and consumption can be turned into valuable industrial raw
materials through physical or chemical recovery when seeking to realize resource recy-
cling. In view of the relationship between the content of β-nucleating agents, the relative
content of the β-phase, and the recovery cost, the addition of β-nucleating agents is fi-
nally controlled below 0.7% in the high-value application of post-consumer polypropylene
(PCW-PP). The introduction of β-nucleating agents effectively improves the comprehen-
sive performance of PCW-PP [185]. This method has great application potential in the
high-value-added recovery of PCW-PP. The recovery value of wollastonite-filled PP was
improved by adding β-nucleating agents directly or by adding wollastonite that was loaded
with a β-nucleating agent in order to obtain a higher β-crystal content, good comprehensive
mechanical properties, and low-cost consumption [186]. The above work has important
social and ecological significance.

By analyzing the toughening mechanism of the composite with β-nucleating agents, it
was shown that β-nucleating agents have almost no negative effects when they are used
together with other fillers such as IPC and glass fiber, etc. On the contrary, they all improve
the comprehensive mechanical properties of the material, and they have a positive effect in
obtaining better composite materials and PCR materials.

5. Future Prospects of β-PP

The following, with the accumulation and development of research, may be the new
development direction of β-PP research in the future.

PP has a self-nucleation ability after the process of changing the grafting group to the
end group. This phenomenon is different from the traditional nucleating agent system and
the long-branched polymer system [187]. If this system is compounded with nucleating
agents, will it have a better effect? Of course, the synergistic mechanism of nucleating
agents is still an important research direction to be considered in the future.

The research of polymer β-nucleating agents is in the ascendant, and this is not the case
for small-molecule β-nucleating agents. The introduction of ionic monomers into polymers
helps to further improve the nucleation ability [71], which helps to design more polymer
nucleating agents in the future. It is of great theoretical significance to systematically study
its nucleation efficiency and nucleation mechanism. At the same time, further investigation
of the two-phase or multiphase structure after adding polymer nucleating agents will
actively promote the development of new PP alloys with high performances.

The crystal morphology of the cast film was controlled during processing, and it
was attempted to find out the crystal morphology suitable for biaxial stretching. The
pores and morphological distribution caused by β–α-transformation are still attractive to
researchers, even though researchers have made achievements in the field of microporous
film research [116,188].

6. Conclusions

The β-crystal is a metastable crystal form of polypropylene, and it can bring about
changes in various physical properties. The formation of β-crystals can improve the tough-
ness and heat resistance of materials. Compared with the common methods, adding
β-nucleating agents to obtain βPP is indeed simpler and easier to implement. Many of
the small-molecule and polymer β-nucleating agents reported in the literature are listed in
this study. The industrialized nano-zinc oxide, zinc tetrahydrate, and DCHT from Shanxi
can obtain β-crystals with a conversion rate of more than 95%. On the other hand, for the
study of PP alloys, polymer β-nucleating agents that have not been industrialized may
provide more ideas and directions. The chain structure of polypropylene, the ethylene
phase, processing conditions, and other factors will affect the β-crystal conversion effi-
ciency. Correspondingly, various methods can improve the conversion rate of β-crystals,
such as the introduction of homopolymers, the modification of nucleating agents, the
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selection of appropriate processing conditions, etc. Subsequently, β-nucleating agents
have a positive effect when they are used together with other fillers such as IPC and glass
fiber, etc. Inorganic nanoparticles and β-crystals as fillers are helpful in improving the
toughness—especially regarding the synergistic effect on PCR materials, which is of great
social and ecological significance. Finally, synergistic compounding, polymer nucleat-
ing agents, and microporous film are considered three important directions for β-PP in
future research.
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