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Abstract: Given the importance of hyperelastic constitutive models in the design of engineering
components, researchers have been developing the improved and new constitutive models in search
of a more accurate and even universal performance. Here, a modified hyperelastic constitutive
model based on the Yeoh model is proposed to improve its prediction performance for multiaxial
deformation of hyperelastic polymeric materials while retaining the advantages of the original Yeoh
model. The modified constitutive model has one more correction term than the original model. The
specific form of the correction term is a composite function based on a power function represented
by the principal stretches, which is derived from the corresponding residual strain energy when the
Yeoh model predicts the equibiaxial mode of deformation. In addition, a parameter identification
method based on the cyclic genetic-pattern search algorithm is introduced to accurately obtain the
parameters of the constitutive model. By applying the modified model to the experimental datasets
of various rubber or rubber-like materials (including natural unfilled or filled rubber, silicone rubber,
extremely soft hydrogel and human brain cortex tissue), it is confirmed that the modified model
not only possesses a significantly improved ability to predict multiaxial deformation, but also has a
wider range of material applicability. Meanwhile, the advantages of the modified model over most
existing models in the literatures are also demonstrated. For example, when characterizing human
brain tissue, which is difficult for most existing models in the literature, the modified model has
comparable predictive accuracy with the third-order Ogden model, while maintaining convexity in
the corresponding deformation domain. Moreover, the effective prediction ability of the modified
model for untested equi-biaxial deformation of different materials has also been confirmed using
only the data of uniaxial tension and pure shear from various datasets. The effective prediction
for the untested equibiaxial deformation makes it more suitable for the practice situation where
the equibiaxial deformation of certain polymeric materials is unavailable. Finally, compared with
other parameter identification methods, the introduced parameter identification method significantly
improves the predicted accuracy of the constitutive models; meanwhile, the uniform convergence of
introduced parameter identification method is also better.

Keywords: hyperelastic; polymeric materials; constitutive model; strain energy density function;
parameter identification

1. Introduction

Hyperelastic polymeric materials, which possess exceptional hyperelastic properties,
have been widely utilized in various fields such as medical devices [1], flexible electrodes [2],
and soft robots [3]. The widespread applications of hyperelastic polymeric materials have
also spurred a lot of research into characterizing their hyperelastic properties [4]. In
particular, carrying out the analysis of the 3D stress—strain of complex elastic components
relying on finite element analysis (FEA) has become an indispensable part in the process
of product design in recent decades. However, the reliability and accuracy of results
strongly depend on the performance of the constitutive model predicting the mechanical
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behavior of the material. Therefore, a constitutive model that can more accurately predict
the mechanical behavior of material is the key to making the analytical results based on
finite element analysis more realistic.

Currently, constitutive models characterizing hyperelastic properties are usually built
by the strain energy density function. In light of the different ways of constructing the
strain energy density function, the hyperelastic constitutive models can be divided into
two overall categories: the first category encompass statistical mechanics models based on
the idealized network structure of molecular chains, while the other category comprise
phenomenological models based on continuum mechanics.

For statistical mechanical models, it is usually constructed based on the assumption of
the network structure of molecular chains inside the polymer [5]. Although the parameters
of these models usually have practical physical context, the statistical mechanical models
with better representational ability often have a more complex form. So, they are not
very good for providing an analytical solution, and they are not good for numerical
solutions [6], as well as having a large corresponding calculation [7]. In addition, some
statistical mechanical models are not well suited for dealing with some important issues
such as irreversible deformation and inelastic volume expansion [8].

For phenomenological models, they are usually constructed based on the strain invari-
ants or principal stretches. Although the parameters of these phenomenological models
often do not have practical physical context, they have been widely studied and applied
because of their relative advantages (including easy-to-obtain parameters, relatively high
computational efficiency, no requirement for understanding the microstructure of the ma-
terials, and wider material applicability). The Mooney model is the earliest constitutive
model used to represent the mechanical behavior of polymeric rubber. It has a linearized
form, and it usually has better performance in the case with small deformation [9]. Taking
into account the limited capabilities of the Mooney model, Rivlin extended it in the form of
polynomial series to obtain a generalized polynomial model [10]. Because the polynomial
model has higher-order terms of the strain invariants, it is more suitable for the case with
large deformation. However, the model with higher-order terms usually requires more
parameters, which easily make the model unstable. In line with the structure of polynomial
model, researchers explored different orders and combinations of strain invariants, and
derived many other models [11-14]. In particular, when the second strain invariant in
the polynomial model is ignored, the reduced polynomial model is obtained [15]. Even
though the polynomial model and reduced polynomial model can well characterize the
hyperelastic properties of filled and unfilled rubber by retaining higher-order terms [16],
they may have difficulties in solving numerical problems [17]. Therefore, the second-order
polynomial model or the third-order reduced polynomial model is generally used. Except
for some of the above constitutive models on account of the polynomial form of strain
invariants, there are also some constitutive models based on the logarithm or exponential
form of strain invariants. Notwithstanding, comparative studies show that these models do
not have a particular advantage in characterizing hyperelastic properties [18,19]. Besides,
the eigenvalues of the strain tensor are related to the principal stretches, so there are also
some constitutive models constructed directly based on the principal stretches [20-22].
These models are usually composed of special functions related to the principal stretches,
and they show good performance in characterizing the hyperelastic properties.

Although there are already many classical constitutive models to characterize the
hyperelastic property, there are still continuously improved and completely new models
emerging. The reason for this may be that the deficiencies of existing models still exist [23]
and the importance of hyperelastic models in designing engineering components still
motivates researchers to develop more general and robust constitutive models [24,25]. As
presented in some reviews [7,26], the performances of these existing models are different
from each other, and not all models can effectively characterize the multiaxial deformation
of hyperelastic material based solely on a single set of model parameters, and most of
these models are applied to a specific type of hyperelastic material. Furthermore, many
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models with relatively few parameters cannot reliably predict the whole range of strain
and different modes of deformation. Considering that hyperelastic materials often exhibit
multiaxial states of deformation in practical applications, it is unquestionable that the ability
of a model to characterize multiaxial deformation should be evaluated first. However,
evaluating the ability of a model to characterize multiaxial deformation often requires the
simultaneous use of experimental data from three modes of homogenous deformation
(including uniaxial tension, equibiaxial tension, and pure shear) to calibrate the parameters
of the model. This may be prohibitively expensive and even infeasible in practice [15].
Due to limited hardware conditions or limitations in the tensile strength of the target
hyperelastic material, some pure deformation mode data of materials are simply not
measurable, especially for the equibiaxial tension. So, there are also some researchers
evaluating the performance of existing models from another dimension. As presented
in the comparative studies in [15,27], the parameters of these models were calibrated
only using data from a single pure mode of deformation (such as uniaxial tension). The
corresponding comparison results highlight the effective characterization ability of Yeoh
model [28] for untested deformation modes (exceeding the well-known Ogden model [21]).
Although some studies believe that it may not be reliable for a model only calibrated
through the data of a single mode to describe the multiaxial mode of deformation [6,29],
as an auxiliary evaluation method, it is also being pursued by researchers [18,30-32].
Especially in [3], researchers refer to the model’s ability to effectively predict the untested
mode of deformation as the property of deformation-mode independency. As described
above, this property is particularly useful for real-world engineering applications where
the available experimental data are limited [32].

Considering the pursuit of a universal and robust hyperelastic constitutive model, this
study aims to improve the Yeoh model to compensate for its shortcoming in performance
and applicability. The idea of focusing on improving the Yeoh model is not arbitrary, but
rather based on its unique advantages in characterizing untested modes of deformation as
explained above. The reason why we want to take advantage of this advantage is because
we have indeed encountered the situation in practice where the equibiaxial deformation
mode of a used polymer material is not measurable. With the widespread application of
different soft polymer materials in engineering design, we believe that the probability of
this situation occurring will be higher. So, the actual demand also drives us to carry out this
work. Furthermore, it is well known that the Yeoh model will underestimate the equibiaxial
mode of deformation when characterizing multiaxial state of stress; hence, it should
be further improved in order to have more accurate characterization results. Hitherto,
there are several sporadic improved Yeoh models. Earlier, Yeoh proposed to improve the
fitting accuracy of the Yeoh model to the data from simple shear by adding an additional
exponential term related to the first principal invariant [33]. The comparative studies
confirmed that the improved model has a poorer performance for predicting the biaxial
behavior of natural rubber (using Treloar’s data), and the comprehensive performance of
the improved model is not as good as the original Yeoh model [34]. This may be because the
improved model is still not related to the second principal invariant or the added additional
exponential item is inappropriate. Relevant study has confirmed that the model containing
the second principal invariant is important for improving the prediction accuracy of the
model, especially for the equibiaxial deformation [35]. Based on this, a recently improved
Yeoh model adds the square root of the second principal invariant as a correction term
to the original Yeoh model [30]. The research results confirm that the modified model
has significantly improved predictive performance for equibiaxial tension, but the entire
modification process is based on uniaxial data, which may lead to insufficient improvement
in the model’s actual predictive ability for multiaxial deformations. In addition, it has not
yet imposed effective constraints on the parameters of the modified model to ultimately
make the modified model convex and stable. In addition to these two modified Yeoh models
mentioned above, Hohenberger et al. also replaced all the determined orders in the Yeoh
model with undetermined coefficients to expand it into a generalized Yeoh model, so as to
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describe the low and high strain nonlinearity of highly filled high damping rubber [36]. This
generalized Yeoh model has been proven to have improved prediction accuracy for uniaxial
tension and compression, but its characterization accuracy for multiaxial deformation
has not been determined. To sum up, there is still a certain distance between the current
modified Yeoh models and the universal and robust model; so, it is still meaningful to
improve the Yeoh model again.

In this study, we use a thoughtful correction term to modify the Yeoh model, so as
to improve its ability for characterizing multiaxial deformations. This correction term is
derived from the corresponding residual strain energy when the Yeoh model predicts the
equibiaxial mode of deformation, and its specific form is a composite function based on a
power function represented by the principal stretches. The strain energy density function
of the modified model is represented by the first strain invariant and the principal stretches,
and it contains only five parameters to be identified. In the case of specific parameters, the
model can be degraded to the neo-Hookean model, the Mooney-Rivlin model, the Yeoh
model, and the Biderman model. Therefore, the modified model can also be regarded as
the parent model of these four classical models. In addition, we also introduce a special
parameter identification method based on the cyclic genetic-pattern search algorithm
in order to improve the predicted accuracy of constitutive models. For demonstrating
the modified model’s robustness and generality, the modified model is applied to six
different types of hyperelastic materials. During this process, in addition to comparing the
performance of the modified constitutive model with some landmark constitutive models
in the literatures, the stability and convexity of the modified constitutive model is also
verified. Finally, the validity of the introduced parameter identification method is also
confirmed by comparing it with four existing parameter identification methods.

2. Materials and Methods
2.1. Experimental Data

Experimental data involving simple modes of deformation like uniaxial tension (UT),
equibiaxial tension (ET) and pure shear (PS) form the basis for parameter identification
of the constitutive model. And, it is a common practice to contrast the predicted results
of model and experimental data for examining the performance of the model in differ-
ent ranges of deformation and different modes of deformation. Here, considering the
widespread use of the experimental dataset about natural unfilled vulcanized rubber ob-
tained by Treloar [37], we take the lead in using it to obtain the correction term of the Yeoh
model. Then, we will analyze the performance of the modified model based on this dataset.
Given that Treloar’s dataset contains a large range of deformation, the dataset is divided
into three ranges of deformation for providing a more detailed evaluation of the model’s
ability to describe different ranges of deformation [26]. That is, the experimental data in
each mode of deformation (UT, ET and PS) will be divided into three ranges of deformation
based on the principal stretch, namely, small deformation (1 < A < Amax/3), medium de-
formation (1 < A < 2Amax/3) and large deformation (1 < A < Amax/3). Amax, respectively,
represents the maximum principal stretch of UT, ET and PS. Although the cutoff ranges of
data in different deformation ranges under the same mode of deformation are different,
they all belong to the complete stress—strain curve under the corresponding deformation
mode. In addition, these data with different ranges of deformation are smoothed and
homogenized to obtain more data points and minimize measurement noise as much as
possible, thereby obtaining more accurate results of parameter estimation. The specific data
points can be found in Table S1.

Furthermore, in order to fully verify the characterization ability of the modified model
for the multiaxial deformation of different materials, we also considered experimental
datasets from another five different types of rubber-like materials (including isoprene
vulcanized rubber [38], unfilled silicone rubber [17], poly-acrylamide hydrogel [39], carbon-
black-filled styrene butadiene rubber [40] and human brain cortex tissue [41]), which have
been also used in other literatures [24,25,42]. Except for the dataset of human brain cortex
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tissue, the other four datasets all contain data from three deformation modes of UT, ET
and PS (see Tables S2-56 in the Supporting Information for details). Overall, we used a
total of six experimental datasets, which is extremely rare in other studies. Based on the six
datasets, the comprehensive applicability of the modified model proposed in this study to
different types of rubber-like materials will be fully demonstrated.

In addition to applying the proposed model to more material datasets, comparing the
modified model proposed in this study with some commonly used or newly established
models in existing studies is also beneficial for visually demonstrating the capabilities of the
proposed model. To this effect, we selected a total of eight constitutive models that exist in
the literature for comparison. The selection of these constitutive models for comparison is
not arbitrary. Firstly, considering that this study is an improvement on the Yeoh model [28],
the Yeoh model and the other three improved Yeoh models (including the modified Yeoh
model proposed by Yeoh [33], generalized Yeoh model proposed by Hohenberger [36]
and Melly model proposed by Melly [30]) are first added to the comparison list to verify
that the improvement in this study is more effective. Secondly, in order to investigate
whether the improved model in this study also holds an advantage in the current existing
catalog of constitutive models, the powerful and universal third-order Ogden model [21]
and the Alexander model with the best performances in the category of phenomenological
models [26,43] have been added to the comparison list. Finally, under the persuasion
of the reviewer, a model (we call it the Anssari-Benam model) recently proposed by
him in [24] and a model (we call it the modified Anssari-Benam model) obtained by
improving the former based on our correction term in our study have also been added
to our comparison list. We believe that by comparing our proposed modified model
with the aforementioned models on different material datasets, the performance and even
advantages of our modified model will be presented more intuitively.

2.2. Preliminaries

In view of the assumptions of isotropy and incompressibility for hyperelastic poly-
meric materials, the constitutive equation of the isotropic and incompressible hyperelastic
polymeric materials can be expressed as follows:

oW 1 OW
where
L = trB = A2 + A3 + A} )
b= [ (trB)* — 1rB2] = A2A3 + 303 + 343 @

In the above equations, I; and I, are the first and second invariants of the left Cauchy—
Green strain tensor B, respectively; A1, A; and A3 are principal stretches; p is an undeter-
mined pressure which is independent of deformation; the strain energy density function W
is only a function of the first and second invariants corresponding to tensor-type arguments.

For isotropic hyperelastic polymeric materials, the principal axis of the Cauchy stress
tensor o, left Cauchy—Green strain tensor B and its inverse B! are the same, so the
component form of the constitutive equation of the hyperelastic polymeric materials in its
two principal directions can be expressed as follows:

W 1 W

O = —p _ZE.)T% +Za—ll0/\a 3)
W 1 ow

7.7
oL A3 9L

where A, and Ag are, respectively, the principal stretch of main direction a and .
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The strain energy density function also has the following relationships to the principal

stretches: oW oW 5 oW
o~ on T aien ©
W _, AW 23 ©

A B 3
dAg o A 5 ol
According to Equations (3)—(6), the following expression can be obtained by eliminating p:
oW oW

7wl Fy

@)

aa—aﬁ:)t

where & and B are not summation indices; so, do not sum them up.

2.3. The Modified Strain Energy Density Function

As stated in the introduction, the third-order polynomial based on the first strain in-
variant (Yeoh model) not only has a simple form, but can also reproduce the inverse S-shape
of the stress—strain curve of the hyperelastic polymeric materials under different modes
of deformation [28] and it also has the ability to effectively predict untested deformation
modes of natural unfilled vulcanized rubber [15,27]. However, it is always underestimating
the equibiaxial mode of deformation (as shown in Figure 1). This underestimation will
greatly reduce its ability to predict multiaxial deformation, thus hindering its application
in actual engineering [30]. Some studies have shown that the second strain invariant is also
important and making the model include the second strain invariant can achieve higher
precision for predicting the multiaxial stress state [35]. For example, because the Biderman
model has an additional term (including the second strain invariant) compared to the Yeoh
model, the Biderman model has better prediction accuracy for the equibiaxial deforma-
tion of natural unfilled vulcanized rubber [44]. Nonetheless, the Biderman model may
incorrectly predict the deformation mode without the corresponding calibrated data [30].
Hence, the benefits obtained by simply adding the second strain invariant to the Yeoh
model are limited.

In order to more effectively improve the characterization ability of the Yeoh model for
the equibiaxial mode of deformation, the corresponding residual strain energy is calculated
(as shown in Figure 1d). Based on the analysis of residual strain energy, we found that
a composite function based on a power function represented by the principal stretches
can perfectly predict the residual strain energy (as shown in Figure 1d). Considering the
function predicting the residual strain energy as a correction term, a modified strain energy
density function is proposed in the following form:

W = Cio(I —3) + Ca(I —3)> + Cao(L —3)> + % [(M122)P + (A229)f + (MAs)? 3] ®

The correction term of modified strain energy density function can be understood as a
generalization of the first-order form about the second strain invariant. When = 2, the
correction term degenerates to the first-order form about the second strain invariant. In this
point, the modified model becomes the Biderman model. In addition, the modified strain
energy function can also be reduced to the neo-Hookean model (Cpp = C3p = &« = 0 MPa),
Yeoh model (¢ = 0 MPa) and Mooney-Rivlin model (Cyg = C3p = 0 MPa, § = 2) under the
condition of a specific coefficient. Therefore, the modified model can also be regarded as
the parent model of these four classical models. Furthermore, reducing the higher-order
terms of third-order polynomials can also make Equation (8) turn into other forms, whose
performance will be explained later.
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Figure 1. The characterization ability of Yeoh model for equibiaxial deformation mode under different
ranges of deformation: (a) large deformation; (b) medium deformation; (c) small deformation;
(d) residual strain energy under different ranges of deformation. The model parameters here are
obtained by using experimental data of natural unfilled vulcanized rubber from uniaxial tension,
equibiaxial tension and pure shear at the same time.

2.3.1. Constitutive Restrictions of the Proposed Strain Energy Density Function

Considering the material objectivity and the consistency between the general theory of
isotropic elasticity and its classical linear theory, six general postulates for the strain energy
density function are proposed by Ogden [45]. Based on these postulates, the modified
strain energy density function should satisfy the following relationships:

PW(M=1,1=1)
A2

= 8Cy9+2aB > 0 )

det [Hz]] >0,
WA =1,A,=1
Hy = (M=1A=1)

. (10)
ooy, b =1.2

In view of the above formulas, and in order to make the model consistent with its four
degraded models, here, the following constraint for the coefficient of strain energy density
function is kept:

C10>0; 4Cjp+apf >0 (17)
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Furthermore, some researchers gradually regard the poly-convexity as a fundamental
mathematical constraint to guarantee the existence of a solution for the constitutive model in
the boundary-value problem [46]. Here, the stricter condition of convexity, which requires
the Hessian matrix of Equation (8) to be positive definite [42], is adopted. According to the
components in the Hessian matrix (see Equation (S1) in the supporting information), H is
symmetric. Therefore, the conditions for making H positive definite are as follows:

2 2
M>0, M>O

2w oy PWC Fw g 12)
N2 9r2  9Aj0A; 9AZ0A;
Hence, as long as the inequality (12) is satisfied, the constitutive model with calibrated
parameters will possess the poly-convexity.

2.3.2. The Stability Criterion of the Proposed Strain Energy Density Function

A stable constitutive model obeying the laws of thermodynamics is a prerequisite
for subsequent finite element analysis. An unstable strain energy function will adversely
affect the nonlinear numerical algorithms in the finite element codes [47]. If the obtained
constitutive model is unstable, it is necessary to re-determine the parameters of the model
or even replace other models.

According to the Drucker stability criterion used in the commercial finite element
software [47], the relation between changes in the principal stress and changes in the
principal strain can be described by the following matrix equation:

doy| _ |[D11 Dia| |dey
|:d0'2] o |:D21 D22 dSz (13)
If the hyperelastic constitutive model is stable, it is only required that the coefficient

matrix (D) of the above matrix equation is positive definite. The components of the
coefficient matrix (D) are as shown in Equation (52) in the supporting information.

2.4. Analytical Stress Formulations for Standard Tests

The mechanical behavior of hyperelastic polymeric materials can be determined by
standard tests involving simple modes of deformation such as uniaxial tension (UT),
equibiaxial tension (ET) and pure shear (PS). The relationships between nominal stress
and principal stretches under these simple modes of deformation can be derived from
Equations (7) and (8) as follows:

Tur = % {Clo +2Cy0-(I1 —3) +3Cs0-(I1 — 3)2} ' (2/\2 B f\) * % [a' (Ag B Aiﬁﬂ (14)

Ter = % [Clo +2Co0-(I1 —3) +3C30- (11 — 3)2} . <2A2 a /\24> * % {‘X' (/\Zﬁ B Aiﬁ)] (15
Tps — % [Cro+2Ca0- (I = 3) +3Ca0-(1 — 3)2]: (2)\2 - ;) + % [« (A =27F)] a6)

2.5. Parameter Identification of Model

Identifying the parameters of the constitutive model is an important step during the
characterization of the hyperelasticity. Although some optimization algorithms have been
used to identify the parameters of constitutive models, these used methods still have their
own problems. For example, the damped least squares algorithm based on nonlinear least
squares [48] and the sequential quadratic programming algorithm based on multi-objective
optimization strategy [49] are all affected by initial values. The genetic algorithm using
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multi-objective optimization strategy has deficiencies in terms of local search capability [50].
Although the hybrid optimization algorithm based on the pattern search and damped least
squares can improve the local search capability of the single-optimization algorithm, its
global search capability is not as strong as the genetic algorithm [51]. In order to obtain
more accurate parameters of the model, the sensitivity of the identification method to the
initial values and its search capability need to be considered.

On these grounds, this study introduces a parameter identification method of the
constitutive model based on the cyclic genetic-pattern search algorithm, and its framework
is shown in Figure 2. In order to contain the experimental data with different modes of
deformation during the process of parameter identification as much as possible and effec-
tively weigh the importance of different modes of deformation, a weighted multi-objective
optimization strategy is adopted. To better measure the error between the predicted re-
sults of the model and experimental data, the objective function is defined as shown in
Equation (17). For obtaining the global optimal solution during solving the optimization
problem as much as possible, the hybrid optimization algorithm based on genetic-pattern
search is employed. The method utilizes the genetic algorithm for global coarse search
and utilizes the pattern search algorithm for local fine search. The combination of coarse
search and fine search makes the result closer to the ideal optimal value. Moreover, for
further improving the accuracy of the model and reducing the uncertainty caused by the
random search, the cyclic item based on the genetic algorithm is added to the process of
identification. Before the cyclic condition terminates, the genetic algorithm independently
operates multiple times, and its corresponding results are also stored in sequence. After-
wards, the optimal set of parameters is extracted from the results of multiple runs as the
initial values for the subsequent pattern search algorithm, thereby completing local fine
search. The parameters obtained by the pattern search algorithm are the final optimized
parameters, which will be directly used to draw the prediction curve and relative error
curve of the model, so as to intuitively evaluate the performance of the model. In order to
effectively evaluate the performance of constitutive model, the goodness of fit described in
Equation (18) will be used to measure the capability of the model to characterize different
modes of deformation, and the total error described in Equation (17) will be used to mea-
sure the overall predicted accuracy of the model. The smaller the total error is, the higher
the overall predicted accuracy of the model is. And the closer the goodness of fit is to 1, the
better the model characterizes the corresponding modes of deformation.

3 mp . 2 | M i 2
. _ model experiment experiment
min : Errorioa) = Y, Wye Z(Tpi —T, ) / Z(Tpi ) (17)
p:] i=1 i=1
2 _q \- Tmodel TEXPEriment 2 / e Texperiment 2 18
Xp =1~ 21 pi T pi Z pi (18)
i= i=1

where p represents the simple mode of deformation such as uniaxial tension (p = 1),
equibiaxial tension (p = 2) and pure shear (p = 3), respectively; m, is the number of the
experiment data for the pth mode of deformation; Erroryy,) corresponds to the total error
between the predicted results of the model and experimental data; T4l and Te?penmem are
the prediction stress of the model and experimental stress under pth mode of deformation,
respectively; and wy, is the weight for different modes of deformation, which satisfies
wy + wy + w3 = 1. Specifically, when experimental data from three deformation modes are
used for identifying the parameters of the model simultaneously, the corresponding weight
wy = 1/3; when experimental data with only two modes of deformation are used for
parameter identification simultaneously, the corresponding weight w, = 1/2 (the weight
of the unused mode of deformation is 0); when experimental data with only one mode of
deformation is used, the corresponding weight w;, = 1 (the weight of the other two unused
modes of deformation is 0). 7(% is the goodness of fit for the pth mode of deformation.
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Figure 2. The framework of parameter identification of constitutive model based on cyclic genetic-
pattern search algorithm.

3. Results and Discussion
3.1. Parameter Identification and Validation of Model
3.1.1. Predictive Ability of the Modified Model to the Single Deformation Mode

The ability of a constitutive model to accurately predict a single mode of deformation
is its foundation to effectively predict multiaxial modes of deformation. In view of this,
the single set of deformation data (UT, ET or PS) of natural vulcanized rubber from a
large deformation range are first used to identify the parameters of the proposed modified
model, respectively. Figure 3 presents the predictive effect of the modified model calibrated
based on the single deformation data on the corresponding single deformation mode. It is
clear that the independent predictive effect of the modified model is excellent for the two
deformation modes of equibiaxial tension and pure shear, and their goodness of fit reaches
0.99 (see Figure 3c,e). Although its independent prediction effect for the deformation mode
of uniaxial tension is slightly inferior, its prediction error for uniaxial tension does not
exceed 4% (see Figure 3a). Based on this, we can conclude that this modified model has the
ability to independently predict three deformation modes of uniaxial tension, equibiaxial
tension and pure shear, which lays the foundation for its ability to effectively predict the
multiaxial deformation of hyperelastic material. Here, the modified models, respectively
calibrated based on the tested data from uniaxial tension, equibiaxial and pure shear, are
also used to predict the other two untested deformation modes. As shown in Figure 3b,d f,
the modified model calibrated based on single set of tested data can also reasonably predict
the other two untested deformation modes. As we explained in the introduction, although
researchers have mixed opinions on the method to calibrate the parameters of the model
based solely on data from a single deformation mode, the ability to effectively predict
untested deformation modes is extremely helpful for characterizing an unmeasurable
deformation mode of certain polymeric materials in practice. Anyway, compared with the
results of other studies [30], the results here indicate that the additional correction term we
added enhances the model’s ability to characterize untested deformation modes. This point
will also continue to be discussed in a more reliable manner in the subsequent content.
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Figure 3. The predictive effect of the modified model on the single deformation mode. (a,b) The
predictive effect of the modified model calibrated based on the single set of experimental data of
uniaxial tension. (¢,d) The predictive effect of the modified model calibrated based on the single set of
experimental data of equibiaxial tension. (e, f) The predictive effect of the modified model calibrated
based on the single set of experimental data of pure shear.

3.1.2. Predictive Ability of the Modified Model to the Multiaxial Deformation Mode

For verifying the prediction ability of the modified model for the multiaxial defor-
mation mode, the data of multiple deformation modes (UT, ET and PS) from the same
material dataset are simultaneously used to identify the parameters of the modified model.
The following will present the predictive effects of the modified constitutive model on the
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multi axial deformation state of different materials in sequence. And these results are also
compared with the results of other existing models (as mentioned in Section 2.1).

Natural Vulcanized Rubber

As mentioned earlier, the widespread use of Treloar’s experimental dataset on the
natural vulcanized rubber has made it a barometer for evaluating the ability of constitutive
models to characterize hyperelastic materials. Using this dataset to calibrate the modified
model proposed in this study will facilitate an intuitive comparison with some models in the
literature (including those models that are not on our comparison list). Table 1 summarizes
the quantitative results of different constitutive models for characterizing the hyperelastic
property of the natural vulcanized rubber. It can be seen from the corresponding total
error that the proposed constitutive model is not only more capable in characterizing the
states of multiaxial stress than the Yeoh model and the corresponding improved models
(such as the modified Yeoh model, generalized Yeoh model and Melly model), but also
performs better than the Anssari-Benam model newly proposed by a reviewer. And its
total predicted error for different ranges of deformation is all less than 3%. In addition, the
performance of the model proposed in this study also outperforms the performance of the
modified Anssari-Benam model. The modified Anssari-Benam model is made by us under
the persuasion of a reviewer, which is an improvement on the original Anssari-Benam
model based on our correction term. Although the modified Anssari-Benam model showed
significant improvement in characterizing medium and small deformations compared to
the original model, it showed significant bias in characterizing uniaxial tension under large
deformation. Compared with the excellent third-order Ogden model and Alexander model,
our model outperforms the third-order Ogden model in characterizing large deformation,
but is slightly weaker than the Alexander model. The reason why it is weaker than the
Alexander model is because the goodness of fit of the proposed model for UT under
large deformation is slightly lower than the Alexander model. Based on the fact that
industrial rubber materials typically experience a strain range of 0-100% [32,36,52], we
believe that this weakness does not affect the use of the modified model proposed in this
study. Moreover, the quantitative data in Table 1 also prove that the modified model’s
ability to characterize medium to small deformations is comparable to the third-order
Ogden model. From a quantitative point of view, the total prediction errors of the two
models are within the range of 1-1.5%, and the corresponding difference between their
goodness of fit under different modes of deformation is not more than 0.5%. The overall
performance of the Alexander model in characterizing medium deformation is slightly
weaker than that of our proposed model.

Table 1. Total error and goodness of fit of different models on natural vulcanized rubber [37].

Models Large Deformation Medium Deformation Small Deformation

Error UT ET PS Error UT ET PS Error UuT ET PS
Ogden-N3 0.035 0.927 0987 0981 0011 098 098 0994 0.012 0988 0.979 0.996
Alexander 0.017 0982 0984 0982 0016 0981 0987 0985 0.013 0987 0.980 0.99
Yeoh 0.083 0.928 0.853 0969 0.093 0940 0809 0973 0117 0872 0.810 0.967
Melly 0.033 0944 0969 0988 0.021 0984 0967 0987 0.020 098 0.966 0.988
Modified Yeoh 0.077 0938 0.843 0989 0.084 0942 0809 09% 0.097 0929 0.782 0.999
Generalized Yeoh 0.084 0914 0.861 0973 0.08 0943 0807 0993 0110 0914 0.791 0.967
Anssari-Benam 0.079 0966 0.828 0968 0.093 0941 0806 0973 0.099 0930 0.781 0.993
Modified Anssari-Benam  0.164 0.608 0.954 0945 0.014 0986 0981 0990 0.013 0987 0976 0.997
This work 0.024 0947 0991 0991 0.012 0.991 0982 0.991 0.013 0.987 0.978 0.997

Notes: Error indicates the total error of different models; UT, ET and PS represent the goodness of fit of different
models for uniaxial tension, equibiaxial tension and pure shear, respectively. The model parameters are shown in
Tables S7-59 in supporting information.

In order to make these results more visible and clear, Figures 4-6 present the prediction
curves and corresponding prediction error curves of the modified constitutive model within
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different deformation ranges for different deformation modes, respectively. Obviously,
these qualitative curves also reflect the good predicted capability of the modified model.
Especially from the corresponding relative error curves, it can be seen that the relative
error of the proposed model for predicting different deformation modes under different
deformation ranges is comparable to the third-order Ogden model and Alexander model
(their average relative errors are less than 5%), and all the average relative errors of our
proposed model do not exceed 3.5%. Even for predicting the uniaxial tension under large
deformation, the average relative error of the modified model proposed in this study is
only 3.3%.

7 T T T b 020 v T T v y
o Uniaxial experimental data . -1 = This work 5_3233%
6} == This work for uniaxial tension =-= Melly §-—3.4%
—_ = [Equibiaxial experimental data y %‘0 15 - Alexander 6=3.7%
ch s = =This work for cquibiaxial tension i :c: & == Ogden-N3 5=4.7% '
é &  Pure shear experimental data %’=0.947 5 —- = Anssari-Benam 8=6.0% i
aql 7 =This work for pure shear = s
£ | c,0.11290 MPa @=0.79224 MPa £ 0.10
[#5] ) 7]
—= 3} €,70.00041 MPa 033618 ‘ o
£ =099 =
., =0.00002 MPs i —
ol Co : {  zoos
Z
1 )
F 0.00 -
ol ) N L
0 1 2 3 4 5 6 7 8 ; ;
) ) Nominal Strain (x100%)
Nominal Strain (x100%)
030 d 0.09 v T T
\ —— This work §=1.60% — This work 5-0.9%
ol b —+= Ogden-N3 5-162% | O T Modfied-Yeoh o7
S | Alexander 5-2.8% © NN == Melly 5=1.9%
= A \ —-— Melly 5-4.9% = 006 _\__'\. Alexander 2—2.1%
Zt).ls \ \-\ —-= Modificd Anssari-Benam §7.6% | E/ . AY N =+= Ogden-N3 5=2.5%
5 5
5 5
012 1 5
-
e g
= = 0.03
] )
& 0.06 1 e
N\, _
A e T
0.0 : s : =
0. 5 20 25 30 35 )

Nominal Strain (>x100%) Nominal Strain (x100%)

Figure 4. The prediction performance and corresponding prediction error curves of modified consti-
tutive model in large deformation ranges for different deformation modes. (a) Prediction curves for
different deformation modes; (b) relative error of different models in predicting uniaxial deformation
mode; (c) relative error of different models in predicting equibiaxial deformation mode; (d) relative
error of different models in predicting the deformation mode of pure shear. Note: Only the top five
models are presented in Figure 4b—d. 6 means the average relative error.

Further comparing the predicted results of the modified constitutive model with the
Yeoh model, modified Yeoh model and generalized Yeoh model, it can be found that the
overall predicted accuracy of the proposed model is several times higher than theirs in all
ranges of deformation. In particular, the predicted accuracy on the equibiaxial mode of
deformation is improved most obviously (as shown in Figure la—c). Continuing to compare
with the new Melly model (it uses /I, as the correction term to improve the performance
of the Yeoh model), the modified constitutive model proposed in this study is better in
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both overall prediction accuracy and goodness of fit for different deformation modes (the
relative error curves shown in Figures 4-6 can also directly reflect this point). Based on
these findings, we have reason to believe that the correction term expressed in the form of
a power function based on the principal stretches is beneficial in improving the ability of
the model to characterize the state of multiaxial stress.

Focusing on the coefficient of the proposed model in Figures 4-6, it is clear that the
coefficient of the third-order term of the first strain invariant is a small value in the case of
large deformation, while it changes to zero in the case of medium or small deformation.
This shows that the coefficient of the third-order term of the first strain invariant cannot be
ignored under the condition of large deformation. It can be speculated that the coefficient
should affect the capability of the proposed model to characterize large deformation. In
other words, the proposed constitutive model needs five parameters when characterizing
the large deformation, while it requires only four parameters when it characterizes a small
or medium deformation, which makes the proposed model more simple.
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Figure 5. The prediction performance and corresponding prediction error curves of modified constitu-
tive model in medium deformation ranges for different deformation modes. (a) Prediction curves for
different deformation modes; (b) relative error of different models in predicting uniaxial deformation
mode; (c) relative error of different models in predicting equibiaxial deformation mode; (d) relative
error of different models in predicting the deformation mode of pure shear. Note: Only the top five
models are presented in Figure 5b—d. 6 means the average relative error.
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Figure 6. The prediction performance and corresponding prediction error curves of modified consti-
tutive model in small deformation ranges for different deformation modes. (a) Prediction curves for
different deformation modes; (b) relative error of different models in predicting uniaxial deformation
mode; (c) relative error of different models in predicting equibiaxial deformation mode; (d) relative
error of different models in predicting the deformation mode of pure shear. Note: Only the top five
models are presented in Figure 6b—d. 6 means the average relative error.

Isoprene Vulcanized Rubber

The isoprene vulcanized rubber obtained by Kawabata et al. [38] and the natural
vulcanized rubber obtained by Treloar [37] are similar, both of which belong to unfilled
rubber. Continuing to calibrate the constitutive model based on the dataset of the isoprene
vulcanized rubber will further validate the performance of the modified constitutive model
proposed in this study. Table 2 summarizes some quantitative results obtained based
on this dataset. Obviously, compared with other constitutive models in the table, the
modified model proposed in this study achieved the lowest total prediction error (1.5%).
This means that the improved model has the best comprehensive description effect on the
hyperelastic properties of this material. The corresponding more intuitive prediction curves
for different deformation modes are shown in Figure 7a. From the graph, it can be seen
that the prediction curves of this modified model for different deformation modes almost
perfectly coincide with the corresponding experimental data points. In order to compare
the prediction accuracy of different models for different deformation modes in more detail,
the corresponding relative error curves are shown in Figure 7b—d. In order to present the
results clearly, only the relative error curves of the models with the top five prediction
accuracies are shown in the corresponding figures and the average relative error of the
corresponding model is marked on the legend. It can be observed that almost all the models
presented in these figures have relatively low relative error, while the modified model in
this study has lower relative errors for predicting different deformation modes. The vast
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majority of its curves are below 3%, resulting in an average relative error for predicting
different deformation modes ranging from 1.2% to 1.3%, which slightly outperforms the
third-order Ogden model (0.9-1.9%) and the Alexander model (1.6-2.6%).

Table 2. Total error and goodness of fit of different models on isoprene vulcanized rubber [38].

Models The Number of Coefficient Error uT ET PS
Ogden-N3 6 0.017 0.970 0.996 0.984
Alexander 5 0.025 0.986 0.986 0.954

Yeoh 3 0.092 0.964 0.815 0.944

Melly 4 0.032 0.979 0.976 0.950

Modified Yeoh 5 0.068 0.984 0.845 0.966
Generalized Yeoh 6 0.068 0.987 0.847 0.963
Anssari-Benam 3 0.081 0.987 0.800 0.976
Modified Anssari-Benam 5 0.019 0.980 0.997 0.965
This work 5 0.015 0.981 0.997 0.977

Notes: Error indicates the total error of different models; UT, ET and PS represent the goodness of fit of different
models for uniaxial tension, equibiaxial tension and pure shear, respectively. The model parameters are shown in
Table S10 in supporting information.
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Figure 7. The prediction performance and corresponding prediction error curves of modified consti-
tutive model for isoprene vulcanized rubber. (a) Prediction curves for different deformation modes;
(b) relative error of different models in predicting uniaxial deformation mode; (c) relative error of
different models in predicting equibiaxial deformation mode; (d) relative error of different models
in predicting the deformation mode of pure shear. Note: Only the top five models are presented in
Figure 7b—d. 6 means the average relative error.
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Overall, these results once again confirm the excellent predictive performance of the
modified model proposed in this study on the multiaxial deformation of unfilled rub-
ber. Specifically, the performance of the modified model has a several-fold improvement
compared to other improved Yeoh models, which once again demonstrates that the im-
provement of the Yeoh model based on the correction term of this study is worthwhile. In
addition, the improved model outperforms the modified Anssari-Benam model, indicating
that the improvement of the Yeoh model based on our correction term is superior to the
improvement of the Anssari-Benam model based on the same correction term.

Unfilled Silicone Rubber

Silicone rubber has good mechanical properties and biocompatibility [17]. Completing
more accurate modeling of the mechanical properties is of great significance for its fuller
utilization in the field of biomedicine. Here, the modified constitutive model proposed
in this study is applied to the unfilled silicone rubber [17] to verify its usability in more
precisely modeling silicone rubber. Table 3 quantitatively shows the prediction performance
of different models on the hyperelastic property of unfilled silicone rubber. It can be seen
from these quantitative data that although the modified constitutive model proposed in this
study is not as effective as the third-order Ogden model with six undetermined parameters
in predicting the multiaxial stress state of silicone rubber, it ranks second alongside the
Alexander model and the modified Anssari—-Benam model (both with five undetermined
parameters). The reason for ranking second is that the modified model in this study
slightly overestimates the uniaxial tensile deformation when characterizing the multiaxial
deformations. As shown in Figure 8a, the prediction curves of the modified model for
equibiaxial tension, pure shear and uniaxial compression fit well with the corresponding
experimental data points, while its prediction curve for uniaxial tension is slightly higher
than the experimental data points. Nonetheless, its average relative errors for predicting
different deformations are no more than 8% (as shown in Figure 8b—d). And, considering
that it far outperforms the Yeoh model with a total prediction error of 4.4%, and slightly
surpasses these existing improved models for the Yeoh model, we still believe that the
modified constitutive model proposed in this study has potential for application for unfilled
silicone rubber.

Table 3. Total error and goodness of fit of different models on unfilled silicone rubber [17].

Models The Number of Coefficient Error uT ET PS
Ogden-N3 6 0.029 0.970 0.985 0.958
Alexander 5 0.044 0.936 0.988 0.943

Yeoh 3 0.233 0.606 0.897 0.800

Melly 4 0.048 0.939 0.963 0.955
Modified Yeoh 5 0.047 0.932 0.961 0.965
Generalized Yeoh 6 0.048 0.931 0.955 0.970
Anssari-Benam 3 0.046 0.922 0.983 0.956
Modified Anssari-Benam 5 0.044 0.934 0.986 0.947
This work 5 0.044 0.920 0.972 0.978

Notes: Error indicates the total error of different models; UT, ET and PS represent the goodness of fit of different
models for uniaxial tension, equibiaxial tension and pure shear, respectively. The model parameters are shown in
Table S11 in supporting information.
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Figure 8. The prediction performance and corresponding prediction error curves of modified con-
stitutive model for unfilled silicone rubber. (a) Prediction curves for different deformation modes;
(b) relative error of different models in predicting uniaxial deformation mode; (c) relative error of
different models in predicting equibiaxial deformation mode; (d) relative error of different models
in predicting the deformation mode of pure shear. Note: Only the top five models are presented in
Figure 8b—d. 6 means the average relative error.

Poly-Acrylamide Hydrogel

Like silicone rubber, hydrogels are also widely used in the biomedical field. But
compared to silicone rubber, they undergo greater deformation due to their softness [25].
Currently, accurately characterizing their mechanical properties also has important practical
significance. Here, we also apply the modified constitutive model proposed in this study
to the poly-acrylamide hydrogel [39] to explore the ability of this model in describing
the hyperelastic property of hydrogel. As shown in Table 4, the modified constitutive
model proposed in this study has the best prediction effect on the multiaxial deformation of
hydrogel. Its total prediction error for different deformation modes is only 1.1%. Figure 9
visually shows its actual prediction performance. It can be clearly seen from the figure that
the prediction curves of the modified constitutive model proposed in this study for different
deformations of hydrogels are in good agreement with the corresponding experimental
data points, and the corresponding goodness of fit reaches 0.98. Moreover, the relative
error curves of the modified model for different deformation modes are mostly below 4%,
resulting in an average relative error of 1.8-3.1%. Looking carefully at the coefficients of the
modified model at this time (see Figure 9a), it can be found that the coefficient of the cubic
term of the first invariant is zero, which means that the modified constitutive model only
needs four parameters to characterize the hydrogel. Based on the above results, we have
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reason to believe that the modified constitutive model also has the ability to accurately
characterize the multiaxial deformation of hydrogels.

Table 4. Total error and goodness of fit of different models on poly-arcylamide hydrogel [39].

Models The Number of Coefficient Error UuT ET PS
Ogden-N3 6 0.013 0.982 0.992 0.988
Alexander 5 0.014 0.981 0.993 0.986

Yeoh 3 0.090 0.966 0.778 0.986
Melly 4 0.012 0.981 0.995 0.987
Modified Yeoh 5 0.089 0.967 0.777 0.991
Generalized Yeoh 6 0.089 0.965 0.780 0.988
Anssari-Benam 3 0.095 0.956 0.783 0.977
Modified Anssari-Benam 5 0.018 0.984 0.980 0.984
This work 5 0.011 0.989 0.994 0.985
Notes: Error indicates the total error of different models; UT, ET and PS represent the goodness of fit of different
models for uniaxial tension, equibiaxial tension and pure shear, respectively. The model parameters are shown in
Table 512 in supporting information.
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Figure 9. The prediction performance and corresponding prediction error curves of modified consti-
tutive model for poly-arcylamide hydrogel. (a) Prediction curves for different deformation modes;
(b) relative error of different models in predicting uniaxial deformation mode; (c) relative error of
different models in predicting equibiaxial deformation mode; (d) relative error of different models
in predicting the deformation mode of pure shear. Note: Only the top five models are presented in
Figure 9b—d. 6 means the average relative error.
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Carbon-Black-Filled Styrene Butadiene Rubber

Due to the filling of additives, the stress—strain curve of filled rubber is significantly dif-
ferent from that of unfilled rubber [40]. Based on this, there are few constitutive models that
can properly capture the hyperelastic property of this material in the current literature [25].
If the modified constitutive model proposed in this study can also well characterize the mul-
tiaxial deformation characteristics of filled rubber, it will further confirm its adaptability to
different materials. Therefore, we further apply the modified model proposed in this study
to a dataset related to the carbon-black-filled styrene butadiene rubber [40]. As summarized
in Table 5, the modified model proposed in this study also has good characterization ability
for the multiaxial deformation of this filled rubber. Although its overall performance is not
the best, it ranks behind the Alexander model and before the third-order Ogden model
with a total prediction error of 3.4%. Moreover, the difference in goodness of fit between
the modified model and the Alexander model for the two deformation modes of uniaxial
and equibiaxial tension is no more than 1%, and the difference in goodness of fit between
the two models for pure shear is only 2.2%. Furthermore, like predicting other materials,
the modified model proposed in this study also outperforms other improved models of the
Yeoh model in describing the multiaxial deformation of filled rubber. Figure 10 shows the
intuitive prediction performance of the modified model for different deformation modes.
Just as the case indicated by the aforementioned quantitative indicators, the prediction
curves of the modified model for different deformation modes are in good agreement
with the corresponding experimental data points (see Figure 10a) and the corresponding
relative error is in a relatively low position (see Figure 10b—d). Although it can be seen
from Figure 10d that the average relative error of the modified constitutive model on
pure shear (7.1%) is slightly higher than that of the generalized Yeoh model and modified
Yeoh model, most of the zones of its relative error curve are below 6%. Moreover, from
the perspective of characterizing multiaxis deformations, there are trade-offs between the
predictive performance of the model for different deformation modes during calibrating
the parameters of the model, so as to optimize the overall characterization ability of the
model. Based on this, the slight advantage presented by the modified Yeoh model and
generalized Yeoh model in characterizing pure shear do not make them possess better
overall prediction accuracy, while the result is that the modified model in this study is
better than them in overall prediction accuracy. The prediction accuracy of the modified
model proposed in this study for different deformation modes is relatively balanced, and
each goodness of fit reaches 0.96.

Table 5. Total error and goodness of fit of different models on carbon-black-filled styrene butadiene
rubber [40].

Models The Number of Coefficient Error uT ET PS
Ogden-N3 6 0.037 0.968 0.966 0.954
Alexander 5 0.023 0.975 0.975 0.982

Yeoh 3 0.106 0.887 0.885 0.909

Melly 4 0.049 0.958 0.960 0.936
Modified Yeoh 5 0.080 0.916 0.887 0.956
Generalized Yeoh 6 0.079 0.914 0.883 0.965
Anssari-Benam 3 0.107 0.890 0.875 0.914
Modified Anssari-Benam 5 0.039 0.963 0.965 0.954
This work 5 0.034 0.967 0.969 0.961

Notes: Error indicates the total error of different models; UT, ET and PS represent the goodness of fit of different
models for uniaxial tension, equibiaxial tension and pure shear, respectively. The model parameters are shown in
Table S13 in supporting information.
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Figure 10. The prediction performance and corresponding prediction error curves of modified
constitutive model for carbon-black-filled styrene butadiene rubber. (a) Prediction curves for different
deformation modes; (b) relative error of different models in predicting uniaxial deformation mode;
(c) relative error of different models in predicting equibiaxial deformation mode; (d) relative error of
different models in predicting the deformation mode of pure shear. Note: Only the top five models
are presented in Figure 10b—-d. § means the average relative error.

Human Brain Cortex Tissue

Due to the unique asymmetry and nonlinearity presented by the deformation data
from human brain tissue [41], there are currently few constitutive models that can accurately
capture it without losing convexity [25]. Applying the modified model proposed in this
study to a dataset from human brain tissue will further validate the potential of this
modified model in the biomechanical modeling of brain tissue. Table 6 and Figure 11 show
some of the results obtained by applying the modified constitutive model proposed in
this study to a dataset reflecting the deformation of human brain cortex tissue [41]. From
the quantitative indicators in Table 6, it can be found that the total prediction error of
the modified constitutive model proposed in this study for the multiaxial deformation
of human brain cortex tissue is only 5.6%. Although the error value is slightly higher
than the 5.4% of the third-order Ogden model, the difference between the two is only
about 3.6%. This difference is smaller when it comes to local indicator—goodness of fit.
Specifically, the difference in goodness of fit between the proposed modified model and
the third-order Ogden model for uniaxial tension and compression of brain tissue is only
0.1%, while the difference in goodness of fit between simple shear is only 0.4%. Based on
these small differences, we believe that our modified model has a comparable ability to
describe the multiaxis deformations of human brain cortex tissue to the third-order Ogden
model. As shown in Figure 11a,b, our proposed modified model appropriately captures the
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asymmetry of brain cortex tissue during uniaxial tension and compression, as well as its
high nonlinearity during simple shear. Moreover, the relative error of our modified model
is also on par with that of the third-order Ogden model (see Figure 11c,d).

Table 6. Total error and goodness of fit of different models on human brain cortex tissue [41].

Models The Number of Coefficient Error uT SS
Ogden-N3 6 0.054 0.927 0.966
Generalized Anssari-Benam 4 0.083 0.922 0.913
Modified Anssari-Benam 5 0.060 0.915 0.965
This work 5 0.056 0.926 0.962
Notes: Error indicates the total error of different models; UT, ET and PS represent the goodness of fit of different
models for uniaxial tension, equibiaxial tension and pure shear, respectively. The model parameters are shown in
Table S14 in supporting information.
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Figure 11. The prediction performance and corresponding prediction error curves of modified
constitutive model for human brain cortex tissue. (a) Prediction curves for different deformation
modes; (b) relative error of different models in predicting uniaxial deformation mode; (c) relative
error of different models in predicting equibiaxial deformation mode; (d) relative error of different
models in predicting the deformation mode of pure shear. Note: Only the top three models are
presented in Figure 11b—d. § means the average relative error.

In [25], the researcher generalized the Anssari-Benam model, and the first-order
form of the obtained model (we call it the generalized Anssari-Benam model) also has a
good effect on describing the multiaxial deformation of brain cortex tissue without losing
convexity. Because the dataset we used here is the same as that used by the aforementioned
researcher (see Table S6 for details), we directly used the parameters of the model obtained
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by the aforementioned researcher to obtain the quantitative results of the generalized
Anassari-Benam model in describing the deformation of brain cortex tissue. It is evident
that our proposed modified model outperforms the generalized Anssari-Benam model in
describing the multiaxis deformation of brain cortex tissue, both globally and locally (see
Table 6). Here, we need to emphasize that when we reproduced the prediction performance
of the generalized Anssari-Benam model based on the same parameters and dataset, we
found that there is a deviation between its corresponding peak of relative error and that
of [25]. The peaks of relative error obtained by us for both uniaxial tension and pure shear
slightly exceed 25%. Anyway, our conclusion is consistent with [25], that is, the third-order
Ogden model has improved prediction performance compared to the generalized Anssari—
Benam model and the performance of our proposed modified model is comparable to
the third-order Ogden model; so, our model should still be better than the generalized
Anssari-Benam model proposed in [25]. In the next section, we also confirm that our
proposed modified model remains stable and convex. In Table 6, we also provide the
results of the modified Anssari-Benam model. Figure 11c,d also presents its relative error
curves. Based on these results, it is clear that our modified model is still better.

3.1.3. Predictive Ability of the Modified Model to the Untested Deformation Mode

The Treloar’s dataset on natural vulcanized rubber is the most commonly used
dataset in verifying the ability of constitutive models to describe untested
deformations [15,18,27,30-32]. Considering this, we first utilized this dataset to demon-
strate the ability of our proposed modified model to predict untested deformations. But, to
avoid controversy, here we will mainly use data from UT and PS to calibrate the model, and
verify the predictive ability of the obtained model for the untested equibiaxial deformation
mode. As introduced in the introduction, this is also a common situation in practice, where
the experiments of uniaxial tension and pure shear are easier for researchers compared to
the experiments of equibiaxial tension.

Maintaining consistency with Section 3.1.2 the experimental data of UT and PS from
different deformation ranges of this dataset are applied to complete the parameter identifi-
cation of constitutive models, respectively. The corresponding results are shown in Table 7
and Figure 12 below. Combining these quantitative and qualitative results, it can be seen
that the proposed modified constitutive model not only has a good, predicted capability for
the modes of deformation which have been tested such as uniaxial tension and pure shear,
but can also effectively predict the equibiaxial mode of deformation which is untested.
Specifically, the modified model has better predictive ability for the untested equibiaxial de-
formation mode in different deformation ranges than all models except for the third-order
Ogden model in Table 7. In fact, like the other studies mentioned above [15,18,27,30-32], if
only Treloar’s data from uniaxial tension were used to calibrate these models, the effectively
predictive ability of the proposed model for the other two untested deformation modes (ET
and PS) would be superior to all models in the comparative list, including the third-order
Ogden model (as shown in Table S15 and Figure S1 in the supporting information). This
shows that the addition of the correction term not only does not affect the ability of the
original Yeoh model to effectively predict untested deformations, but further improves its
ability in the modified model.

Table 8 further summarizes the quantitative prediction results of our modified model
calibrated by using data of UT and PS from the other four datasets (the corresponding pre-
diction curve is shown in Figure 52). Obviously, the proposed modified constitutive model
can also effectively predict the untested equibiaxial deformation of isoprene vulcanized
rubber, unfilled silicone rubber, poly-arcylamide hydrogel and carbon-black-filled styrene
butadiene rubber. Except for a higher total predictive error for the unfilled silicone rubber,
the proposed modified model has a total predictive error of less than 5% for the other three
types of rubber. Moreover, compared to other models, these results are also superior to
most other models (as shown in Tables S19-522 in the supporting information), especially
the several existing improved models of the Yeoh model. It should be clarified that our
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modified model is not the only one with a relatively low effective prediction accuracy for
untested equibiaxial deformation of the unfilled silicone rubber. As shown in Table 520
(see the supporting information), compared to our proposed modified model, the widely
recognized third-order Ogden model and Alexander model with good performance have
lower effective prediction accuracy for untested equibiaxial deformation modes of the
unfilled silicone rubber. And, the Anssari-Benam model and the modified Anssari-Benam
model are directly unable to effectively predict the untested equibiaxial deformation of the
unfilled silicone rubber. Although the results show that the modified Yeoh model and the
generalized Yeoh model have slightly high prediction accuracy for the untested equibiaxial
deformation of the unfilled silicone rubber, their prediction accuracy for UT is not high
such that their overall prediction accuracy is not excellent (with a total error of over 8%).

Table 7. The predictive results of different models calibrated by the data from UT and PS of natural
vulcanized rubber [37].

Model Large Deformation Medium Deformation Small Deformation
ode
Error uT ET PS Error uUT ET PS Error uUT ET PS
Ogden-N3 0.043 0975 0907 0989 0.018 0991 0960 0.995 0.014 0988 0971 0.997
Alexander 0175 0983 0501 0991 0.111 0983 0.689 0993 0.027 0.988 0934 0.998
Yeoh 0.086 0933 0.839 0971 0.095 0952 0794 0968 0.128 0941 0.756 0.918
Melly 0.069 0957 0.844 0993 0.039 0988 0905 0989 0.022 0987 0957 0.989
Modified Yeoh 0.079 0949 0.829 0986 0.086 0948 0.802 0993 0.098 0.936 0.774 0.995

Generalized Yeoh
Anssari-Benam
Modified Anssari-Benam

0.086 0970 0800 0973 0.092 0954 0787 0983 0108 0961 0.757 0.959
0082 0972 0813 0971 0.096 0952 0790 0970 0.100 0932 0.773 0.995
0225 0626 0757 0942 0.029 0988 0936 0991 0.015 0986 0971 0.998

This work 0.066 0953 0.855 0993 0.027 0992 0.933 0994 0.013 0.988 0976 0.997
Notes: “Error” indicates the total error in predicting the three modes of deformation. UT, ET and PS represent
the goodness of fit of different models for uniaxial tension, equibiaxial tension and pure shear, respectively. The
model parameters are shown in Tables S16-518 in supporting information.

Table 8. The predictive results of the modified model calibrated by the data from UT and PS of others
rubber.
Different Materials Error UT ET PS
Isoprene vulcanized rubber 0.041 0.974 0.911 0.993
Unfilled silicone rubber 0.134 0.982 0.642 0.974
Poly-arcylamide hydrogel 0.035 0.992 0.914 0.990
Carbon-black-filled styrene butadiene rubber 0.049 0.968 0.938 0.949

Notes: “Error” indicates the total error in predicting the three modes of deformation. UT, ET and PS represent
the goodness of fit of different models for uniaxial tension, equibiaxial tension and pure shear, respectively. The
model parameters are shown in Tables 523-526 in supporting information.

Anyway, in view of the above analysis, it can be believed that it is worthwhile to
modify the Yeoh model by the proposed correction term in this study. The correction term
expressed in the form of power function based on the principal stretches gives the modified
model improved ability in predicting the untested equibiaxial deformation, which means
that the proposed modified constitutive model can be applied to effectively predict the
equibiaxial mode of deformation when the equibiaxial tension cannot be completed under
limited hardware conditions.
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Figure 12. The prediction effects of the modified model for different deformation modes with
different deformation ranges: (a,b) in large deformation; (¢,d) in medium deformation; (e,f) in small
deformation. Here, the parameters of models are calibrated by the experimental data of uniaxial
tension and pure shear with different deformation ranges. Only the top five constitutive models are
listed on the right side of the figure.

3.2. The A Posteriori Check of the Modified Model

Possessing the excellent ability to characterize the hyperelastic behavior is only a basic
requirement for a constitutive model. If the constitutive model can be further used, it
must obey the laws of thermodynamics, and it must also ensure that it has a solution to
the boundary-value problem (as explained in Section 2.2). Accordingly, the a posteriori
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check on the proposed modified model is performed. The a posteriori check is conducted
within the range of minimum to maximum principal stretch of the corresponding material
datasets (Amin < A < Amax)- It is verified that the proposed modified constitutive model
calibrated in the above subsection satisfies the inequalities of (12) and can make the matrix
of D positive definite. This means that the modified model with calibrated parameters has
a posteriori poly-convexity and Drucker stability. For a more intuitive display, Figure 13
demonstratively presents the iso-energy contour plots of the modified models with different
calibrated parameters obtained in Section 3.1.2. It is clear that the stationary points are
positioned in the undeformed state (A; = Ay = 1), namely, the modified models with
different calibrated parameters obtained based on different material datasets are stable and
possess the convexity [4,52].

a as . = N N

Figure 13. Iso-energy contour plots of the modified models with different calibrated parameters
obtained based on different material datasets: (a) the dataset of natural vulcanized rubber containing
medium deformation; (b) the dataset of isoprene vulcanized rubber; (c) the dataset of unfilled silicone
rubber; (d) the dataset of poly-acrylamide hydrogel; (e) the dataset of carbon-black-filled styrene
butadiene rubber; (f) the dataset of human brain cortex tissue.

3.3. Validation of the Parameter Identification Method

In order to validate the validity of the parameter identification method introduced in
this study, several algorithms that have been used (including the damped least squares
algorithm (L-M) [48], genetic algorithm (GA) [50], pattern search algorithm (PS) and the
hybrid algorithm (PS-LM) consisting of pattern search and damped least squares [51]) are
used to compare with the cyclic genetic-pattern search algorithm (CGA-PS) introduced
in this study. These algorithms are used to identify the parameters of the third-order
Ogden model and the modified constitutive model, respectively. The dataset used in the
identification process is the dataset from the natural vulcanized rubber containing the large
deformation. Considering that the L-M algorithm and the PS algorithm are affected by
the initial value, the initial values of the L-M algorithm, the PS algorithm, and the PS-LM
algorithm will be randomly generated by a random function within five initial intervals
of 0-1, 0-0.5, 0-0.25, 0-0.1 and 0-0.05, respectively. And two different initial values are
generated in each interval, which means that each algorithm needs to run independently
twice with two different initial values within the corresponding interval. Therefore, each
algorithm will run independently ten times due to being randomly assigned ten initial
values separately. Owing to the inherent random search property, the initial population
interval of the GA algorithm and the CGA-PS algorithm is fixed at 0-1, and they will also
run ten times independently. Finally, for the ten sets of running results of each algorithm,
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only the set of results with the minimum total error (Erroryy,), see Equation (17)) will
be recorded.

According to the minimum total error shown in Figure 14a, it can be seen that the
parameter identification method based on the cyclic genetic-pattern search algorithm
introduced in this study significantly improves the performance of constitutive models
for characterizing hyperelastic properties. In view of the standard deviation of the total
error shown in Figure 14b, the parameter identification method introduced in this study
has the minimum standard deviation compared with other methods. So, there is reason to
believe that the introduced method of parameter identification performs better in terms of
uniform convergence. Figure 15 presents the prediction performance of different modes of
deformation by the modified model based on different methods of parameter identification
(the relevant prediction curve of the third-order Ogden model is shown in Figure S3). It is
clear that the introduced method of parameter identification based on the cyclic genetic-
pattern search algorithm (CGA-PS) in this study has better performance, which can make
the final calibrated models have better characterization capability for different modes of
deformation. In addition, we also compared the identification ability of the introduced
parameter identification method and the parameter identification method integrated in
ABAQUS by the three models of the Arruda-Boyce model, Ogden model and Yeoh model.
This comparison procedure uses the experimental data consistent with the above. From
this result (as shown in Table 9), it can be found that the introduced identification method
also slightly outperforms the parameter identification method integrated in ABAQUS.
Hence, one can see that the introduced method of CGA-PS is not only effective, but also
has better performance in the process of parameter identification for the hyperelastic
constitutive model.
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Figure 14. The comparison of different parameter identification methods: (a) the minimum total-error
after ten runs of different parameter identification methods; (b) the standard deviation of total error
after ten runs of different parameter identification methods.
Table 9. The comparison between the ability of the introduced parameter identification method and
the ability of parameter identification method integrated in ABAQUS.
Method Arruda-Boyce Model Third-Order Ogden Model Yeoh Model
Error =0.103 Error = 0.041 Error = 0.083
ABAQUS X;,T =0.894 X;,T =0.925 X;,T =0.932
Xzr = 0.877 Xzr =0.978 Xgr = 0.858
Xpg =0.920 Xps = 0.974 Xps = 0.962
Error = 0.087 Error = 0.035 Error = 0.077
2 2 2
. =0.934 Xy = 0.927 Xy = 0.943
Th k Xyt T T
18 Wor = 0.852 = 0.987 = 0.839
Xpg =0.955 Xpg =0.981 Xpg =0.988

Note: The Error is the total prediction error, x% is the goodness of fit for the uniaxial tension, x2; is the goodness
of fit for the equibiaxial tension, and x5 is the goodness of fit for the pure shear. The model parameters are shown
in Table S27 in supporting information.
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Figure 15. The comparison of prediction performance by the modified model based on different
methods of parameter identification: (a,b) the prediction performance of uniaxial tension by the mod-
ified model based on different methods of parameter identification; (c,d) the prediction performance
of equibiaxial tension by the modified model based on different methods of parameter identification;
(e,f) the prediction performance of pure shear by the modified model based on different methods of
parameter identification.

4. Conclusions

This paper presents a modified hyperelastic constitutive model based on the first
strain invariant and the principal stretches. In order to more accurately identify the
parameters of model, a special method of parameter identification based on the cyclic
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genetic-pattern search algorithm has also been introduced. Combining the experiment
data of different rubber materials with the introduced parameter identification method, the
performance of the proposed modified constitutive model is fully evaluated. The results
show that the proposed modified model not only possesses a significantly improved ability
to predict multiaxial deformation, but also has a wider range of material applicability. This
advantage is not only reflected in the comparison with the original Yeoh model, but also
in the comparison with other improved Yeoh models (such as the modified Yeoh model,
the generalized Yeoh model and the Melly model). Even compared with the excellent
third-order Ogden model and Alexander model, our proposed modified model with only
five undetermined parameters is not necessarily inferior in characterizing the multiaxial
deformation of rubber materials. For example, the overall prediction accuracy of the
modified model for isoprene vulcanized rubber and poly-acrylamide hydrogel is slightly
better than that of the third-order Ogden model and Alexander model. Anyway, for the
five rubber materials used in this study, our modified model has a similar level of total
prediction accuracy as the two models of the third-order Ogden model and Alexander
model (total error is less than 5%). Furthermore, our modified model is also proven to have
a good ability to characterize the deformation of human brain cortex tissue. Its prediction
accuracy for multiaxial deformations of human brain cortex tissue is not only similar to
that of the third-order Ogden model (the third-order Ogden model is considered to be the
best model currently characterizing the deformation of the human brain cortex tissue.),
but also has no loss of convexity compared to the third-order Ogden model. In addition,
the proposed modified model in this study is also proven to hold the improved ability to
predict the untested equibiaxial deformation of most rubber materials used in this study.
The modified constitutive model calibrated based on different datasets is also verified to
have a posteriori Drucker stability and polyconvexity, which lays a foundation for the
modified constitutive model to be applied to finite element analysis.

Based on the above conclusions, we believe that the main advantages of the modified
constitutive model proposed by us are as follows:

Firstly, although the modified model has five undetermined parameters, it still main-
tains a relatively simple functional form compared to those models containing logarithmic,
exponential or integral expressions, making it easier to perform related mathematical
calculations. Having five parameters also ensures that it is neither incompatible with
fourth-order weak nonlinear elasticity theory due to having too few parameters, nor does
it face difficulties in parameter identification due to having too many parameters.

Secondly, thanks to our proposed correction term based on the principal stretch, this
modified constitutive model has significantly improved ability for predicting multiaxial
deformation. Moreover, this improved predictive ability has certain universality, that is,
the modified model can be applied to various different types of rubber materials (including
natural unfilled or filled rubber, silicone rubber and hydrogel). There are currently few
studies that apply their model to so many types of material.

Thirdly, this modified constitutive model can, with relative accuracy, predict the
multiaxial deformation of human brain cortex tissue (including uniaxial tension, uniaxial
compression and simple shear) while ensuring convexity. This gives it the potentiality to
characterize the biomechanics of soft biological tissues.

Finally, the modified constitutive model also has an improved capacity to predict
untested equibiaxial deformation. This advantage is very useful in the situation where
equibiaxial tension cannot be completed under limited hardware conditions.

Compared with other parameter identification methods, the introduced method of
parameter identification has been proved not only to take into account different modes of
deformation, but also makes models have better performance. The excellent capability of
the introduced method of parameter identification benefits from the strong ability of global
search of the genetic algorithm and the strong ability of local search of the pattern search
algorithm, and the addition of the cyclic structure further weakens its dependence on the
initial value, thereby making its uniform convergence better.
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