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Abstract: Heavy oil exploitation needs efficient viscosity reducers to reduce viscosity, and polyether
carboxylate viscosity reducers have a significant viscosity reduction effect on heavy oil. Previous
work has studied the effect of different side chain lengths on this viscosity reducer, and now a series
of polyether carboxylate viscosity reducers, including APAD, APASD, APAS, APA, and AP5AD (the
name of the viscosity reducer is determined by the name of the desired monomer), with different
electrical properties have been synthesized to investigate the effect of their different electrical proper-
ties on viscosity reduction performance. Through the performance tests of surface tension, contact
angle, emulsification, viscosity reduction, and foaming, it was found that APAD viscosity reducers
had the best viscosity reduction performance, reducing the viscosity of heavy oil to 81 mPa·s with a
viscosity reduction rate of 98.34%, and the worst viscosity reduction rate of other viscosity reducers
also reached 97%. Additionally, APAD viscosity reducers have the highest emulsification rate, and
the emulsion formed with heavy oil is also the most stable. The net charge of APAD was calculated
from the molar ratio of the monomers and the total mass to minimize the net charge. While the net
charge of other surfactants was higher. It shows that the amount of the surfactant’s net charge affects
the surfactant’s viscosity reduction effect, and the smaller the net charge of the surfactant itself, the
better the viscosity reduction effect.

Keywords: different electrical properties; polyether carboxylate viscosity reducers; surfactants;
viscosity reduction; heavy oil

1. Introduction

Petroleum oil plays a significant role in modern industrial production; in the meantime,
with the development of the economy and technology, oil consumption is increasing at
a constant rate [1]. In order to meet the consumption of oil, it is necessary to extract oil
continuously, especially when oil extraction has entered the third stage [2]. Heavy oil,
as one of the objects of tertiary oil extraction, has the characteristics of high viscosity
and poor fluidity [3], which leads to difficulties in heavy oil extraction [4]. Heavy oil
contains a large number of asphaltenes and gums, and the complex aggregation structure
formed by the mutual accumulation and adsorption of these two, together with the action
of hydrogen bonds and the presence of van der Waals forces, is what leads to the large
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viscosity of heavy oil [3,5,6]. However, chemically enhanced oil recovery (cEOR) can be
strengthened by the use of chemical additives [7–10]. In cEOR, common chemical additives
are surfactants, polymers, bases, and their complex systems. Surfactants are used to form
stable emulsions to improve oil drive efficiency by reducing the interfacial tension between
oil and water and changing the wettability of the rock [11–15]. Polymers are used to
improve oil-repelling efficiency by increasing the viscosity of the repellent phase to reduce
the viscous plugging ratio [10,16]. Alkalis are used to modify the mobility of heavy oil by
decreasing the interfacial tension between oil and water [17,18]. In addition, some scholars
have discovered new chemical additives that can also improve oil-repelling efficiency,
such as the use of nanofluids for oil repelling [19,20] and the application of viscoelastic
surfactants [21].

Among the general chemically enhanced oil drive methods, alkali drive is used infre-
quently and is not suitable for reservoirs with high mineralization [22]. Meanwhile, the
complex system is unstable and prone to chromatographic separation and chemical reagent
loss during flow [23], and the general surfactants contain anionic surfactants, cationic
surfactants, amphoteric surfactants, and nonionic surfactants [24], in a wide variety, each
with its own advantages and disadvantages. Therefore, this paper studies polymers with
surfactant properties, i.e., polymeric surfactants, which are stable and possess the same
surface properties as general surfactants.

Some researchers have worked on polymeric surfactants as viscosity reducers for
heavy oil. Li Juan et al. prepared a high molecular weight polymeric surfactant, an anionic
long-branched polymeric viscosity reducer (AAGAS) containing glycidyl methacrylate
(GMA), and the study showed that this anionic polymeric surfactant has good viscosity
reduction ability and surface interfacial activity with an effect that is superior to that of
commercial small molecule surfactants [25]. Agam Duma Kalista Wibowo et al. used
palm oil methyl ester to synthesize a polymeric surfactant and used it for enhanced oil
recovery. The results showed that although it could not significantly reduce the interfacial
tension, it could still improve the oil drive efficiency [26]. Jana et al. investigated the
viscosity reduction effect of polyoxyethylene sorbitol monooleate on heavy oil, and the
study showed that the effect was both significant and more than 95% under optimal
conditions [27]. Kang Xin et al. used amphiphilic polymers and surfactants to form a
heavy oil cold recovery self-emulsifying complex system, and the study showed that the
system effectively increased the stability of the emulsion [28]. Chen Hong and Zhang
Lan explored the emulsification performance of sulfonate-type polymeric surfactants and
reached the conclusion that the emulsification performance increased with an increase in
polymeric surfactant concentration [29]. These studies show that polymeric surfactants are
promising for the viscosity reduction and emulsification of heavy oil. Whereas the effect of
the polymeric surfactant structure and electrical properties on its performance still needs
further research.

In our previous work [30], we synthesized polyether carboxylate viscosity reducers
with different side chain lengths, performed viscosity reduction and emulsification per-
formance tests, and achieved the optimal structures and reaction conditions. However,
up to now, the effect on electrical properties of polyether carboxylate has been scarcely
studied systematically, although electrical properties have a potential impact on viscosity
reduction in heavy oil [31]. In this work, a series of polyether carboxylate viscosity reducers
with different electrical properties have been synthesized to investigate the effect of their
different electrical properties on viscosity reduction performance. We changed the electrical
properties of the polyether carboxylate based on the optimal structures to enhance the
performance of viscosity reducers.

2. Materials and Methods
2.1. Materials

Allyl polyoxyethylene ether 600 (APEG600) (Tianjin Damao Chemical Reagent Factory,
Tianjin, China); acrylic acid (AA) (Tianjin Damao Chemical Reagent Factory); sodium
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p-styrene sulfonate (SSS) (Aladdin, Hong Kong, China); dimethyldiallyl ammonium chlo-
ride (DMDACC); sodium bisulfite (Tianjin Damao Chemical Reagent Factory); potassium
persulfate (Tianjin Damao Chemical Reagent Factory); sodium hydroxide (Tianjin Damao
Chemical Reagent Factory); potassium bromide (Tianjin Damao Chemical Reagent Factory);
deuterated water (Shanghai Maclean Biochemical, Shanghai, China); and ethanol (Tianjin
Damao Chemical Reagent Factory) were used in the study.

2.2. Synthesis
2.2.1. Synthesis of APAS

Acrylic acid, sodium p-styrenesulfonate, and allyl polyoxyethylene ether were weighed
according to the molar ratio of 4:1:1. The total mass of the three monomers was 30 g. Sodium
bisulfite and potassium persulfate were weighed according to 1 wt% and 3 wt% of the
total weight of the monomers, respectively. The above solids were dissolved into solu-
tions using deionized water. Allyl polyoxyethylene ether, sodium bisulfite solution, and
deionized water were put in a three-necked flask. Meanwhile, the flask was heated in an
oil bath, stirred with a magnet, and purged of nitrogen to exhaust the air in the reaction
device. When the flask temperature was raised to 80 ◦C, the solutions of acrylic acid,
sodium p-styrenesulfonate, and potassium persulfate were dropped into the flask using
constant-pressure dropping funnels, respectively. The dropwise addition time of acrylic
acid and sodium p-styrenesulfonate was 2 h, and the dropwise addition time of potassium
persulfate was 2.5 h. After the dropwise addition, the reaction was stirred and kept at 80 ◦C
for another 5 h. After that, the product was cooled to room temperature, and the pH was
adjusted to around 7-8 with a 20 wt% sodium hydroxide solution. The resulting solution
was the polyether carboxylate viscosity reducer, APAS [30].

2.2.2. Synthesis of APASD

Using diallyldimethylammonium chloride to replace sodium p-styrenesulfonate, dial-
lyldimethylammonium chloride was weighed at 6% of the total mass of the monomer [32].
Other chemical reagents and operations were the same as with the synthesis of APAS. The
resulting solution was the polyether carboxylate viscosity reducer, APASD.

2.2.3. Synthesis of APAD

Acrylic acid, allyl polyoxyethylene ether, and dimethyldiallyl ammonium chloride
were weighed at a 4:1 molar ratio, 6% of total monomer mass, and 30 g of total monomer
weight. The above solids were dissolved into solutions using deionized water, and the
polyether carboxylate viscosity reducer, APAD, was obtained according to the same synthe-
sis method used with APAS.

2.2.4. Synthesis of APA

Acrylic acid and allyl polyoxyethylene ether were weighted according to a molar ratio
of 4:1, and the total weight of the monomer was 30 g. The above solids were dissolved into
solutions using deionized water, and the polyether carboxylate viscosity reducer, APA, was
obtained according to the same synthesis method used with APAS.

2.2.5. Synthesis of AP5AD

Acrylic acid, allyl polyoxyethylene ether, and dimethyldiallyl ammonium chloride
were weighed at a molar ratio of 5:1, 6% of the total monomer mass, and 30 g of the total
monomer weight. The above solids were dissolved into solutions using deionized water,
and the polyether carboxylate viscosity reducer, AP5AD, was obtained according to the
same synthesis method used with APAS.

The reaction equation is shown in Figure 1 below:
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In the diagram, a, b, c, and d represent the amount of each monomer.

2.3. Characterization

Some of the synthesized samples were extracted with ethanol to remove impurities
and dried before characterization.

The samples were tested by the infrared spectrometer EQUI NX55 of Brucher, Germany.
Dried polyether carboxylate viscosity-reducing agent powder was mixed and ground with
potassium bromide powder, dried, and processed at 100 ◦C. The thin slices with 90% light
transmittance were prepared by the press method, and the test wave number range was
from 400 to 4000 cm−1.

Using a Bruker Varian Inova 500 NB 600 MHz NMR hydrogen spectrometer, 5 mg of
dried polyether carboxylate viscosity reducer was dissolved in 10 mL of deuterated water
for characterization tests in an NMR system.

2.4. Determination of Heavy Oil Properties

The physicochemical properties and composition of the heavy oil were determined by
GC-MS with dichloromethane as the solvent.

2.5. Surface Performance Testing
2.5.1. Surface Tension Test

The surface tension of polyether carboxylate viscosity reducers was tested using a
DCAT21 surface interfacial tension meter. Solutions of different mass concentrations were
configured, and the surface tension was determined by the platinum sheet method at
room temperature.

2.5.2. Contact Angle Test

The contact angle of polyether carboxylate viscosity reducers was measured using
a contact angle meter from Deffy East, Germany. The North China heavy oil was coated
on the slide evenly, and then solutions of different mass concentrations were configured,
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and the contact angle of the sample solution droplets onto the surface of the heavy oil was
measured at room temperature using the contact angle meter.

2.5.3. Water Distribution Performance Test

It was configured with 10 mL of 0.1% polyether carboxylate viscosity reducer solution,
mixed with edible oil in a ratio of 1:1 by volume, shaken with a stoppered measuring
cylinder to maintain the same amplitude, shaken 100 times, and the time required to
precipitate 5 mL of aqueous solution and the volume of the final precipitated aqueous
solution were recorded.

2.5.4. Foaming Performance Test

It was configured with 20 mL of polyether carboxylate viscosity reducer solution with
different mass fractions and stirred for 10 s at 8000 r/min of emulsifier. After stirring, the
foam height was recorded immediately.

2.6. Viscosity Reduction and Emulsification Performance Test
2.6.1. Viscosity Reduction Test

The viscosity was determined by using the digital display viscometer produced by
Brookfield Co. (Toronto, ON, Canada). The viscosity was determined by mixing 25 mL of
0.5% polyether carboxylate solution with North China heavy oil in a ratio of 1:1 by volume,
heating in a water bath at 50 ◦C for 15 min, stirring with an emulsifier (D-160) at 8000 r/min
for 4 min, and then standing for 1 min to determine the viscosity at that temperature. An
equal volume of heavy oil was taken under the same conditions to determine its viscosity
as a control group.

2.6.2. Emulsification Speed Test

It was prepared with 10 mL of polyether carboxylate viscosity reducer solutions of
different mass fractions, mixed with North China heavy oil at a volume ratio of 1:1, heated
in a water bath at 50 ◦C for 15 min, then stirred with the emulsifier at 8000 r/min for
2.5 min, and the volume of the emulsion was read after standing for 1 min.

Emulsification speed =
emulsion volume

stirring time

where the emulsion volume is in milliliters and the stirring time is in minutes.

2.6.3. Emulsion Stability Testing

It was configured with 10 mL of polyether carboxylate viscosity reducer solutions of
different mass fractions, mixed with North China heavy oil at a volume ratio of 1:1, heated
in a water bath at 50 ◦C for 15 min, then stirred with an emulsifier at 8000 r/min for 2.5 min,
and left for 10 min before reading the volume of the precipitated aqueous solution.

Water separation rate =
volume of precipitated water

(emulsion volume + volume of precipitated water)

where the volume is in milliliters.

3. Results and Discussion
3.1. Characterization
3.1.1. FT-IR Spectroscopy

The infrared spectra of three surfactants, APAD, APAS, and APASD, are shown in
Figure 2. From Figure 2, it can be seen that all three products have strong and broad
absorption peaks in the range of 2850~2960 cm−1, which are the stretching vibrations of
saturated C-H bonds. They all have absorption peaks near 1720 cm−1, which are judged
to be the stretching vibrations of C=O bonds of carboxyl groups. APAS and APASD have
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absorption peaks near 1580, 1450, and 840 cm−1, which are judged to be the backbone
vibration of the benzene ring and the para-disubstitution absorption peak of the benzene
ring, respectively. APAD and APASD have absorption peaks near 1200 cm−1, which are the
absorption peaks of C-N bond stretching vibration. All three have strong absorption peaks
near 1100 cm−1, which are judged to be the absorption peaks of C-O-C. After the analysis,
it can be tentatively judged that the synthesized products are the target products.
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3.1.2. 1HNMR

The NMR characterization of the three surfactants, APAS, APASD, and APAD, is
shown in Figure 3 below. Comparison of the NMR prediction maps of each monomer
with the NMR maps of the samples shows that the three samples have no absorption
peaks at δ = 6.7 and 5.5 ppm, indicating complete reaction of the C=C bond of sodium
p-styrenesulfonate; no absorption peaks near δ = 6.3 ppm, indicating complete reaction
of the C=C bond of acrylic acid; no absorption peaks near δ = 5.7 and 5.3 ppm, indicating
complete reaction of the C=C bond of APEG; and no absorption peak near δ = 5.9 and
5.3 ppm, indicating complete reaction of DMDACC. APAD has no absorption peak between
δ = 7~8 ppm, indicating no para-disubstituted benzene ring, while APAS and APASD both
have double peaks between δ = 7~8 ppm, suggesting both contain a para-disubstituted
benzene ring. APAD and APASD have obvious absorption peaks between δ = 2~3 ppm,
while APAS does not, suggesting that APAD and APASD have N-CH3 of H. All three have
absorption peaks around δ = 4 ppm, which are peaks of C out of APEG near the C=C
double bond; strong absorption peaks at δ = 3.5~3.8 ppm, which are two peaks of the
-CH2-CH2-O-group of APEG; and peaks at δ = 1~2 ppm, which are H peaks on the main
chain. From the above analysis, it can be judged that each monomer was involved in the
reaction to synthesize the final product.

3.2. Heavy Oil Property Determination

According to the GC-MS test analysis, heavy oil contains mainly large amounts of bitu-
men and gum. The main components of heavy oil include Pentadecane,2,6,10,14-tetramethyl-
(6.43%), Stigmastane (8.67%), .beta.-iso-Methylinone (3.8%), Coprostane (3.68%), Cholestane
(13.02%), Octadecane (5.17%), Heptadecane (5.84%), Tetracosane (4.04%), etc.
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3.3. Surface Performance
3.3.1. Surface Tension

The surface tension measurements of APAS, APASD, and APAD are shown in Figure 4a.
The surface tensions measured for different mass concentrations of viscosity-reducing agent
solutions are represented by scatter points, and two straight lines are obtained by linearly
fitting the scatter points of the front and back parts, respectively. The x coordinate corre-
sponding to the intersection point of the two lines is CMC, and the y coordinate is γ(CMC).
According to the fitted results, it is known that CMC(APAS) < CMC(APAD) < CMC(APASD) and
γ(CMC)(APASD) < γ(CMC)(APAD) < γ(CMC)(APAS). The smallest CMC(APAS) is 14.5022 g/L,
and the largest CMC(APASD) is 22.2944 g/L. Since the hydrophobic chain lengths used in
this series of viscosity reducers are the same, the heavy average molecular weights of these
products are not very different, and the calculation based on the heavy average molecular
weight of APAS is 55,695 [30], which can be converted to a CMC(APAS) of 2.6 × 10−4 mol/L
and a CMC(APASD) of 4 × 10−4 mol/L, which shows that the difference between even the
largest and smallest CMC is not significant. In view of γ(CMC), APASD has the best ability
to reduce surface tension, while APAS has the worst ability to reduce surface tension. As
we know, surfactants can reduce the surface tension of water because surfactant molecules
can insert hydrophilic polar groups into the water and hydrophobic nonpolar groups into
the air, displacing the liquid-gas interface by arranging them in an orderly manner at the
liquid-gas interface, making the surface tension of water lower [33]. However, because
ionic surfactants contain charged hydrophilic groups, resulting in repulsive forces between
ionic surfactant molecules, the surfactant molecules do not align closely at the liquid-gas in-
terface, which leads to a reduction in the ability of surfactants to reduce surface tension [34].
In the case of amphoteric surfactants or anionic and cationic surfactant complex systems,
the charge of the cationic group and the charge of the anionic group can shield the elec-
trostatic repulsion between some of the same charged groups through strong electrostatic
interactions, so that the corresponding surfactant molecules can be arranged more closely
than those of the anionic and cationic surfactants, i.e., the ability to reduce surface tension
is better. The smaller the net charge of surfactant molecules, the stronger their ability to
reduce surface tension [35,36]. For the series of polyether carboxylate viscosity reducers
synthesized in this experiment, the corresponding net charge size was calculated by using
the total mass and molar ratio of monomers as shown in Table 1 below, and we can see that
the net charge of APAS is greater than APASD, which is greater than APAD, so APAS has
the worst ability to reduce surface tension, which is consistent with the experimental results.
Theoretically, APAD should have a better ability to reduce surface tension than APASD,
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but the experimental results are quite the opposite. The possible reason is that APASD has
some of its carboxylic acid groups replaced with sulfonic acid groups compared to APAD,
and since the synthesized viscosity reducer undergoes a 20% sodium hydroxide solution
to adjust the pH, this leads to a large number of sodium ions in the viscosity reducer
solution, and the sulfonic acid groups have better salt resistance than the carboxylic acid
groups [37,38], so here APASD has a better ability to reduce surface tension than APAD.
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Figure 4. (a) Surface tension diagrams of three different viscosity reducers; (b) contact angle of three 
different viscosity reducers at 1 g/L, 5 g/L, and 65 g/L; (c) separation time and separation volume of 
Figure 4. (a) Surface tension diagrams of three different viscosity reducers; (b) contact angle of three
different viscosity reducers at 1 g/L, 5 g/L, and 65 g/L; (c) separation time and separation volume of
three viscosity reducers; (d) foam volume of three viscosity reducers; (e) contact angle pictures of
three viscosity-reducing agents.

Table 1. Net charge of five different viscosity-reducing agent molecules.

Surfactant APAS APASD APAD APA AP5AD

Net charge (mol) 0.13705 0.134225 0.131635 0.1352 0.152646
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3.3.2. Contact Angle

The contact angle measurements for three mass concentration solutions of APAS,
APASD, and APAD are shown in Figure 4b below. The contact angle here refers to the
contact angle between the surfactant solution and the heavy oil, which can measure the
wetting performance of the surfactant solution on the heavy oil. The smaller the contact
angle, the better the wetting performance of the surfactant solution on the heavy oil, and
the better it is for viscosity reduction [39]. According to Figure 4b, the contact angles of
APAD and APASD are similar and smaller than those of APAS. This is also due to the net
charge of the surfactant. When the surfactant solution droplets are in contact with the
heavy oil, the hydrophobic non-polar groups of the surfactant molecules will be inserted
into the heavy oil, while the hydrophilic groups are on the outside of the heavy oil, and
the hydrophilic groups of the same charge will repel each other, resulting in the surfactant
molecules not being arranged very closely at the water-oil interface, making the surfactant
solution unable to wet the heavy oil well. The higher the net charge of the surfactant, the
higher the net charge of the surfactant. The larger the net charge of the surfactant, the
stronger the repulsive effect, resulting in a larger contact angle. Therefore, the contact angle
of the APAS with the highest net charge is also the largest. The contact angle pictures of
the three viscosity-reducing agents at a concentration of 65 g/L are shown in Figure 4e
below. Figure 4b shows that the contact angles of APAD and APASD are 91.46◦ and 92.19◦,
respectively, while APAS has the largest contact angle of 109.31◦.

3.3.3. Water Distribution Performance

The water separation time and water separation volume measured after emulsification
of APAD, APASD, and APAD mixed with general edible oil are shown in Figure 4c below,
with water as the reference group. The water separation performance reflects the stability
of the emulsion formed by the emulsification of surfactant solution and oil by the volume
of water dispensed; the longer the water separation time and the smaller the water sepa-
ration volume, the better the stability of the emulsion and the stronger the emulsification
ability. It can be seen from the graph that the time required to precipitate 5 mL of water is
APAD > APAS > APASD, and the final volume of precipitated water is exactly the opposite,
APAD < APAS < APASD, while the water as the reference group has the shortest partition
time and the maximum final partition volume. Therefore, all three surfactant solutions
have very significant emulsification ability compared to water, and the reason why APAD
has better emulsification performance than APAS and APASD is still that APAD has the
lowest net molecular charge, resulting in the smallest molecule-to-molecule repulsion, so
more APAD molecules are densely arranged in the oil-water interface, resulting in a more
stable oil-in-water emulsion [40]. The distribution volumes of the five viscosity reducers
are shown in Figure 5e below.

3.3.4. Foaming Performance

The maximum volume of foam generated by the three surfactants, APAS, APASD, and
APAD, is shown in Figure 4d. The volume of foam produced reflects the foaming perfor-
mance of the surfactants, which in turn is related to the magnitude of the surface tension
of the solution; the higher the surface tension, the weaker the foaming performance [41].
As can be seen from Figure 4d, APAD produced the most foam overall at mass fractions
of 0.1% to 0.5%, while APASD produced less. With mass fractions of 0.1% to 0.5%, which
translates into mass concentrations of about 1 g/L to 5 g/L, the fitted straight line in the
surface tension plot (Figure 4a) shows that in the range of 1 g/L to 5 g/L, APASD does
have the highest surface tension and APAD has a lower surface tension, so APAD produces
more foam than APAS and APASD.
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rate of three viscosity reducers; (c) precipitation rate of three viscosity reducers; (d) emulsification
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3.4. Viscosity Reduction and Emulsification Performance
3.4.1. Viscosity Reduction Performance

The viscosities of APAS, APASD, and APAD after emulsification with heavy oil are
shown in Figure 5a below. It can be seen from Figure 5a that the viscosity reduction
effect of the three surfactants is significant, and the viscosity reduction rate of the worst
APASD is 97.61% and the best APAD is 98.34%, so the difference between them is not
too big. The reason for the slight difference is the different net charges of the surfactant
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molecules. All three surfactants contain hydrophobic chain groups of the same chain length,
and the hydrophobic non-polar groups insert into asphaltenes and gums in heavy oil to
break the net structure formed by their accumulation at the oil-water interface [5,6], while
the hydrophilic groups of surfactants combine with water molecules to form an aqueous
layer, thus emulsifying and dispersing the heavy oil into an oil-in-water emulsion and
reducing the viscosity. However, because different surfactant molecules have different
net charges, the repulsion between molecules with a high net charge is also high, which
means the surfactant molecules cannot be arranged closely at the oil-water interface, thus
reducing the viscosity reduction performance. Therefore, the APAD with the lowest net
charge has the best viscosity reduction performance. Compared with the polyoxyethylene
sorbitan monooleate surfactant studied by Jana et al., APAD shows better viscosity-reducing
properties [27].

3.4.2. Emulsification Speed

The emulsification rates of the solutions of APAS, APASD, and APAD with different mass
concentrations of the three surfactants emulsified with heavy oil are shown in Figure 5b below.
It can be seen from Figure 5b that the emulsification speed of all three surfactants has a general
tendency to increase with the increase in mass fraction, which precisely indicates that as the
mass fraction increases, more surfactant molecules arrange on the oil-water interface, which
accelerates the emulsification of heavy oil. Among them, APAD has the highest emulsification
speed, which means it has the best emulsification performance. This is also due to the net
charge of surfactant molecules. APAD contains the lowest net charge, so its molecule-to-
molecule repulsion is the smallest, and the APAD molecules can be arranged more and more
closely at the oil-water interface, which accelerates the formation of oil-in-water emulsion and
improves the emulsification speed of heavy oil [42].

3.4.3. Emulsion Stability

The precipitation rates of APAS, APAD, and APASD surfactant solutions formed with
heavy oil are shown in Figure 5c below. It can be seen from Figure 5c that the overall water
precipitation rate decreases with the increase in surfactant mass fraction, which indicates
that the higher the mass fraction in the mass fraction range, the more stable the emulsion.
The water precipitation rate of APAD is generally lower at all mass fractions, indicating that
the emulsion formed by APAD solution is more stable. This is due to the low net charge of
APAD itself. The lower net charge makes the repulsion between APAD molecules smaller,
which allows more surfactant molecules to arrange at the oil-water interface, resulting in
more hydrophobic non-polar groups to insert into the heavy oil and more hydrophilic
groups to combine with water molecules, making the formed water layer thicker, which
makes a more stable water layer between the heavy oil particles wrapped by water, so the
emulsion is more stable [40]. The pictures of the emulsion formed by the three viscosity
reducers with heavy oil at a mass fraction of 0.4% are shown in Figure 5d.

The above experimental analysis shows that APAD has the best viscosity reduction
and emulsification performance among the three surfactants.

3.5. Viscosity Reduction Mechanism

Since the synthesized viscosity reducers are polyether carboxylate structures, they
must contain both ether and carboxylic acid, and carboxylic acid itself is an anionic hy-
drophilic group. APAS containing sodium p-styrenesulfonate is regarded as an “anionic
surfactant”, APAD containing dimethyldiallylammonium chloride is considered a “cationic
surfactant”, and APASD containing both sodium p-styrenesulfonate and dimethyldially-
lammonium chloride is regarded as an “amphoteric surfactant”. The relationship between
the performance and the different electrical properties of the three surfactants, APAS,
APAD, and APASD, was first discussed above. Additionally, it was concluded that the
amount of the net charge of the surfactant molecule itself affects the surface performance
and viscosity-reducing emulsification performance of the surfactant, and the difference
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between the carboxylic acid group and the sulfonic acid group also has a certain effect
on the surface performance. Next, the performance of two other surfactants, APA and
AP5AD, will be compared with the previous three surfactants to verify the correctness of
the conclusion.

3.5.1. Surface Tension

The surface tension scatter plots of APAS and APA are shown in Figure 6a below. The graph
shows that the difference between the two CMCs is very slight, and γCMC(APAS) < γCMC(APA).
APA has no sulfonic acid group compared to APAS, and according to the above table, the
net charge of the APA molecule is lower than APAS, and the surface tension of APA at CMC
should be lower than APAS in theory, but the result is just the opposite, indicating that the
sulfonic acid group plays a role. In a solution containing a large number of sodium ions,
the sulfonic acid group is better than the carboxylic acid group due to its salt resistance, so
APAS containing the sulfonic acid group has a stronger ability to reduce surface tension
than APA.

The surface tension scatter plots of AP5AD and APAD are shown in Figure 6b below. The
difference in CMC between the two can be seen in Figure 6b, with γCMC(APAD) < γCMC(AP5AD).
AP5AD has one more share of the carboxylic acid group compared to APAD, which also
leads to a higher net charge of AP5AD than APAD, so AP5AD is not as strong as APAD in
reducing surface tension.

The surface tension scatter plots of APASD and AP5AD are shown in Figure 6c below.
Figure 6c also shows that γCMC(APASD) < γCMC(AP5AD), and AP5AD not only has no
sulfonic acid group compared to APASD but also adds a carboxylic acid group. This leads
to the net charge of AP5AD being larger than APASD and the excellent salt resistance
performance of APASD’s sulfonic acid group, which makes the surface tension difference
between the APASD solution and the AP5AD solution larger than the other groups. It
speculates that the net charge of surfactant molecules and the role of sulfonic acid groups
are superimposed on each other, resulting in a wider surface tension difference.

3.5.2. Contact Angle

The contact angles of APAS and APA are shown in Figure 6d below. It indicates that the
contact angles of both APAS are larger than APA because the net charge of APAS molecules is
higher than APA, resulting in greater repulsion between APAS molecules and APAS molecules,
so their contact angles are also larger, which is consistent with the conclusion.

The contact angles of APAD and AP5AD are shown in Figure 6e below. It indicates
that the contact angle of AP5AD is higher than that of APAD, which is also caused by the
fact that the net charge of the APAD molecule itself is smaller than that of AP5AD, which is
also consistent with the conclusion.

The contact angles of APASD and AP5AD are shown in Figure 6f below. It shows that
the contact angle of APASD is lower than that of AP5AD because the net charge of APASD
is smaller than that of AP5AD, which is consistent with the conclusion.

3.5.3. Water Separation Performance

The partition time and partition volume of APAS and APA, AP5AD and APAD, and
APASD and AP5AD are shown in Figure 7a–c below, respectively. It shows that the partition
time of APAS is longer than APA and the partition volume is smaller than APA, indicating
that the emulsion formed by the APAS surfactant and edible oil is more stable. Although
the net charge of APAS is higher than that of APA, the presence of the sulfonic acid group
makes the stability of the emulsion formed by APAS a little better than that of APA.

In contrast, the partition time of APAD was longer and the partition volume was
smaller than that of AP5AD, indicating that the emulsion formed by the APAD surfactant
with edible oil was more stable. The partition time of APASD was longer and the partition
volume was smaller than that of AP5AD, indicating that the emulsion formed by APASD
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with edible oil was more stable than that of AP5AD. This is also because the net charge of
APASD and APAD is smaller than that of AP5AD, which is consistent with the conclusion.
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After the comparison of surface tension, contact angle, and water separation per-
formance tests, it was found that the experimental phenomena were consistent with the
mechanism assumed above, further illustrating the correctness of the conclusions.
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4. Conclusions

In this paper, we synthesized different electrical polyether carboxylate viscosity re-
ducers, and through a series of tests and comprehensive analysis, we concluded that
APAD has the best viscosity reduction performance and can reduce the viscosity of heavy
oil to 81 mPa·s. APAD also had the best emulsification performance, with the greatest
emulsification speed and the best emulsion stability.

The performance test of each polyether carboxylate viscosity reducer reasonably ex-
plains how the difference in electrical properties affects the viscosity reduction performance
of surfactants. That is, the amount of the net charge of the surfactant itself affects the
repulsion between the surfactant molecules, and the higher the net charge, the greater
the repulsion, which means the surfactant molecules cannot closely arrange themselves
between the oil-water interface or the liquid-gas interface, resulting in a reduction in the
emulsification viscosity reduction performance and surface properties.

The shortcoming is that there is no deeper understanding of whether the net charge
size of the surfactant itself or the difference between the sulfonic and carboxylic acid groups
plays a greater role in reducing surface tension, which will be the focus of future work.
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