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Abstract: Polymer-derived ceramic (PDC) thin-film sensors have a very high potential for extreme
environments. However, the erosion caused by high-temperature airflow at the hot-end poses a
significant challenge to the stability of PDC thin-film sensors. Here, we fabricate a thin-film coating
by PDC/TiB2/B composite ceramic material, which can be used to enhance the oxidation resistance
and ablation resistance of the sensors. Due to the formation of a dense oxide layer on the surface
of the thin-film coating in a high-temperature air environment, it effectively prevents the ingress of
oxygen as a pivotal barrier. The coating exhibits an exceptionally thin oxide layer thickness of merely
8 µm, while its oxidation resistance was rigorously assessed under air exposure at 800 ◦C, proving
its enduring protection for a minimum duration of 10 h. Additionally, during ablation testing using
a flame gun that can generate temperatures of up to 1000 ◦C, the linear ablation rate of thin-film
coating is merely 1.04 µm/min. Our analysis reveals that the volatilization of B2O3 occurs while new
SiO2 is formed on the thin-film coating surface. This phenomenon leads to the absorption of heat,
thereby enhancing the ablative resistance performance of the thin-film sensor. The results indicate
that the thin-film sensor exhibits exceptional resistance to oxidation and ablation when protected by
the coating, which has great potential for aerospace applications.

Keywords: polymer-derived ceramics; thin-film coatings; oxidation; ablation

1. Introduction

The growing demand for monitoring operations in harsh environments has stimu-
lated the advancement of high-temperature sensors. High-temperature thin-film sensors
offer significant potential for integration into high-temperature components owing to
their advantageous attributes, including micrometer-scale thickness, negligible mass, non-
intrusive nature, and minimal interference with surface airflow and component vibration
modes [1–3]. Compared with metal materials, the precursors of PDC are generally liquid
polymers, and the liquid precursors forming-curing-crosslinking-pyrolysis to form a ce-
ramic structure. Its working ability in extreme environments, such as oxidation resistance
and thermal shock resistance, is significantly better than alloys. Polymer-derived ceramics
(PDCs), due to their excellent resistance to oxidation and high temperature properties [4],
are widely used in high-temperature bulk [5–7] and thin-film sensors. PDC thin-film sen-
sors [8] can be fabricated by an in situ direct writing method, which has a great advantage
in the high-temperature sensor field.

Currently, a significant amount of research is focused on exploring the performance
of PDC thin-film sensors, including strain gauges [8,9], temperature sensors [10–12], and
heat flux sensors [13]. Cui [14] developed a temperature-sensitive sensor using a SiCN
film that was less than 100 µm thickness, with a maximum measurement temperature of
800 ◦C. Wu et al. [9] fabricated TiB2/SiCN thin-film strain gages, which can work close
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to 800 ◦C. While most of these fabricated films exhibit stable operation at temperatures
ranging from 25 ◦C to 800 ◦C, their long-term stability without peeling or oxidation in
real high-temperature operating environments is crucial. Therefore, it is crucial to develop
an anti-oxidation and anti-ablation thin-film coating for thin-film sensors. Cui et al. [15]
successfully prepared a PDC antioxidant coating that can be applied to thin-film sensors
up to 800 ◦C. Xu et al. [16] developed a double-layer high-temperature antioxidant PDC
composite film by direct writing. Wu et al. [17] improved the high-temperature stability of
SiCN thin-film resistive grids by fabricating Al2O3/SiCN composite films. These studies,
however, did not investigate the oxidation resistance of the films in depth. Since the PDC
composite film is used as an antioxidant layer, it also needs to have resistance to the effect
of high-temperature airflow in harsh environments [18,19]. However, their investigation
only made a preliminary investigation of the antioxidant properties of the film without
studying the ablation resistance of the film.

Although there have been a large number of studies on the ablation resistance of
coatings [20–24], Yanjiang et al. [20] prepared TZSS coatings encapsulating C/C substrates
with a size of 10 mm × 5 mm × 10 mm, which can be ablated at 4.2 MW/m2 for 40 s.
Jing’an Kong et al. [21] prepared TaC coatings and performed cyclic oxyacetylene flame
tests with a coating thickness of 600 µm. However, these coatings were prepared on C/C
substrates with thickened thicknesses. Unlike the bulk coating, the thin-film coating is
fabricated in situ on top of the alumina substrate or on top of the thin-film thermistor with
a coating thickness in the micron range. The ablation resistance studies of coatings have
predominantly concentrated on C/C composites. Unlike these coatings, thin-film coatings
are fabricated in situ on substrates or thin-film sensors with specimen thicknesses at the
micron level [15,17]. Meanwhile, the investigation into the ablation resistance of thin-film
coatings has been limited. Nonetheless, it is crucial to carry out comprehensive studies on
the coupling behavior between film oxidation and ablation for practical applications.

In this work, through our analysis of the oxidation and ablation behavior of PDC
TiB2/B composites, we observed that the formation of SiO2-B2O3 on the coating surface
is vital for improving the oxidation and ablation resistance of the thin-film sensors. The
SiO2-B2O3 oxide layer formed at high temperature is 7~8 µm thick and its well prevented
the entry of oxygen. Furthermore, we characterized the ablation process of the film using a
butane flame at 1000 ◦C with a linear ablation rate of 1.04 µm/min. During the ablation
process, the B2O3 formed on its surface volatilized, and the SiCN thermally decomposed
to generate new SiO2, which absorbed the energy of ablation and played a key role in
protecting the sensitive layer of the thin-film sensor. And it was observed that the thin-film
sensor maintained a resistance change of 0.075%/min of exposure to the flame spraying
test. The results demonstrate that the PDC/TiB2/B composite thin-film coating enhances
the oxidation and ablation resistance of thin-film sensors at high temperatures, making it an
option for protective coatings in demanding environments, such as aerospace applications.

2. Experimental Section
2.1. The Fabrication of Thin-Film Coatings

In this study, PSN2 (commercially provided by the Institute of Chemistry, Chinese
Academy of Sciences, Beijing, China) was used as the precursor of SiCN. TiB2 and B
powders were used as the filler particles with an average diameter of 1 µm (Shang-
hai Chaowei Nano Technology Co., Shanghai, China). And there was an alumina base
(15 mm × 15 mm × 1 mm) that was used for oxidation and ablation performance tests.

As shown in Figure 1, the preparation process of the coating is described. First, PSN2,
B and TiB2 are mixed according to the mass ratio of 1:0.8:1 to prepare a mixed solution. The
PDC composite ink is put on the magneton mixer and stirred at room temperature for 2 h.
Next, using the microscale Wie-senberg platform, the mixed ink is written directly onto the
alumina substrate. After the direct writing is complete, it is placed on a heated platform
and cured at 100 ◦C for 10 min. Finally, the film is annealed in the air at 800 ◦C in the muffle
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furnace and cooled with the furnace; it reaches the indoor temperature, and can be taken
out. The thin-film coating is thus obtained.
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Currently, we are applying the prepared thin-film above the thin-film sensor. By
coating the thin-film on the alumina substrate where the sensitive gate is fabricated, Please
delete it. The correct statement should be: we can obtain a double-layer thin-film sensor [14].
The resistance of this sensor is characterized by cycling stability at room temperature
to 800 ◦C [14].

2.2. Protection Performance Tests of the Thin-Film Coatings

The furnace was set to 800 ◦C to test the oxidation resistance of the coating. A thermo-
gravimetric analyzer (TG-DSC, TGA/DSC, STA449F5) was used for the analysis of TiB2,
B and thin-films. At 800 ◦C, the oxidation characteristic time was heated at a rate of
10 K/min. The following equation calculated cumulative mass change percentages (∆mass%)
of the powders:

∆mass% =
mt −m0

m0

where m0 and mt are the mass of the powder before and after oxidation for t minutes. The
curves of mass change with oxidation time were given according to the above calculation
formula.

To assess the ablation resistance of the film, a simplified film ablation system was
established (Figure 2). The system utilized a flame gun powered by a 95% butane gas
stream, with a test temperature of 1000 ◦C. The flame gun nozzle had an inner diameter of
20 mm and was positioned 6 cm away from the sample. The butane gas flow rate was set
at 0.03 L/s. A thermocouple was centrally placed on the sample to monitor the real-time
temperature. The film underwent continuous ablation in the flame for durations of 4 min,
10 min, 15 min, and 30 min, and the linear ablation rate was subsequently calculated. The
line ablation rate was used to evaluate the ablation resistance.

Rm =
∆m

t

where Rm is the line ablation rate, ∆m is the coating thickness change, and t is the ablation
time.

2.3. Characterization

The sensors were primarily characterized using a profilometer (Dektak XT) to measure
their thickness, and scanning electron microscopy with energy-dispersive spectroscopy
(SEM-EDS) using a JSM-IT500A instrument from JEOL in Tokyo, Japan, to analyze their
morphology and elemental composition. X-ray diffraction (XRD) analysis was performed
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using a Shimadzu XRD-6100 instrument. The output resistance of the thin-film sensors was
measured using a Keysight 34972A data acquisition device (DAQ).
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3. Results and Discussion
3.1. Phase Analysis and Microstructure of the Thin-Film Coatings

Figure 3a shows the XRD pattern of the prefabricated coating; the TiB2 phases are
detected. Figure 3b,c depict scanning electron microscope (SEM) images of the prefabricated
coating surface, providing insight into the distribution and morphology of the raw material
particles. The surface exhibits a relatively rough texture and contains noticeable particulate
features. EDS analysis of spot 1 (Figure 3c) reveals the presence of titanium (Ti) and boron
(B) on the surface. Furthermore, Figure 3(c1) exhibits a uniform distribution of oxygen (O)
and silicon (Si) elements, indicating the effective bonding role of PSN2 during the coating
fabrication process. Consequently, the surface particles primarily consist of TiB2 and B.
Figure 3d displays a cross-sectional view of the prefabricated coating, showcasing a uniform
thickness of approximately 30 µm applied to the alumina surface. The Energy Dispersive
Spectrometer (EDS) analysis (Figure 3(d1)) clearly distinguishes titanium (Ti) elements and
reveals relatively even distribution of silicon (Si) and aluminum (Al) elements, where Al
is the element of the base (Al2O3). Notably, no instances of delamination or peeling are
observed, except for a few larger TiB2 particles measuring 1 µm. The coating is successfully
obtained at room temperature and exhibits excellent adhesion to the alumina substrate.

3.2. Oxidation Behavior of the Thin-Film Coatings

To evaluate the oxidation resistance of the coating, we obtained an isothermal curve by
subjecting the coated material to a temperature of 800 ◦C for 12h and air flow of 50 mL/min
(Figure 4). The curve exhibits three distinct stages: a rapid mass increase (Stage I), a slower
mass increase (Stage II), and a plateau (Stage III). After 80 min of oxidation of the coating,
its mass increased sharply, reaching 0.15 wt%. According to the TG-DSC and isothermal
oxidation curves (Figure 5a,b) of B powder and TiB2 powder, the furnace is heated up to
800 ◦C with a rate of 10 ◦C/min, and keeping for 50 mL/min of the air flow. It can be
seen that there is a large amount of oxygen diffusion in the powder, oxidizing TiB2 and B
particles, producing TiO2 and B2O3 (Figure 5c,d). Based on the literature of the antioxidant
thin-film coating, it is required to have a good coefficient of thermal expansion with the
substrate and sensitive layers [25,26]. The average alumina substrate thermal expansion
coefficient [27] is measured at 7.1× 10−6/K−1. Additionally, the average thermal expansion
coefficients of B and TiB2 are 6.4 × 10−6/K−1 and 7.0 × 10−6/K−1, respectively [28,29].
Notably, TiB2 is a well-established high-temperature material that has been successfully
utilized in high-temperature thin-film applications [9,30]. Consequently, the combination
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of B/TiB2 offers significant advantages over using only B as the filler, as it achieves a
superior thermal match with both the substrate and the sensitive layer of the thin-film
sensor. This enhanced thermal match ensures improved overall performance and stability
for the thin-film sensor. As oxidation time increases, mass gain enters a slow phase
(II stage). The mass plateau stage is in III stage with a mass gain of 0.2 wt%.
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It is also found that the initial oxidation temperature of TiB2 powder in Figure 5a
is about 450 ◦C [31], which is significantly lower than that of B powder at 600 ◦C [32].
At the same time, the oxidation trend of TiB2 in air is significantly greater than that of
B. Therefore, the presence of B allows the coating to better form an oxide layer. At the
same time, SiCN undergoes a high-temperature reaction, leading to the generation of SiO2,
which effectively repairs any cracks caused by oxidation. And the changes of substances
before and after exposure to high temperatures of the thin-film coatings are analyzed using
X-ray photoelectron spectroscopy (XPS). The full spectra (Figure 6a) reveal a noticeable
increase in the concentration of O and B on the sample surface following exposure to high
temperatures. The Si 2p spectrum (Figure 6b) demonstrates the presence of Si-O bonds
(at 104.3 eV), indicating the formation of SiO2. On the other hand, the analysis of the B 1s
spectrum (Figure 6c) confirms the existence of solely B-O bonds after the high-temperature
treatment. The possible oxidation reactions were shown as follows [33–35]

2SiCN + 3O2→2SiO2(l) + 2CO+N2(g)

2TiB2 + 5O2→2TiO2 + 3B2O3

4B + 3O2→2B2O3(l)

SiO2(l) + B2O3(l)→SiO2·B2O3(l)
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The phase transformation of the coating during the oxidation process was investigated
by XRD analysis for different oxidation times (Figure 7). After 1 h of oxidation, SiO2, B2O3
and TiO2 phases appeared. It showed that a glassy oxide layer was formed on the surface
of the coating, and after 5 h, the peak strength of B2O3 (Figure 7) increased, indicating that
the density of the antioxidant layer was also enhanced (Figure 8b,c). Figure 8 shows the
evolution of surface and cross-sectional topography during oxidation of the coating. After
oxidation at 800 ◦C for 1 h (Figure 8a), 5 h (Figure 8b), 10 h (Figure 8c), an oxide film is
formed on its surface, which is dense and has no micropores. According to the specific
gravity analysis of the elements of points EDS (Figure 8(a3,b3,c3)), the O content is higher,
followed by the B content. Combined with the results of XRD (Figure 7), a dense B2O3·
SiO2 glass layer forms on the surface of the coating. At the same time, the cross-sectional
topography of the coating is analyzed. After 1 h of oxidation (Figure 8(a1,a2)), the O
element on the outside of the coating is higher than the inside, and the distribution of Ti
elements is granular, indicating that the particles inside the coating are not completely
oxidized. After 10 h of oxidation (Figure 8(b1,b2)), a dense oxide layer (thickness: ~8 µm) is
formed on the surface of the coating, the surface of which is covered by a thick glass layer.
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3.3. Ablation Behavior of the Coated Samples at Different Times

To evaluate the protective performance of antioxidant films against erosion in high-
velocity airflow environments, a flame spray apparatus was employed to assess their
ablation resistance. Figure 9a illustrates the film's ablation process at a central temperature
of 1000 ◦C and the thickness change of the ablation pit is calculated. Figure 9b presents
the linear ablation rates of the film samples at different time intervals, revealing rates of
1.42 µm/min, 1.41 µm/min, and 1.04 µm/min at 4 min, 10 min, and 15 min, respectively.
These results indicate a progressive reduction in film thickness and ablation rate as the
duration of ablation increases. At the same time, the line ablation rate decreases with time.
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Figure 10 displays the XRD spectrum of the ablated film samples, demonstrating the
presence of residual oxides primarily composed of B2O3, TiO2, and SiO2 on the surface.
The oxide (B2O3 and SiO2) appears on the sample surface according to XPS (Figure 11),
although their content is relatively less than annealing completed. The Si-O bond content
was 9.43% (Figure 11c), lower than 41.66% (Figure 6c). SEM images (Figure 12(a,a1))
reveal the film's intact morphology without visible voids or cracks after 4 min of ablation.
However, after 10 min of ablation, surface melting occurs, exposing TiB2 and TiO2 particles
(Figure 12(b1,b2)). The low melting point of B2O3 (450 ◦C) leads to the volatilization of the
surface oxides under the high-temperature conditions of 1000 ◦C. After 30 min of ablation,
distinct ablation pits appear on the surface, accompanied by a decrease in the proportion
of B and Si as observed through EDS analysis (Figure 12(a1,b1,c1)). Despite the presence
of surface voids, cross-sectional analysis (Figure 12c) confirms the film's adherence to the
alumina substrate without detachment or oxidation fractures. This integrity is maintained
even after 4 min (Figure 13a) and 10 min (Figure 13b) of ablation. After 30 min of ablation,
a noticeable thinning of the cross-section (Figure 13c) is observed. During the ablation
process, the possible oxidation reactions were shown as follows:

SiO2·B2O3(l)→SiO2(g) + B2O3(g)
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3.4. Thin-Film Temperature Sensor Oxidation Resistance Ablation Test

By fabricating the thin-film coating directly on the alumina substrate, the oxidation
and ablation exploration of the thin-film coating was completed. Finally, we used the
electrical resistance characteristics of thin-film sensors to characterize the performance of
ablation process coating. The thin-film coating was applied to the sensitive layer as an
antioxidation layer forming a double-layer structure [16]. Figure 14a illustrates the optical
image of the sensor prior to ablation, displaying a predominantly light yellow surface. After
30 min of ablation, the surface exhibited a deep blue color without any signs of cracking or
delamination. Analysis of the film sensor's resistance variation demonstrated its impressive
antioxidation performance even at the elevated temperature of 1000 ◦C (Figure 14b). Upon
undergoing pyrolysis [15] at 1000 ◦C, the film sensor experienced a decrease in resistance,
ultimately reaching a stable state with a rate of change of 1.88% over 25 min (Figure 14c).
After the ablation process is completed, the resistance of the thin-film sensor can be restored
to its initial value. The cross-sectional image after 30 min ablation of the sensor is shown in
Figure 15a. The antioxidant layer remains firmly bonded to the sensitive layer without any
cracks, despite the destruction of the protective glass layer formed on the surface of the
film. In addition, the EDS analysis of the sensor cross-section (Figure 15b) shows a decrease
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in Si content above the antioxidant layer and the presence of a large amount of Si elements
in the middle. Meanwhile, the Ti elements in the cross-section are uniformly distributed.
During the ablation process, the vaporization of B2O3 decreased the surface temperature.
Since SiO2 loses its stability above 2300 ◦C due to rapid evaporation [36,37], at 1000 ◦C,
high viscosity SiO2 flows with the ablation gas stream and it is difficult to evaporate, and
liquid SiO2 forms a dense layer on the ablation surface. By introducing Ti (TiB2), the film
did not exfoliate significantly and the impact resistance of the film was enhanced.
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To gain a comprehensive understanding of the oxidation and ablation resistance
mechanism of the PDC/TiB2/B composite film, Figure 16 illustrates a simplified schematic.
The thin-film coating is applied onto a sensitive layer that undergoes rapid oxidation
and converts to Si, Ti, and B oxides at elevated temperatures. A highly viscous and fluid
SiO2-B2O3 glass layer is swiftly formed, effectively blocking the infiltration of oxygen.
During the ablation process, the film surface temperature rises rapidly, leading to the
volatilization of B2O3, which results in the formation of ablation products, such as SiO2
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and borosilicate, which are carried by the ablation airflow within and around the coating.
While SiO2 exhibits low evaporation at 1000 ◦C, it remains deposited on the film surface,
forming a high-viscosity SiO2 layer. This layer restricts the ingress of oxidizing gases into
the film coating, thereby preventing further oxidation.
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4. Conclusions

This study focuses on investigating the oxidation and ablation behavior of PDC/TiB2/B
composites, which has an enhancing effect on the performance of PDC thin-film sensors.
Through high-temperature heat treatment, a dense SiO2-B2O3 oxide layer forms on the
surface of the thin-film coating, effectively preventing further oxidation of the sensitive
layer by oxygen. After oxidation in air at 800 ◦C for 10 h, the sample experiences only a 0.2%
mass loss. Moreover, the generated oxide layer is also critical to the improvement of the
ablation resistance. During high-temperature ablation at 1000 ◦C, the B2O3 on the coating's
surface absorbs and dissipates heat, leading to its significant volatilization. Simultaneously,
the SiCN ceramic absorbs heat and undergoes further oxidation, resulting in the formation
of new SiO2. This process replenishes the vaporized B2O3 and contributes to the enhanced
ablation resistance of the coating. After being exposed to the butane flame for 15 min,
the coating demonstrates remarkable resistance to ablation, with a linear ablation rate of
1.04 µm/min. And the thin-film sensor exhibits an impressive resistance change rate of
0.0752%/min at 1000 ◦C. Consequently, the particle-filled PDC composite film coating has
a key role in improving the oxidation and ablation performance of thin-film sensors. This
work also provides insights and guidance for the design and development of thin-film
coatings in extreme environments with high application potential.
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