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Abstract: Hydroquinone poses a major threat to human health and is refractory to degradation, so it
is important to establish a convenient detection method. In this paper, we present a novel colorimetric
method for the detection of hydroquinone based on a peroxidase-like Pd nanozyme. The vancomycin-
stabilized palladium nanoparticles (Van-Pdn NPs, n = 0.5, 1, 2) were prepared using vancomycin as
a biological template. The successful synthesis of Van-Pdn NPs (n = 0.5, 1, 2) was demonstrated by
UV-vis spectrophotometry, transmission electron microscopy, and X-ray diffraction. The sizes of Pd
nanoparticles inside Van-Pd0.5 NPs, Van-Pd1 NPs, and Van-Pd2 NPs were 2.6 ± 0.5 nm, 2.9 ± 0.6 nm,
and 4.3 ± 0.5 nm, respectively. Furthermore, Van-Pd2 NPs exhibited excellent biocompatibility
based on the MTT assay. More importantly, Van-Pd2 NPs had good peroxidase-like activity. A
reliable hydroquinone detection method was established based on the peroxidase-like activity of
Van-Pd2 NPs, and the detection limit was as low as 0.323 µM. Therefore, vancomycin improved the
peroxidase-like activity and biocompatibility of Van-Pd2 NPs. Van-Pd2 NPs have good application
prospects in the colorimetric detection of hydroquinone.

Keywords: nanozyme; vancomycin; palladium; nanoparticles; detection

1. Introduction

Hydroquinone (HQ) is easy to react with peroxide free radicals and is commonly used
in developers, hair dyes, pharmaceutical raw materials, and oxygen scavengers. However,
HQ can inhibit the central nervous system and damage liver and kidney function, and
it has been included in the list of three types of carcinogens. Therefore, it is necessary to
establish an efficient and reliable HQ detection platform.

At present, there are many detection and analysis methods, such as colorimetric anal-
ysis [1,2], electrochemical analysis [3], and high-performance liquid chromatography [4].
Among them, the colorimetric analysis method has the advantages of easy operation, low
cost, and good visibility. Therefore, colorimetry has become one of the main ways. In
most colorimetric analyses of HQ, the addition of natural enzymes is required to catalyze
the reaction. However, natural enzymes have disadvantages such as high cost and easy
inactivation. Since the discovery of Fe3O4 nanozymes [5,6], a variety of nanomaterials
have been found to have enzyme-like properties. Nanozymes have good stability, high
efficiency, and easy acquisition, so they are widely used in colorimetric detection. Many
nanomaterials, such as MnO2 [7], UiO-67-Cu2+ [8], Co3O4 nanoplates [9], and PPy NPs [10],
have shown enzyme-like catalytic ability and have been used in colorimetric detection.
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Ge et al. [11] prepared MnO/PC nanohybrid material, which was used for colorimetric
detection of HQ. The experiment yielded a desirable linear relationship within the range
of 0–50 µM, and a detection limit of 0.5 µM was achieved. Because of the low activity
of the artificial enzyme used in their study, the detection limit is high, and the detection
range of the method is not wide enough. These limitations may impact the applicability
and effectiveness of the method in certain contexts or when dealing with a wide range of
concentrations.

Among the many nanomaterials developed by people, noble metal nanozymes are a
class of nanomaterials that are widely studied [12–14]. The Pd@Pt nanoparticles prepared
by Wang et al. [15] have three enzyme mimicry activities, and the catalytic activity can be
regulated by DNA. Tang et al. [16] proposed the application of ultrathin Pd nanosheets as
photo controllable peroxidase mimics. As a kind of precious metal, palladium nanozymes
can also be prepared to explore their properties. Palladium nanoparticles [17] have the
characteristics of a small size, a large specific surface area, and many active sites. The good
catalytic activity of palladium nanoparticles is not only related to the advantages of the
nanoparticles themselves but also to the stability and dispersion degree of the nanoparticles
in the solution. In the process of preparing palladium nanozyme, it is necessary to prevent
it from coagulating. The catalytic performance of palladium nanoparticles will be greatly
reduced after coagulation.

Natural substances as biological templates can be used to greatly improve the bio-
compatibility of nanozymes [18]. The biological template method can provide us with
new synthetic avenues to develop new functional materials with the advantages of com-
plexity, hierarchy, and adaptability. The technology is widely used in metal oxides [19],
ceramics [20], inorganic materials [21], organic semiconductors [22], and precious metal
nanoparticles [23]. Vancomycin is a glycopeptide antibiotic with a molecular weight of 1486.
Vancomycin has a molecular formula with a heptapeptide core and excellent antibacterial
properties against gram-positive bacteria [24]. Vancomycin contains 9 hydroxyl groups,
2 amino groups, and 1 carboxyl group, which results in vancomycin being water-soluble.
Vancomycin has the potential to be used as a template and stabilizer to efficiently load
precious metal nanoparticles.

In this work, we prepared vancomycin-stabilized palladium nanoparticles (Van-Pdn
NPs, n = 0.5, 1, 2) using vancomycin as the biological template. The successful synthesis of
Van-Pdn NPs (n = 0.5, 1, 2) was characterized by UV-vis spectrophotometry, transmission
electron microscopy, and X-ray diffraction. The enzyme-like activity and catalytic kinetics
of the Van-Pd2 NPs were also studied. By utilizing the peroxidase-like activity of Van-Pd2
NPs, a simple and reliable detection platform for HQ was constructed. The measurement
of HQ concentration in the drug using Van-Pd2 NPs in real samples confirms the great
potential for biomedically relevant tests.

2. Materials and Methods
2.1. Materials

Vancomycin hydrochloride, sodium borohydride (NaBH4), hydroquinone (HQ), hy-
drogen peroxide (H2O2), 3,3′,5,5′-tetramethylbenzidine (TMB), dimethyl sulfoxide (DMSO),
and thiazole blue (MTT) were purchased from Aladdin (Shanghai, China). Sodium tetra-
chloropalladate (Na2PdCl4) was purchased from West Asia Reagent (Chengdu, China).

2.2. Synthesis of Van-Pdn NPs

An amount of 73 µL vancomycin hydrochloride (Van·HCl, 10 mM) solution and
different amounts of Na2PdCl4 (10 mM) solution were taken into a 2 mL PE tube; the
substance ratio of vancomycin to Na2PdCl4 was 2:1, 1:1, and 1:2, respectively. Then 1000 µL
of deionized water was added. They were placed in a constant-temperature mixer at 25 ◦C
and incubated for 12 h at 600 rpm. After 10 µL of NaBH4 solution (1 M, dissolved in 0.3 M
NaOH solution) was added, they were placed in a constant temperature mixer for 12 h,
and the Van-Pdn NPs (n = 0.5, 1, 2) were obtained after dialysis.
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2.3. Enzyme-like Activity Characterization of Van-Pdn NPs

To determine peroxidase-like activity, 200 µL of Van-Pdn NPs (CPd = 0.9 mM) and
300 µL of a 0.2 M pH = 4 acetic acid-sodium acetate buffer solution were mixed and
incubated in a 2 mL PE tube. 1000 µL of a 0.2 M acetic acid-sodium acetate buffer solution
containing 0.6 mM TMB and 100 µL of 0.03 M H2O2 were mixed and incubated in a constant
temperature mixer at 25 ◦C at 600 rpm for 2 min. Finally, UV-vis spectrophotometry was
used to determine absorbance.

To explore the optimal reaction temperature of Van-Pdn NPs, 200 µL of Van-Pdn
NPs (CPd = 0.9 mM) and 300 µL of acetic acid-sodium acetate buffer solution at different
pHs were added to a 2 mL PE tube, and 1000 µL of 0.2 M acetic acid-sodium acetate
buffer solution at different pHs containing 0.6 mM TMB were mixed. The samples were
incubated in a constant-temperature mixer at 25 ◦C at 600 rpm for 5 min. Finally, UV-vis
spectrophotometry was used to determine the absorbance of the sample at 652 nm. The pH
range was 1–12. The temperature range was 5–65 ◦C.

The catalytic kinetics of the system were studied using the following experimental
approach or methodology: 200 µL of Van-Pdn NPs (CPd = 0.9 mM) were added to a 2 mL
PE tube. The absorbance of the sample over time at 652 nm was then tested using a UV-vis
spectrophotometer. The amount of buffer solution was 1200–300 µL at 100 µL intervals; The
amount of buffer solution containing TMB was 100–1000 µL at 100 µL intervals. The total
amount of liquid was 1500 µL. The formula 1 was used to study the affinity for substrate
and the maximum rate of the catalytic reaction during the catalytic process:

v = Vmax[S]/(Km + [S]) (1)

Symbol description: Km—Michael’s constant; Vmax—maximum reaction rate;
[S]—substrate concentration.

Furthermore, the peroxidase-like mechanism was tested using terephthalic acid (TA)
as a fluorescent probe with the following steps. First, four experimental groups were
established: TA, TA + Van-Pdn NPs, TA + H2O2 and TA + H2O2 + Van-Pdn NPs. As for
TA + H2O2 + Van-Pdn NPs, 1000 µL of TA (CTA = 0.5 mM) was added into a 2 mL PE
tube, and subsequently, 200 µL of an acetic acid-sodium acetate buffer solution with a pH
of 4 was introduced into the same PE tube. The purpose of adding the buffer solution is
to maintain a stable pH environment within the tube. This ensures that the conditions
remain optimal for any subsequent steps or reactions that may take place. The fluorescence
spectra of the final solution were measured using a fluorescence spectrometer to analyze
the emission of light from the samples. The other control groups underwent the same
experimental procedure as the samples being analyzed.

2.4. Determination of HQ Concentration

An amount of 50 µL of Van-Pdn NPs (n = 0.5, 1, 2, CPd = 0.9 mM), 1000 µL of 0.2 M,
pH = 3, acetic acid-sodium acetate buffer solution containing 0.6 mM TMB, 100 µL of 0.03 M
solution of H2O2, and 200 µL of HQ solution of different concentrations were mixed in a
2 mL PE tube, and then the PE tube was placed in a constant temperature mixer for 5 min at
35 ◦C and 600 rpm. Finally, its absorbance was measured using a UV-vis spectrophotometer.
The relationship between the difference in absorbance and concentration was used as the
standard curve for detecting HQ. HQ solution at a concentration of 0–10 mM was added
to PE tubes. HQ recovery in tap water and seawater was detected using the established
standard curve.

An amount of 50 µL of Van-Pdn NPs (n = 0.5, 1, 2, CPd = 0.9 mM), 1000 µL of 0.2 M,
pH = 3, acetic acid-sodium acetate buffer solution containing 0.6 mM TMB, 100 µL of 0.03 M
solution of H2O2, and 200 µL of HQ solution of different concentrations were added to a
2 mL PE tube. The 2 mL PE tube was placed in a constant-temperature mixer at 30 ◦C and
600 rpm for 5 min. Finally, the absorbance was measured using a UV-vis spectrophotometer.
The recovery of the sample was calculated using the spike recovery formula [25].
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The selectivity of Van-Pd2 NPs was investigated by detecting hydroquinone and
potentially interfering substances, such as Mg2+, alanine (Ala), phenylalanine (Phe), leucine
(Leu), glycine (Gly), proline (Pro), glutamic acid (Glu), maltose (Mal), lactose (Lac), and
fructose (Fru). The experimental process was the same as above; the concentration of HQ is
1 mM, and the concentration of other interfering substances is 10 mM.

2.5. Biocompatibility of Van-Pdn NPs

The biocompatibility of Van-Pdn NPs (n = 0.5, 1, 2) was determined by MTT. First, cells
were added to a 96-well plate at a concentration of 5.0× 103 per well and incubated for 24 h.
The DMEM medium containing nanozymes was then replaced with the original medium
and incubated for 24 h. The medium was replaced with a thiazole blue (MTT) solution and
incubated for 4 h. Finally, the MTT solution was replaced with dimethyl sulfoxide (DMSO),
and the absorbance of the 96-well plate was determined using a multifunctional microplate
reader.

3. Results and Discussion
3.1. Characterization of Van-Pdn NPs

The synthesis of Van-Pdn NPs was first characterized by UV-vis spectrophotometry.
Figure 1A shows the preparation method of Van-Pdn NPs. As shown in Figure 1B, Na2PdCl4
has an absorption peak at 420 nm in the UV-vis spectrum, which is caused by Pd2+.
However, there is no characteristic absorption peak of Na2PdCl4 at 420 nm in the spectra of
Van-Pd0.5 NPs, Van-Pd1 NPs, and Van-Pd2 NPs. When Pd2+ is reduced to Pd atoms, the
absorption peak at 420 nm disappears [26]. Therefore, Pd2+ is reduced to Pd atoms in the
process of synthesizing Van-Pdn NPs. This indicates the successful preparation of Van-Pdn
NPs.
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Figure 1. (A) The preparation method and (B) a graph with the absorption spectrum from the UV-Vis
spectrophotometer of Van-Pdn NPs (n = 0.5, 1, 2).

Figure 2 shows TEM images of Van-Pdn NPs (n = 0.5, 1, 2). Van-Pd0.5 NPs, Van-Pd1
NPs, and Van-Pd2 NPs have good dispersion and a small particle size. Van-Pd0.5 NPs
have a particle size of 2.6 ± 0.5 nm, Van-Pd1 NPs have a particle size of 2.9 ± 0.6 nm, and
Van-Pd2 NPs have a particle size of 4.3 ± 0.5 nm.

DLS is a commonly used way to characterize the hydrodynamic size and zeta potential
of nanoparticles in water [27]. Since most of the reaction processes, such as the catalysis
of nanozymes, are carried out in aqueous solutions, DLS testing of Van-Pdn NPs (n = 0.5,
1, 2) is required. As can be seen in Figure 3A, the hydrodynamic sizes of nanoparticles
of Van-Pd0.5 NPs, Van-Pd1 NPs, and Van-Pd2 NPs were 24.1 nm, 26.1 nm, and 23.6 nm,
respectively. The hydrodynamic size of Van-Pdn NPs (n = 0.5, 1, 2) with different molar
ratios did not have an obvious difference. Moreover, the zeta potential of the Van-Pdn NPs
was tested. As can be seen from Figure 3B, the zeta potentials of Van-Pd0.5 NPs, Van-Pd1
NPs, and Van-Pd2 NPs were −31.5 mV, −30.2 mV, and −32.4 mV, respectively. Among the
Van-Pdn NPs (n = 0.5, 1, 2), Van-Pd2 NPs had the largest absolute value of zeta potential in
aqueous solution.
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We selected Van-Pd2 NPs for subsequent XRD to analyze their composition and
structure. The diffraction spectra of Figure 4 show that the 2θ values of Van-Pd2 NPs are
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39.71◦, 46.36◦, 67.66◦, and 81.42◦, respectively. These diffraction angles corresponded to the
(111), (200), (220), and (311) faces of Pd, respectively. Compared with the reference code
46-1043 of Pd, it can be seen that the diffraction angle is consistent with the diffraction angle
in the reference code, so it can be proved that the nanozyme we synthesized contained
the element Pd. Therefore, we have successfully synthesized Van-Pd2 NPs through the
characterization of XRD.
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3.2. Characterization of Peroxidase-like Activity

As a commonly used substrate for enzyme activity assays, TMB reacts rapidly to
produce blue oxTMB in the presence of reactive oxygen species and a catalyst [28]. Then,
UV-vis spectrophotometry was used to test the absorbance of the characteristic absorp-
tion peak of oxTMB and determine whether it retained a certain enzyme-like activity by
comparing the absorbance.

To test whether Van-Pd2 NPs have oxidase-like activity and peroxidase-like activity, we
designed the following control groups: TMB + H2O2, Van-Pd2 NPs + H2O2, TMB + Van-Pd2
NPs, and TMB + Van-Pd2 NPs + H2O2. It can be seen from Figure 5A that after 5 min of
reaction, the TMB + Van-Pd2 NPs group and the TMB+ Van-Pd2 NPs + H2O2 group had
a characteristic absorption peak of oxTMB at 652 nm. The TMB+ Van-Pd2 NPs + H2O2
group showed an excellent characteristic absorption peak at 652 nm; the absorbance was
0.60. The TMB + Van-Pd2 NPs group showed a characteristic absorption peak at 652 nm,
but the absorbance was only 0.28. The characteristic absorption peak intensity at 652 nm of
the TMB + Van-Pd2 NPs + H2O2 group was 2.14 times that of the only Van-Pd2 NPs group.
This indicated that Van-Pd2 NPs had good peroxidase-like activity. In addition, TMB was
oxidized to form oxTMB in the TMB + Van-Pd2 NPs group, indicating the oxidase-like
activity of Van-Pd2 NPs.
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From Figure 5B, it can be seen that when the amount of vancomycin species is the same,
the greater the amount of Pd species, the better the peroxidase-like activity. Compared
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with the concentration of Pd species at 652 nm, the absorbance of Van-Pd0.5 NPs, Van-Pd1
NPs, and Van-Pd2 NPs reacted with TMB + H2O2 was 0.07, 1.04, and 1.10 after 5 min of
reaction, respectively. It can be seen that the absorbance of the Van-Pd2 NPs + TMB + H2O2
group was the highest. This may be because at the same concentration of metal species, the
less template used, the fewer active sites were covered, which was more conducive to the
redox reaction. Therefore, Van-Pd2 NPs with the best peroxidase-like activity can be used
for subsequent experiments.

The peroxidase-like activity of Van-Pd2 NPs is affected by a number of external
conditions, the main influencing factors of which are pH and temperature. Therefore, we
need to investigate the peroxidase-like activity of nanozymes. As shown in Figure 6A, it
can be seen that the peroxidase-like activity of Van-Pd2 NPs is set at 100% at pH = 4, and
the peroxidase-like activity decreases significantly at other pHs. In addition, Figure 6B is
an exploration of the optimal temperature for the peroxidase-like activity of Van-Pd2 NPs.
Van-Pd2 NPs have the best peroxidase-like activity at 35 ◦C. Therefore, we can determine
that the optimal conditions for Van-Pd2 NPs are pH 4 and a temperature of 35 ◦C.
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3.3. Characterization of Van-Pd2 NPs Catalytic Kinetics

In order to explore the catalytic activity of peroxidase-like Van-Pd2 NPs, it is required
to study their catalytic reaction kinetic characterization. The reaction kinetics of nanozymes
are determined by changing the concentrations of the substrates TMB and H2O2. The test
data were analyzed using the Lineweaver-Burk equation to obtain the data in Figure 7.
Moreover, the peroxidase-like activity of other materials was compared with Van-Pd2 NPs
shown in Table 1.

Table 1. Comparison of kinetic parameters Km and Vmax.

Materials
Km (mM) Vmax (10−8 Ms−1) Reference

TMB H2O2 TMB H2O2

Van-Pd2 NPs 1.007 0.623 13.611 12.566 this work
HRP 0.434 3.70 10.0 8.71 [29]

Au-NCs and Pb2+ 0.58 30 4.13 3.39 [30]
Cu-Ag/rGO 0.63 8.62 4.25 7.01 [31]

CWNSs 0.053 4.25 17.09 20.06 [32]
NGZF 0.907 115.25 9.71 7.44 [33]

The Michael’s constant Km and the maximum reaction rate Vmax are then calculated
according to the equation [34]. Firstly, the concentration of substrate TMB was changed
within 0.04–0.4 mM, and the Km value and Vmax value of Van-Pd2 NPs were 1.007 mM and
13.6 × 10−8 Ms−1, respectively. Then, the concentration of H2O2 was changed within
0.2–2.0 mM, and the Km value and Vmax value of Van-Pd2 NPs were 0.623 mM and
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12.566 × 10−8 Ms−1, respectively. Table 1 is a comparison of the catalytic performance
of different nanozymes. Compared with other nanozymes, such as Au-NCs and Pb2+ for
H2O2, the Km value of Van-Pd2 NPs for H2O2 is small. This indicates that Van-Pd2 NPs have
good H2O2 affinity, which is conducive to the formation of reactive oxygen species and
promotes the subsequent catalytic reaction. Thus, Van-Pd2 NPs have good peroxidase-like
catalytic kinetics.
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3.4. Mechanism of Van-Pd2 NPs Peroxidase-like Activity

To delve into the mechanism of the catalytic process, additional research has been
conducted. Figure 8C shows the fluorescence spectrum of the reaction mixture containing
terephthalic acid (TA) and Van-Pd2 NPs after the addition of hydrogen peroxide (H2O2).
Terephthalic acid is commonly used as a fluorescent probe to detect the presence of hydroxyl
radicals (•OH). In the presence of •OH, terephthalic acid undergoes a reaction to form
2-hydroxy terephthalic acid (TAOH), which exhibits strong fluorescence at 435 nm when
excited at a 315 nm wavelength. This fluorescence emission at 435 nm indicates the
formation of TAOH due to the reaction between •OH and terephthalic acid.

The purpose of using terephthalic acid as a probe in this experiment is to investigate
whether •OH radicals are produced by Van-Pd2 NPs through the catalytic decomposition
of hydrogen peroxide. The fluorescence signal at 435 nm confirms the presence of •OH
radicals, suggesting that the peroxidase-like activity of Van-Pd2 NPs is indeed due to the
generation of •OH radicals. As depicted in Figure 8A, upon the addition of Van-Pd2 NPs
into the solution containing TA and H2O2, it was observed that the fluorescence intensity
curve of TAOH exhibited a notably higher value compared to the other groups. In Figure 8B,
The peak value obtained from the group TA + H2O2 + Van-Pd2 NPs was measured at 304,
which was approximately double the peak value of the TA + H2O2 group without Van-Pd2
NPs. These experimental findings strongly indicate that the catalytic mechanism of Van-Pd2
NPs primarily involves the generation of •OH.
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3.5. HQ Detection

HQ is a reducible biomass that reduces oxTMB to TMB. Therefore, we can use the
excellent peroxidase-like activity of Van-Pd2 NPs to establish the standard curve for HQ
detection. This experimental system is Van-Pd2 NPs + TMB + H2O2 + HQ, and then UV-vis
spectrophotometry is used to detect the UV-vis absorption spectrum of the solution, as
shown in Figure 9A.

Table 2. Comparison of HQ detection range and detection limits for different materials.

Materials Detection
Method

Linear Range
(µM) LOD (µM) Reference

Van-Pd2 NPs Colorimetry 1–100 0.323 this work
CuS–MoS2 Colorimetry 0.4–50 3.68 [35]

GCN-Cu NFs Colorimetry 0.82–100 0.82 [36]
ZZFO/GF Colorimetry 0–150 3.75 [37]
Au/CuO Colorimetry 5–200 3 [38]

Pt/C-60/PGE Electrochemical 50–1100 2.19 [39]
GCE/ErGO-

cMWCNT/AuNPs Electrochemical 1.2–170 0.39 [40]

Co3O4/MWCNTs Electrochemical 10–800 5.6 [41]

The absorbance at 652 nm was measured by UV-vis spectrophotometry. As shown
in Figure 9B, the absorbance at 652 nm gradually increases in a linear manner with the
increasing concentration of HQ. However, when the concentration of HQ solution is greater
than 1 mM, the absorbance at 652 nm tends to be stable. Figure 9C shows that the standard
equation for HQ detection was Y = 0.0313 + 2.6812 × CHQ (R2 = 0.9973). As shown
in Table 2, the linear range was 0.001–0.1 mM, and the detection limits were 0.323 µM.
Compared to the reported GCN-Cu NFs [36], the detection range is 0.82–100 µM, and the
detection limit is 0.82 µM. Van-Pd2 NPs have high sensitivity and a wide detection range.
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Mg2+, alanine, phenylalanine, leucine, glycine, proline, glutamic acid, maltose, lactose,
and fructose were used to test the selectivity of this assay. The other components caused
very weak absorbance changes, as depicted in Figure 9D. These findings indicate that the
method employed in the study exhibited high selectivity for the detection of glutathione.
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concentrations; (D) selective detection of HQ.

In addition, Van-Pd2 NPs can be used to determine the recovery of samples. The
sample is first added to different solutions to make a spiked solution. A certain amount
of spiked solution was added to the reaction solution of Van-Pd2 NPs + TMB + H2O2.
The absorbance of the solution was determined using UV-vis spectrophotometry. The
spike recovery formula was then used to determine the recovery of the sample. From the
comparison of the data in Table 3, it can be seen that the detection and recovery of HQ in
seawater and river water are 108% and 98%, respectively. Therefore, the detection of HQ
by Van-Pd2 NPs had high accuracy.
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Table 3. Recovery of HQ detection in different samples.

Sample Added HQ
Concentration (µM)

Found HQ
Concentration (µM) Recovery (%) RSD (%)

Running water 50 49 98 0.54
Seawater 50 54 108 1.25

3.6. Biocompatibility

Biological vancomycin was used in the preparation of Van-Pd2 NPs. In addition to
testing the nanozyme activity and catalytic performance of Van-Pd2 NPs, it is also necessary
to determine the biocompatibility of Van-Pd2 NPs. The MTT method is a commonly used
method for determining the biocompatibility of samples. Van-Pd2 NPs with A549 cells
were incubated for 24 h. Then, the cell viability of Van-Pd2 NPs was determined by MTT
to determine the biocompatibility of nanozymes. The results are shown in Figure 10, and
we set the Van-Pd2 NPs group, the vancomycin group, and the blank group. The cell
viability in the vancomycin group remained at 90%, and the cell viability in the Van-Pd2
NPs group reached 85% at 200 µg/mL. By comparison with the cell activity of the blank
group, Van-Pd2 NPs and vancomycin have almost no cytotoxicity. Therefore, it is known
that Van-Pd2 NPs have good biocompatibility through cell viability assays.
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4. Conclusions

In summary, we successfully synthesized Van-Pd2 NPs with good peroxidase-like
activity by the biological template method. The catalytic kinetics of Van-Pd2 NPs con-
formed to the typical Michaelis–Menten equation, and there is a good affinity for H2O2
in peroxidase-like activity. The prepared nanozyme Van-Pd2 NPs were used to establish
a simple and reliable detection method for HQ. The detection range was determined to
be 1–100 µM, with a detection limit of 0.323 µM. Van-Pd2 NPs and vancomycin were
non-cytotoxic. Therefore, the colorimetric detection method with high selectivity has a
good application prospect in the detection of HQ.
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