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Abstract: Steaming beech wood is one of the most commonly used eco-based processes for wood
color equilibration. In addition to color equalization, steaming has also been noticed to stabilize the
final product (solid wood panels). The beech wood samples used in this study were steamed for
two different periods. PVAc and polyurethane (PU) adhesives were used to analyze bonding strength
and durability. The bonding strength was measured according to the EN 13354 standard. The samples
were treated before testing according to the first part of the standard, i.e., immersion in water. The
durability of the bonded joint was tested according to the ISO 9142 standard. The samples were
treated before testing with two methods. The results of the bonding strength show the influence of
the steaming process on the bonded joint. Short exposure to steam decreased bonding strength, and
prolonged exposure increased bonding strength. From the results given and the statistical analysis, it
can be concluded that a prolonged steaming period increases the stability of the beech wood and
thus the durability of the bonded joints.

Keywords: steamed beech wood; ecological modification; wood stability; bonding strength; bonded
joint durability

1. Introduction

The gluing of wood occupies an important part of the technological process [1–3].
As wood prices are constantly rising as raw materials and their quality is decreasing, the
interest in solid wood products is growing, and the desire to properly use wood raw
materials is increasing, leading to the introduction of various wood adhesive processes.
The complexity of woodcraft and the bonding process into a whole composite open up a
wide area of research.

Steaming wood can be the first step in this complex and demanding task. Steaming
wood began to be used in practice to even out the color, primarily in wood with an incorrect
heartwood. Wood steaming is a process in which the cold wood is exposed to saturated
water vapor, as a result of which the wood heats up and its properties change. This is
the process that can ensure positive effects such as uniformization of color, reduction of
wood deformations, increase in wood stability in the drying process, and reduction of
errors on glued panels [4–9]. Color changes are related to specific chemical properties of
different intensities and complexity, which can affect the main chemical components and
secondary components of wood in relation to the actual treatment conditions (temperature,
time, and treatment environment) [10–13]. The steaming process partly reduces the internal
growth stresses of the wood, which decreases the potential for cracking and deformations
during the drying process [4]. In addition to these beneficial effects, steaming also prevents
biological attacks, promoting wood sterilization before it enters a drying oven [5,14].

In the production of solid wood panels, the problem of the appropriate preparation of
the wood is to produce high-quality products with as little loss of firmness as possible [15].
In the context of wood gluing, the problem of numerous influential factors that act on wood
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is expressed, changing its ability to interact with adhesives and adhesive systems. Aus-
picious effects can be achieved by hydrothermal treatment of green wood [16]. However,
there can also be unwanted side effects [17]. Loss of strength is one of the main disadvan-
tages of thermal treatment. The chemical structure [18] and changes in wood components
play an important role in the wood’s strength when exposed to high temperatures [19].
The reduction in wood resistance seems to be linked to the removal of secondary chain
hemicellulose constituents [20,21].

In the wood gluing framework, numerous factors affect wood and its ability to interact
with adhesives and adhesive systems. Due to variability in wood sources, the desire
for better performance, and cost-saving tendencies, the manufacturing of bonded wood
products is constantly challenged [22,23]. To achieve strong and durable bonds, the resin
must properly saturate the wood surface and cure it efficiently to ensure sufficient strength
and deformation [24]. The moisture content of the wood, pH, buffering capacity, and
extractives affect the wetting of adhesive on the surface [25].

The beech wood (Fagus sylvatica L.) used in this study is the most common hardwood
in Europe and the standard wood species quoted in European standards. Due to its good
mechanical and technical properties, it is widely used in all branches of the wood processing
industry (the production of veneer, furniture, massive wood panels, etc.) [26–28]. Beech
wood is a diffusely porous wood with fine and numerous burrs, which evenly potentiate
the distribution of stress between samples of the material [29].

Wood is a hygroscopic material; i.e., with a change in the humidity and temperature of
its surroundings, it shrinks and swells. As a result of changes in dimensions, stress forms
in joints when any kind of adhesive is used. For this reason, when selecting adhesives, the
physical and mechanical properties of the adhesive must be as close as possible to those of
the wood. Therefore, the joints are under less stress from the characteristic dimensional
change of the wood. Considering all that and the potential of this research’s results on its
usage in the industry, it leads to adhesive choice. The best is to use PVAC due to its wide
usage for dry and semi-dry conditions. For semi-dry to wet conditions, it can be used more
durometric adhesives, but to be on the future side of production, self-apposing is PUR
adhesive, which is used more and more every day.

The property of a joint to retain its strength over time is the fundamental feature of
the present investigation. The focus is on the dependence of the bonding process, the
properties of the adhesives used, and the properties of the wood. Therefore, the purpose
and goals of this research are as follows:

• Determine the strength of the joints of modified beech wood depending on the different
steaming processes;

• Investigate and define different adhesives to achieve sufficient joint strength in modi-
fied beech wood;

• Define the types of joint durability of modified beech wood related to different adhesives;
• Determine the optimal steaming process for beech wood.

2. Materials and Methods

For this research, log samples of 3 meters in length, class quality F, I, and II, were
selected from the Bjelovar-Bilogora County habitat in Bilogora, Croatia. The logs were first
sawn into 50 mm thick planks and then into samples with dimensions of 32 × 50 × 250 mm.
Half of the raw samples were then exposed to direct steaming in an industrial steamer at a
constant steam temperature of 99 ◦C and a pressure of 0.15 MPa. A control sample was
not steamed but was placed in a dryer together with the steamed samples after pre-drying.
No deficiencies or wood defects were detected in the samples produced and processed
this way.

In this research, well-known and tested adhesives for finger joints and buttock joints
were used: Multibond EZ-1 PVAc adhesive and Klebit PUR 501.

Based on experience, the results of tests on joint strength and durability have a rel-
atively high standard deviation. Due to the large number of test samples and types of
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experiments, a particular marking system was developed for more convenient monitoring
during the tests and continuous adoption of conclusions, as shown in Table 1.

Table 1. The method of marking test pieces.

TYPE OF EXAMINATION MARK
1. Test of bonding strength

Bonding quality—Test method EN 13354 [30] EN

2. Durability of the bonded joint
(a) Testing of durability by standard ISO

(b) Testing the durability by simulating conditions SIM

3. Steaming time
(a) Not steamed samples 0

(b) Samples steamed for 9 h 9
(f) Samples steamed for 40 h 40

4. Type of adhesive
(a) PVAc adhesive M
(b) PUR adhesive P

5. Other terminology
(a) Mass m

(b) Volume v
(c) Conditioned samples (50 ± 5% r.h., 23 ± 2 ◦C) s

(d) Samples of the dry condition S
(e) Impregnated samples and immersed in water for 24 h V
(f) Samples exposed to a relative humidity of 70% (NaCl) 7

(g) Samples exposed to a relative humidity of 30% (MgCl2 + 6H2O) 3
(h) Samples exposed to relative humidity 85 ± 3% 8

(i) Samples immersed in water for 24 h p

2.1. Method to Measure the Strength of the Bonded Joint

Test pieces were produced to measure the strength of a bonded joint according to EN
13354 [30]. Beech wood samples (32 × 50 × 270 mm) were conditioned at a temperature
of 23 ± 2 ◦C and a relative humidity of 50 ± 5% (from now on “laboratory conditions”)
for seven days. Before bonding, the glue surfaces were processed using a planer, and the
wood panel was bonded from five samples to a dimension of 32 × 250 × 270 mm. The
bonding process was carried out with an adhesive application of 200 g/m2 (the adhesive
manufacturer prescribed 175–250 g/m2 for Multibond EZ-1 and 100–200 g/m2 for PUR 501),
under laboratory conditions, after which the panels were conditioned again for seven days.

Ten wood panels were assembled for control samples and ten for each steaming
regime. Before sawing the test pieces, the panels were planed to a thickness of 25 mm. After
planing, six test pieces were sawn from each plate according to the EN 13354 standard [31].
When the test pieces were prepared, special attention was paid to positioning the bond line
precisely in the middle of the probe. Plates were sawn into strips parallel to the bond line,
and then the test pieces were sawn from those strips according to the prescribed standard.
Finally, notches were made using a 3 mm wide flat-tooth circular saw blade.

Additional reliability of the results was achieved by measuring the dimensions of all
prepared test pieces with the aim of more accurate calculations of the bonding strengths.

Half of all test pieces (control test pieces and both steaming regimes) were tested
according to the ISO 6238 standard [31] on a universal testing machine, the Shimadzu AG-X
100 (Shimadzu Corporation, 604-8442 Kyoto, Nakagyo Ward, Nishinokyo Kuwabaracho, 1,
Japan) (from now on UTM) after conditioning. The other half of the test pieces were sorted
according to the recommendation of EN 13353 [32] (according to their purpose, that is, by
type of adhesive):

• Samples bonded with Multibond EZ-1 adhesive (PVAc adhesive) intended for dry
conditions, i.e., samples immersed in water at 20 ◦C for 24 h prior to testing;
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• Samples bonded with PUR 501 adhesive (PUR adhesive) were intended for humid con-
ditions, that is, the samples were cooked in distilled water for 6 h and then immersed
in water at 20 ◦C for 1 h before testing.

It has been established that adhesive-bonded samples for humid and outside condi-
tions cannot be treated according to the recommendation of this standard (number of total
test pieces designation); all samples were treated solely according to the first point of this
standard, that is, they were submerged in water at 20 ◦C for 24 h prior to testing.

2.2. Testing the Durability of the Bonded Joint According to ISO 9142 Standard [33]—Cycle D6

The bonded joint was carried out on test pieces made according to the ISO 6238
standard [31]. As suggested by the ISO 9142 standard [33], cycle D6 was used to test the
durability of the bonded joint. Cycle D6 consists of two phases:

(a) Impregnation of samples by distilled water using vacuum pressure (Laboratory Im-
pregnation Chamber, Kambič, Metliška cesta 16, 8333 Semič, Slovenia—EU) at a
temperature of 23 ± 2 ◦C;

(b) Exposure of the samples to climate conditions, that is, a relative air humidity of
30 ± 5% and a temperature of 23 ± 2 ◦C, for ten days.

Phase a. consists of the following steps:

1. Submersion of the samples in distilled water and vacuum under a pressure of
0.092 MPa for 15 min;

2. Change in pressure in the cylinder, that is, samples were placed under a pressure of
0.6 MPa for two hours;

3. Change in pressure to 0.092 MPa for 15 min;
4. Change in pressure to 0.6 MPa for two hours.

Phase b. is the continuation of the treatment; that is, after being placed at a pressure of
0.6 MPa, the samples were exposed to a relative air humidity of 30 ± 5% and a temperature
of 23 ± 2 ◦C under ambient air pressure. A graphical representation of the flow of sample
impregnation is shown in Figure 1.
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2.3. Testing the Durability of the Bonded Joint Using the Simulation of Environmental
Conditions Method

The standard EN 13353 [32] method of accelerated aging of bonded joints by treatment
with water and boiling was inappropriate to observe the modifications due to the complete
collapse of all bonded joints. For this reason, a new, highly intensive, and applicable
method of accelerated aging of bonded joints was developed for this research. The test
samples were exposed in a plastic chamber with artificial air circulation to a relative air
humidity of 70 ± 5% at a temperature of 23 ± 2 ◦C controlled by a mixture of salt and
water (NaCl + H2O).

The mass of the samples was repeatedly measured according to the ISO 6238 stan-
dard [31] to determine the time required for the samples to achieve equilibrium moisture
content (EMC). According to the Hailwood–Horrobin diagram (Figure 2) [34], EMC should,
under these conditions, be ~13% of the water content in the test samples. Therefore, very
intense wood deformation was caused (in the shortest time possible) through natural
moisture absorption and, consequently, the stress in the bonded joint, without the negative
effects of free water activity that never occur in the normal life cycle of the product.
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Subsequently, the samples were subjected to intensive drying processes in a plastic
chamber with inside artificial air circulation at a relative air humidity of 30% at a tempera-
ture of 23 ± 2 ◦C, controlled by magnesium chloride hexahydrate (MgCl2 + 6H2O). Before
bonding strength testing on a UTM, the test pieces were subjected to a second cycle under
the same wetting and drying conditions.

2.4. Statistical Analysis

Statistical analysis and data visualization were performed using the Statistica (ver. 7.1)
software. An analysis of variance (ANOVA) was used to evaluate the variations tested.
The sources of variation are presented in Table 1. The Shapiro–Wilk test confirmed the
normality of the data, and Levene’s test checked the homogeneity of the variances. When
the assumption of homogeneity was met, a one-way ANOVA test was used; if not, the
Kruskal-Wallis test [35,36] was used.

An appropriate pairwise comparison Scheffe (post hoc) test [37] was performed if
the Kruskal–Wallis test proved statistical significance. Thus, the Student’s pairwise test
(equal variances) was used after the one-way ANOVA, while the Games-Howell pairwise
test (non-equal variances) was used after Welch’s ANOVA. The effect sizes of the pairwise
test were estimated using holm-adjusted p-values. Graphic displays were made using
box whiskers and bar plots. Descriptive statistics were also used to display the results on
graphs. Boxes show the 25th and 75th percentiles (interquartile—IQR), the whisker lines
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show the minimum and maximum values (±1.5*IQR), square points denote the arithmetic
mean, and post hoc tests are displayed in tables showing significant differences between
pairs with bold letters of p values at the 5% significance level. All results are also shown
with a 95% family-wise confidence level.

3. Results and Discussion
3.1. Bonding Strength

The bonding strength was measured using two methods. Analysis of the results
obtained can be used to determine and/or detect trends in the modification effect of the
samples on the strength of the PVAc adhesive joints.

The initial bond strength of the joints bonded with PVAc adhesive gives an idea of
the condition achieved at the beginning of their life cycle. Since there are no statistically
significant differences, the result that can be pointed out is that steem modification does
not change the bond strength in dry conditions (Figure 3 and Table 2).
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Figure 3. Results of testing conditioned test pieces bonded with PVAc adhesive.

Table 2. Kruskal–Wallis test of conditioned test pieces bonded with PVAc adhesive.

Dependent:
ENMs

Multiple Comparisons p-Values (2-Tailed);
ENMs (Bonding Strength (N/mm2))

Independent (Grouping) Variable: Designation
Kruskal-Wallis Test: H (2, N = 60) = 1.206397 p = 0.5471
0 Ms

R: 28.650
9 Ms

R: 28.850
40 Ms

R: 34.000
0 Ms 1.000000 0.998036
9 Ms 1.000000 1.000000
40 Ms 0.998036 1.000000

In contrast, when determining the strength of the bonded joints using the EN 13354 [30]
method, the results for differently steamed and non-steamed samples show statistically
significant lower strengths obtained in the 9 h steamed samples (Figure 4 and Table 3).
When this result is compared with the requirements of the EN 13353 standard [32], it is clear
that the joint strength of the 9 h steamed samples does not meet the minimum requirements
of 2.5 N/mm2.
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Figure 4. Results of the EN 13354 [30] test of test pieces bonded with PVAc adhesive immersed in
water for 24 h.

Table 3. Scheffe test of test pieces bonded with PVAc adhesive immersed in water for 24 h.

Designation

Scheffe Test; Variable: ENMp (Bonding Strength (N/mm2))
The Marked Differences Are Significant at p < 0.0500

(1)
M = 2.7673

(2)
M = 1.1218

(3)
M = 3.2644

0 Mp (1) 0.000000 0.010002
9 Mp (2) 0.000000 0.000000

40 Mp (3) 0.010002 0.000000

However, this phenomenon cannot be seen in the samples steamed for 40 h, as their
strength increased even in relation to the control set (unmodified samples). This result
suggests the positive effect of wood steaming, which, in addition to the match [38], retains
the quality of the joint bonded to the PVAc adhesive. However, the initial strength of the
bonded joints (Figure 3) did not indicate this possibility.

A difference between adhesives can be observed in relation to the initial strength of
the PVAc adhesive-bonded samples (Figures 3 and 5). Although there are no statistical
differences between the samples of both adhesives, the overall strength of the PUR adhesive,
for all types of samples, is ~37% higher on average than the samples bonded with PVAc
adhesive (Figures 3–6, Tables 2–5). Additionally, a reverse trend of initial strengths can be
observed for the conditioned samples (Figures 3 and 5, Tables 2 and 4). Samples steamed
for 9 h show a slight increase in strength gain, while 40 h of steaming leads to a slight
decrease compared to the non-steamed and 9 h steamed samples.

Table 4. Statistical test of conditioned test pieces bonded with PUR adhesive.

Variable

Analysis of Variance (Bonding Strength (N/mm2))
Marked Effect Are Significant at p < 0.0500

SS
Effect

df
Effect

MS
Effect

SS
Error

df
Error

MS
Error F p

ENPs 18.94624 2 9.473118 312.1804 56 5.574651 1.699320 0.192098
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Figure 6. Results of the EN 13354 [30] test of test pieces bonded with PUR adhesive immersed in
water for 24 h.

Table 5. Statistical test of test pieces bonded with PUR adhesive immersed in water for 24 h.

Dependent:
ENPp

Multiple Comparisons p-Values (2-Tailed);
ENPp (Bonding Strength (N/mm2))

Independent (Grouping) Variable: Designation
Kruskal-Wallis Test: H (2, N = 81) = 23.58860 p = 0.000
0 Pp

R: 50.464
9 Pp

R: 22.040
40 Pp

R: 48.464
0 Pp 0.000034 * 1.000000
9 Pp 0.000034 * 0.000134 *
40 Pp 1.000000 0.000134 *

* The bold numbers represent statistical results showing a statistically significant difference between the
tested samples.
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In contrast to this difference, the strength measurement results measured by EN
13354 [30] show the same trend as for PVAc adhesives. The samples steamed for 9 h and
bonded with PUR adhesive did not meet the prescribed bond strength of the EN 13353
standard. Their strength was statistically significantly lower than that of the unsteamed
samples, and the samples were steamed for 40 h, where the minimum strength requirements
were met.

Furthermore, a comparison of the results achieved with the PVAc adhesive shows, as
expected, that the PUR adhesive is, on average, more resistant to the influence of water,
with mean values ~67% higher for both unmodified and modified samples (Figures 3 and 5,
Tables 2 and 4).

The reason for the decrease in strength below the prescribed values for both adhesives
in all 9 h steamed samples tested according to EN 13354 [30] can be explained by the fact
that the steaming of beech wood releases extractives that can affect joint strength [39].
For example, acetic acid, formic acid, and some other acids that are also released in the
steaming process [40] are most likely to play an important role in the loss of the bonded
joint. In the short-term steaming process, part of the acid stays in the cell lumen, and when
retreated with water, the acid from the lumen meets the adhesive in the joint and enhances
the destructive action on the bonded joint [41]. After the test, an analysis of the samples
confirmed this assumption, where breakage was detected exclusively in the adhesive layer.
The acid is mostly alkalized by prolonging the steaming regime, so its influence on the
retreated joints is less significant.

3.2. Durability of the Bonded Joint

The results of the durability evaluation of a bonded joint should be observed separately
from the results of the determination of the strength of a bonded joint because the forms of
the test pieces are different. Therefore, the measured amounts are affected by the difference
in the construction of the bonded compound, causing the results to be incomparable [42].

The joint durability of the samples bonded with the PVAc adhesive did not show
statistically significant differences between the steamed and non-steamed samples tested
according to the ISO 9142 [33]—Cycle D6 standard (Figure 7 and Table 6) or the simulation
of the environmental conditions method (Figure 8 and Table 7). The strength of the bonded
joint was lower when tested according to the ISO 9142 standard [33], which was expected
since the PVAc adhesive is not resistant to prolonged exposure to moisture. On the other
hand, according to the method of simulation of environmental conditions, the bonded joint
is not exposed to water.
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Table 6. Statistical test of test pieces bonded with PVAc adhesive aged by ISO 9142 [33]—cycle D6.

Dependent:
ISOM

Multiple Comparisons p-Values (2-Tailed);
ISOM (Bonding Strength (N/mm2))

Independent (Grouping) Variable: Designation
Kruskal-Wallis Test: H (2, N = 73) = 3.550398 p = 0.1695
0M3

R: 30.960
9M3

R: 38.296
40M3

R: 42.524
0M3 0.638539 0.196751
9M3 0.638539 1.000000

40M3 0.196751 1.000000
Polymers 2023, 15, x FOR PEER REVIEW  10  of  15 
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Figure 8. Results of ISO 6238 [31] testing of test pieces bonded with PVAc adhesive aged by humidity
change simulation.

Table 7. Statistical test of test pieces bonded with PVAc adhesive aged by humidity change simulation.

Dependent:
SIMM

Multiple Comparisons p Values (2-Tailed);
SIMM (Bonding Strength (N/mm2))

Independent (Grouping) Variable: Designation
Kruskal–Wallis Test: H (2, N = 73) = 8.917836 p = 0.0116
0M3

R: 34.333
9M3

R: 46.680
40M3

R: 28.000
0M3 0.094932 0.950187
9M3 0.094932 0.013192 *

40M3 0.950187 0.013192 *
* The bold numbers represent statistical results showing a statistically significant difference between the
tested samples.

When comparing the results of the two methods, 4 h of exposure to water (ISO
9142 [33]—cycle D6) already leads to a significant reduction (Figures 7 and 8, Tables 6 and 7)
in the total strength of all test samples. However, the most significant differences occur
in the control test pieces; then somewhat smaller differences occur in the 9 h steamed test
pieces, and the smallest in the 40 h steamed test pieces.

Although there is no statistically significant difference, there is a noticeable trend of
decreased scattering of results (Figure 7), i.e., increasing the uniformity of strength, which
is a positive result.
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The test results of the durability of the bonded joint using PU adhesive in the samples
treated according to ISO 9142 [33] cycle D6 (Figure 9 and Table 8) show a statistically
significant increase in strength of the samples steamed for 40 h compared to non-steamed
samples. Using the simulation of realistically possible changes in the humidity method
(Figure 10 and Table 9), the same trend is observed, that is, the strength of the bonded
compound is higher in the steamed samples (both 9 and 40 h). An analysis of these results
shows that increasing the steaming time increases the durability of the bonded joint in
samples bonded with PU adhesive. This result is supported by the literature, where Unsal
and Ayrilmis concluded that shrinkage and swelling in steamed wood are less pronounced
than in non-steamed wood due to lower EMC. Thus, the steaming process can lead to better
results in the durability of bonded joints.
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Figure 9. Results of the ISO 9142 [33] testing of test pieces bonded with PVAc adhesive aged by ISO
9142 [33]—cycle D6.

Table 8. Statistical test of test pieces bonded with PVAc adhesive aged by ISO 9142 [33]—cycle D6.

Dependent:
ISOP

Multiple Comparisons p-Values (2-Tailed); ISOP (Bonding Strength
(N/mm2))

Independent (Grouping) Variable: Designation
Kruskal-Wallis Test: H (2, N = 86) = 15.24246 p = 0.0005

0P3
R: 30.033

9P3
R: 46.500

40P3
R: 55.577

0P3 0.031941 * 0.000404 *
9P3 0.031941 * 0.524660

40P3 0.000404 * 0.524660
* The bold numbers represent statistical results showing a statistically significant difference between the
tested samples.

From the above-presented results and discussion, it is quite easy to conclude that due
to the effect of wood steaming, visible changes have certainly occurred, and a constant
amount of dry strength is secured regardless of the duration of steaming, which is an
excellent result of this modification, although its primary aim is to even out the color of
the wood. Another visible contribution is expressed only in contact with PUR adhesive.
In addition to the primary result, we obtained a significant increase in the durability of
the glued joint, confirmed by two methods. If we try to consider/point out mechanisms
that led to such good results, we will have to look for them in the achieved adhesion
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mechanisms and in the “matching” of the properties of wood and PUR adhesive. With the
achieved amount of results, it is difficult to reliably determine in which of the 5 adhesion
mechanisms of PUR and wood there was an increase in adhesion results. Are these changes
in the surface morphology, i.e., the release of surface openings in the wood, that would
result in an increased mechanical share of adhesive mechanisms, or are we talking about
changes in the chemical structure that increase the diffusion of adhesive polymer chains
into the wood substance and the realization of a greater share of chemical bonds? We
should certainly not ignore the possibility of increasing the energy of the wood surface,
which would then be capable of increasing adhesion to PUR. Perhaps it is simply a matter
of increasing the polarity of the wood, which then contributes to the overall adhesion with
its electrostatic changes.
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Figure 10. Results of ISO 9142 [33] tests of test pieces bonded with PUR adhesive aged by humidity
change simulation.

Table 9. Statistical test of test pieces bonded with PUR adhesive aged by humidity change simulation.

Dependent:
SIMP

Multiple Comparisons p-Values (2-Tailed); SIMP
(Bonding Strength (N/mm2))

Independent (Grouping) Variable: Designation
Kruskal–Wallis Test: H (2, N = 82) = 34.22592 p = 0.0000

0P3
R: 21.867

9P3
R: 48.077

40P3
R: 57.577

0P3 0.000120 * 0.000000 *
9P3 0.000120 * 0.451074

40P3 0.000000 * 0.451074
* The bold numbers represent statistical results showing a statistically significant difference between the
tested samples.

Some mechanisms could still be ruled out if, for example, we take into account the
extremely high polarity of the water molecules participating in the durability tests, but the
other mechanisms should be additionally tested in order to more reliably determine which
adhesion mechanisms contributed to such a good result in bond durability.

Although it has been proven that improvements do exist with the use of PUR adhesive,
testing with PVAc shows that these improvements will not always be beneficial if the
quality of the adhesive is not good enough.

The last result was interesting in terms of determining the dimensional changes of
the modified wood, which could be a very positive result even at the initial exposure of
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the samples to increased air humidity. After the simulation of an indoor flood in which
samples were exposed to 85% relative air humidity for seven days, the result obtained
provides additional support for our conclusions and findings of Unsal and Ayrilmis [42]
as well as a guide for further investigation of the dimensional changes of such modified
wood. From the figures below, it is clear that cracks are present in the unmodified wood
samples, while in the modified samples, this could not be noticed (Figures 11–13). This was
previously noted, but only for the drying process that follows steaming [4].
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4. Conclusions

The test results of the achieved strengths indicate that the steaming modification does
not adversely affect the bonding process or the bonded joint.
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Submersion in water leads to a decrease in bond strength below the prescribed values
in 9-h steamed wood samples bonded with PVAc and PUR adhesive. Extending the time of
exposure of wood to steam causes the return of the bond strength level close to the initial
size of the controlled, non-steamed samples.

Increasing the steaming time of the wood does not increase the durability of the
PVAc-bonded joints.

Increasing the steaming time of the wood significantly increases the durability of the
PU-bonded joint.

Observing the overall test results, it can be concluded that the steaming of the beech
wood changes the structure of the wood matter, which contributes to maintaining the
strength of the bonded joint under enhanced aging processes.
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