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Abstract: Preparing strong and flexible atelocollagen-based materials for biomedical applications is
still a challenging task. To address this challenge, this study describes the synthesis and characteriza-
tion of water-soluble polyrotaxanes (PRs) with different coverage ratios and molecular weights of axle
polymers, and their potential applications for PR-reinforced atelocollagen threads (PRATs). A novel
method was established for the syntheses of PRs with relatively low coverage ratio at the sub-gram
scale, in which the aldehyde groups were employed as crosslinking sites for preparing the PRATs
via reductive amination. The aldehyde groups were successfully quantified by 1H nuclear magnetic
resonance spectroscopy using 1,1-dimethylhydrazine as an aldehyde marker. Fourier-transform
infrared and thermogravimetric analysis measurements supported the characterization of the PRs.
Interestingly, tensile testing demonstrated that coverage ratio affected the mechanical properties of
the PRATs more strongly than molecular weight. The insights obtained in this study would facilitate
the development of soft materials based on atelocollagens and PRs.
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1. Introduction

Polyrotaxanes (PRs) are essential components of composite materials [1–6]. Since the
discovery of the first PR in 1992, various types of macrocyclic compounds and polymers
have been evaluated in the formation of supramolecular architectures [1–6]. Currently,
PR consisting of cyclodextrin (CD) and/or an amphiphilic polymer (e.g., polyethylene
glycol (Peg)) is regarded as one of the promising slide-ring materials for various functional-
ities [7–11]. Multiple attempts were made to apply PRs as therapeutic and diagnostic tools
in the field of biomedical chemistry [12–17]. For example, PRs are utilized for crosslink-
ing with biomacromolecules, delivery of bioactive molecules, and surface modification
of cell-adhesive materials [18–23], which indicates that selecting proper design and syn-
thetic methods is important for implementing their desired functionalities as biomaterials.
However, some of the previously used synthetic approaches for PR crosslinking remain
controversial [24–30].

Collagen is a natural protein and major component of mammalian organs and tis-
sues [31,32]. Owing to the abundance and biological benefits of collagens, collagen-based
biomaterials have been widely employed in various fields [33–36]. Pepsin digestion pro-
duces an atelocollagen lacking N- and C-terminal telopeptides, which reduces the potential
immunogenicity of collagen [37,38]. Atelocollagens are promising materials utilized to-
gether with collagens in advanced therapeutics [39–41]. We have previously discussed
the benefits of applying atelocollagens in oligonucleotide therapeutics, drug development,
and regenerative medicine [23,42–44]. However, the preparation of flexible and strong
atelocollagens remains a challenging task despite their potential applicability in human
treatment procedures (e.g., ligament and tendon repair).
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Herein, we report the synthesis, characterization, and potential applications of CD-
threaded PRs for reinforced atelocollagen threads. Two different types of PRs were synthe-
sized and crosslinked to investigate the effects of their molecular weight and coverage ratio
on the mechanical properties of the PR-reinforced atelocollagen threads (PRATs) (Figure 1).
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2. Materials and Methods
2.1. Chemicals

Hydroxyl group-terminated polyethylene glycols (Peg10k–OH and Peg20k–OH),
(benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP), and
βCD were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan).
αCD, iodobenzene diacetate (PhI(OAc)2), N,N-dimethylformamide (DMF),
dichloromethane, diethyl ether, dry acetonitrile (MeCN), and 2,2,6,6-tetramethylpiperidine
1-oxyl (TEMPO) were procured from Kanto Chemical Co., Inc (Tokyo, Japan). DMF was
distilled under reduced pressure and stored with a molecular sieve prior to use. CD
monoaldehydes (i.e., αCD-CHO and βCD-CHO) were synthesized according to the previ-
ous method [23]. N,N-diisopropylethylamine (DIPEA), hexamethylphosphoric triamide
(HMPA), triphenylmethylamine (Trt–NH2), [bis(trifluoroacetoxy)iodo]benzene
(PhI(OAcTf)2), 1,1-dimethylhydrazine (DMHZ), and sodium cyanoborohydride (NaBH3CN)
were obtained from Tokyo Chemical Industry Co., Ltd (Tokyo, Japan). Amino group-
terminated Pegs (Peg10k–NH2 and Peg20k–NH2) were synthesized from Peg10k–OH and
Peg20k-OH, respectively, via a typical Gabriel amine synthesis procedure described else-
where [8]. PRs with a coverage ratio of 20 mol% were synthesized using Peg and αCD
(Peg10kPRαCD1 and Peg20kPRαCD1). αCD-threaded pseudo-PR (PegPRαCD3) and adaman-
tane end-capped PR (PegPRαCD2) were prepared according to a previously developed
method [45]. To produce PRs with lower coverage ratios, triblock copolymer Pluronic and
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βCD were employed as shown in Scheme 1 (Plu9kPRβCD1 and Plu15kPRβCD1). Hydroxyl
group-terminated Pluronic reagents (Plu9k–OH and Plu15k–OH) were purchased from
Sigma–Aldrich (St. Louis, MO, USA). Carboxyl group-terminated Pluronic compounds
(Plu9k–COOH and Plu15k–COOH) were synthesized via bleach oxidation as described pre-
viously [46]. A Spectra/Por dialysis membrane (MWCO: 1 kDa) was used for purification
in each step.
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Scheme 1. Synthetic scheme for PluPRβCD1.

2.2. PegPRαCD1 General Synthesis Procedure

Synthesis of PegPRαCD1 from PegPRαCD2 is described in Scheme 2. PegPRαCD2
(0.1 g) and DIPEA (0.2 mL) were dissolved in HMPA (3 mL) and cooled to 4 ◦C. PhI(OAcTf)2
(36 mg, 0.084 mmol) and a catalytic amount of TEMPO (3.9 mg, 0.025 mmol) were added to
the obtained solution. The resulting mixture was stirred at 4 ◦C for 10 days and then added
dropwise to diethyl ether. The obtained precipitate was repeatedly centrifuged in cold
MeCN and dialyzed in deionized water. The dialyzed aqueous solution was freeze-dried
to produce Peg10kPRαCD1 or Peg20kPRαCD1 with a nearly quantitative yield. IR (KBr)
ṽ = 3377, 2911, 1645, 1152, 1082, and 1032 cm−1. See Section 2.4 regarding the aldehyde
marking with DMHZ for 1H NMR measurement.
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2.3. Synthesis of PluPRβCD1
2.3.1. PluPRβCD3 General Synthesis Procedure

Plu–COOH (1 g) and βCD (1 g, 0.88 mmol) were dissolved in deionized water (56 mL)
and stirred at 25 ◦C for 7 days. A white precipitate was gradually formed during the
reaction, which was thoroughly centrifuged (14,000× g, 20 min) and washed with cold
water. Freeze drying the resulting precipitate produced PluPRβCD3 as a white powder. The
further addition of βCD (0.36 g) to the supernatant and repetition of the above-mentioned
procedure generated more PluPRβCD3. In total, approximately 0.7 g of Plu9kPRβCD3 and
Plu15kPRβCD3 was obtained from one gram of Plu–COOH. δH (DMSO-d6): 1.01–1.05 (m,
3H, Cj-H), 3.30–3.38 (m, Cb,d-H and Ck,l-H), 3.41–3.67 (m, 32H, Cc,e,f -H and Cm-H), 3.94
(br, 4H, Cn-H), 4.37–4.40 (m, 7H, OHg), 4.83–4.84 (m, 7H, Ca-H), 5.63–5.68 (m, 14H, OHh,i)
(Figure S2).

2.3.2. PluPRβCD2 General Synthesis Procedure

BOP (0.34 g, 0.76 mmol), Trt–NH2 (0.2 g, 0.76 mmol), and DIPEA (0.14 mL, 0.82 mmol)
were dissolved in dry MeCN (3 mL). Powdered PluPRCD3 (0.5 g) was added to the resulting
solution under vigorous stirring. The obtained reaction mixture was stirred at 25 ◦C for
2 days. Subsequently, it was repeatedly centrifuged (1500× g, 20 min) in cold MeCN
until the supernatant became colorless. The precipitate was thoroughly washed with
dichloromethane and filtered. The dialysis of the solid residue followed by freeze drying
produced PluPRβCD2 as a white powder. The yields of Plu9kPRβCD2 and Plu15kPRβCD2
were 0.24 g (48%) and 0.20 g (40%), respectively. δH (DMSO-d6): 1.03–1.05 (br, 3H, Cj-
H), 3.28–3.38 (br, Cb,d-H and Ck,l-H), 3.42–3.66 (br, 32H, Cc,e,f -H, Cm,n-H), 4.45–4.47 (m,
7H, OHg), 4.82–4.83 (m, 7H, Ca-H), 5.68–5.75 (m, 14H, OHh,i), 7.16–7.32 (m, trityl group)
(Figure S3). IR (KBr) ṽ = 3362, 2905, 1649, 1367, 1157, 1082, and 1030 cm−1.

2.3.3. PluPRβCD1 General Synthesis Procedure

PluPRβCD2 (0.12 g) was dissolved in HMPA (3 mL) and cooled to 4 ◦C. PhI(OAc)2
(22 mg, 0.065 mmol) and a catalytic amount of TEMPO (3.3 mg, 0.0195 mmol) were added
to the prepared solution, and the resulting mixture was stirred at 4 ◦C for 10 days. The
reaction mixture was added dropwise to diethyl ether, and the obtained precipitate was
centrifuged (1500× g, 20 min). Subsequently, the precipitate was washed and centrifuged
using cold MeCN and dialyzed in deionized water. Freeze drying the inner dialysis solution
produced Plu9kPRβCD1 or Plu15kPRβCD1 with a nearly quantitative yield. IR (KBr)
ṽ = 3389, 2934, 1649, 1456, 1155, 1082, and 1030 cm−1. See the section below regarding the
aldehyde marking with DMHZ for 1H NMR measurement.

2.4. Quantification of Aldehyde Groups Using DMHZ

PegPRαCD1 or PluPRβCD1 (10 mg) was dissolved in DMHZ-buffered water (0.2 M,
pH = 8.2) and stirred at 37 ◦C for 48 h. NaBH3CN was added to the obtained solution at a
final concentration of 0.2 M. The resulting mixture was stirred at 37 ◦C for another 48 h
and subsequently dialyzed in deionized water for 24 h. Freeze drying the inner dialysis
solution and thoroughly washing with ethanol produced the DMHZ-labeled PegPRαCD1
or PluPRβCD1 with a nearly quantitative yield. For PegPRαCD1-DMHZ δH (DMSO-d6):
2.54 (s, 3H, Ck-H), 3.24 (br, Nj-H, Cb,b’,d,d’-H), 3.40–3.52 (m, 4H, Cl,m-H), 3.59–3.81 (br, 28H,
Cn-H, Cc,e,f -H and Cc’,e’,f ’-H), 4.31 (br, 6H, OHg), 4.80–4.81 (br, 6H, Ca,a’-H), 5.51 (br, 6H,
OHh,h’,i,i’) (Figure 2a).

For PluPRβCD1-DMHZ δH (DMSO-d6): 1.04–1.05 (br, 3H, Cl-H), 2.54 (s, 3H, Ck-H),
3.25 (br, Nj-H, Cb,b’,c,c’-H and Cm,n-H), 3.40–3.52 (m, 4H, Co-H), 3.64–3.82 (br, 32H, Cp-H,
Cc,e,f -H and Cc’,e’,f ’-H), 4.34 (br, 7H, OHg), 4.83 (br, 7H, Ca,a’-H), 5.59 (br, 14H, OHh,h’,i,i’)
(Figure 2b).
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318 K, DMSO-d6).

2.5. Preparation of PRATs

PRATs were fabricated according to a procedure described in our previous study [23].
Briefly, an atelocollagen solution (25 mg/mL) in a 0.1 M phosphate buffer (pH = 7.0) was
poured into a 0.05 M phosphate buffer at 37 ◦C through an 18 G plastic tube. The obtained
atelocollagen thread was crosslinked with PegPRαCD1 or PluPRβCD1 via stepwise reduc-
tive amination in a 0.1 M borate buffer (pH = 8.5). The crosslinked thread was washed
with an aqueous ethanol solution and dried under ambient conditions. The dry thread was
fixed to the flexible polypropylene sheet using paper tape for a temporal fixation. Then, the
liquid glue was applied to cover the part of the thread 5 mm from the paper tapes. After
the liquid was solidified, the thread sample was subjected to tensile testing.

2.6. Tensile Testing

A Micro Autograph MST-X HS/HR (SHIMADZU) was employed for the tensile testing.
The fabricated thread samples were immersed in a 50 mM phosphate buffer (pH = 7) for
3 min before tensile testing under wet conditions. After the thread samples affixed to the
polypropylene sheet were secured onto the measuring apparatus, the frame was severed,
initiating the measurement process. The thread was pulled upward under a mist of water
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at the rate of 2 mm/min using the top jig connected to the 10 N load cell. The stress–
strain curve of the sample was monitored in real time until the thread sample was broken.
Statistical significance of the experimental data was assessed by Tukey’s test, where p < 0.01
and p < 0.05 were considered significant.

2.7. Analytical Methods and Apparatus
1H NMR measurement was performed on an ECS-400 spectrometer (JEOL). The pow-

der PR sample (~5 mg) was dissolved in DMSO-d6 and employed for the 1D measurement
at 293 or 318 K. The 1H NMR spectrum was obtained using 160 scans with a relaxation
delay of 5 s.

Fourier-transform infrared (FT–IR) measurements of the synthesized PRs were per-
formed using an IRAffinity-1S spectrometer (SHIMADZU). Powder PR samples were
mixed and milled with potassium bromide (KBr), and the resulting powder mixture was
fabricated into a pellet. The pellet was subjected to a transmittance measurement in the
infrared region (4000–500 cm−1).

A TGA-50 thermogravimetric analyzer (SHIMADZU) was utilized to monitor the
thermal decomposition of the samples during thermogravimetric analysis (TGA). The
powder sample (~10 mg) was weighed on a platinum pan and placed in the sample
chamber. The residual weight was monitored in real time while the sample was heated
from 25 to 700 ◦C at the heating rate of 10 ◦C/min under N2 gas flow.

3. Results and Discussion
3.1. Synthesis and Characterization of PegPRαCD1

Peg10kPRαCD1 and Peg20kPRαCD1 were synthesized from the hydroxyl group-
terminated Peg via a typical Gabriel amine synthesis process, pseudo-PR formation, terminal
amide coupling by adamantane carboxylic acid, and catalytic oxidation of the primary
alcohol groups of αCD (see Figure S1 for the adamantane end-capped PegPRαCD2). The
aldehyde groups were selectively introduced as crosslinking sites into the four PRs via
catalytic oxidation with TEMPO and PhI(OAc)2. Previous research used Dess–Martin
Periodinane (DMP) to introduce the aldehyde groups into CDs of PRs, although the DMP
potentially produces ketones besides aldehydes [24–30]. Most recently, we have reported
that the TEMPO/PhI(OAc)2 redox couple is more suitable than the DMP for the selective
oxidation of hydroxymethyl groups of CDs [23]. To calculate the number of crosslinking
sites per PR molecule, aldehyde groups were pre-labeled with DMHZ via reductive amina-
tion. Previously, we reported the direct quantification of aldehyde groups as acetal forms
by 1H NMR spectroscopy [23]. However, the limited solubility resulting from the increased
molecular weight of PegPRαCD1 led to the development of an alternative method. The
representative 1H NMR spectrum of PegPRαCD1-DMHZ is shown in Figure 2a. A broad
spectrum is observed owing to the formation of PegPRαCD1, and its peaks are assigned to
the αCD and Peg units. The N–CH3 protons (k) of DMHZ were detected at 2.54 ppm, while
the N–H peak (j) likely overlapped with the peaks of the protons at the Cb, Cb’, Cd, and
Cd’ positions. The coverage ratio of 20 mol% was calculated from the ratio between the
peaks obtained for the Peg units and the methyl groups. Moreover, the number of DMHZ
molecules was consistent with that of αCD species, indicating that one aldehyde group
was introduced per αCD molecule.

3.2. Synthesis and Characterization of PluPRβCD1

The pseudo-PR formation originates from the complexation between polypropylene
glycol (Ppg) units and βCD [46], whereas βCD can move and rotate over the entire polymer
units (i.e., Peg and Ppg units) [7,47]. To synthesize Plu9kPRβCD1 and Plu15kPRβCD1,
we initially attempted to prepare the corresponding pseudo-PRs (i.e., PluPRβCD3) from
Plu–COOH according to a previously developed procedure [46]. Although the earlier study
reported the gram-scale preparation of pseudo-PR, the corresponding procedure was not
reproduced under the same experimental conditions (i.e., a trace amount of pseudo-PR was
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obtained). Therefore, the preparation conditions were reinvestigated using Plu–OH as a
model compound. One gram of Plu–OH was dissolved in a saturated aqueous solution
of βCD (56 mL) and stirred at 25 ◦C for 7 days. A white suspension was obtained during
stirring owing to the formation of pseudo-PR. The product was collected via centrifugation
and freeze-dried. Further addition of βCD to the supernatant enabled the preparation of
more pseudo-PR. The same procedure was applied for Plu–COOH. In total, approximately
0.7 g of PluPRβCD3 was obtained from the initial amount of Plu–COOH. The corresponding
1H NMR spectra were used to calculate the coverage ratio of βCD with respect to the total
number of Peg and Ppg units, which was equal to 6 mol% (Figure S2). PluPRβCD2 was
synthesized by the terminal end-capping of PluPRβCD3 via amide coupling with Trt–NH2
in anhydrous acetonitrile (Figure S3). Finally, one hydroxymethyl group per βCD in the
PRs was converted to an aldehyde group using the TEMPO/PhI(OAc)2 redox couple.
In addition to PegPRαCD1, the aldehyde groups of PluPRβCD1 were also successfully
quantified using DMHZ (Figure 2b). The coverage ratio of 6 mol% was retained during
terminal capping and catalytic oxidation.

3.3. FT–IR Measurements

Previous FT–IR studies produced peaks originating from Peg, Ppg, and
CDs [48–51]. Comparative measurements with different coverage ratios enabled the as-
signment of characteristic peaks. Figure 3a shows a representative FT–IR spectrum of
PegPRαCD2. The peaks at 1032 and 1152 cm−1 correspond to the C–O and C–O–C stretch-
ing vibrations of αCD, respectively. A new absorption band is observed at 1103 cm−1 be-
cause of the overlap between the αCD peaks and C–O stretching mode of Peg at 1082 cm−1

(Figure 3b–d). The peak at 2887 cm−1 is an overlap of the stretching vibrations of Peg C–H
and free OH groups of αCD. In contrast, the wide absorption peak at 3385 cm−1 indicates
the presence of the OH groups of αCD in the inter- and/or intramolecular hydrogen bonds.
The bending vibration of αCD–C–H is observed at 1639 cm−1, while that of Peg is detected
at 1360 cm−1. The PluPRβCD2 spectrum is similar to that of PegPRαCD2; however, its βCD
peaks are relatively small owing to the lower coverage ratio (Figure 3c). The absorption
peaks of Ppg almost completely overlap with those of the Pegs because of their similar
vibration frequencies. The absorption peak of the stopper molecules (i.e., trityl groups)
likely overlaps with that of the C–H bending vibration of βCD at 1649 cm−1. Interestingly,
although aldehyde groups were successfully labeled with DMHZ for 1H NMR measure-
ments, their characteristic peaks are absent from the FT–IR spectra (Figure 3b,d). Instead,
the peaks originating from the presence of the free OH groups of CDs (located at 2911 and
2934 cm−1 in Figures 3b and 3d, respectively) decreased after catalytic oxidation, confirm-
ing the production of acetal species from aldehyde and OH groups in the solid state [23].
Meanwhile, we cannot exclude the possibility of the hydration of aldehyde groups by
residual water. The acetal formation also caused noticeable changes in CD absorption in
the wavenumber range of 1250–1000 cm−1.

3.4. TGA Measurements

TGA was also performed to characterize PegPRαCD1 and PluPRβCD1 (Figure 4). The
weight losses observed for Peg–NH2 are consistent with those of a previously reported
TGA profile [52], thus validating the utilized experimental conditions (Figure 4a). αCD
exhibited a weight loss due to the loss of moisture by 120 ◦C and decomposition of glucose
units by 370 ◦C [53]. In comparison, the oxidation of one hydroxymethyl group of αCD
did not cause a significant change in the TGA profile (i.e., αCD–CHO). The pseudo-PR
PegPRαCD3 containing 20 mol% αCD produced weight losses arising from the thermal
decomposition of both Peg–NH2 and αCD [50]. The weight loss of PegPRαCD2 was
initiated at 200 ◦C owing to the decomposition of the stopper moiety [54], while its loss
temperatures were lower than those of PegPRαCD3 above 320 ◦C. The weight loss of
PegPRαCD1 started at 250 ◦C owing to the decomposition of polyacetal structures (i.e.,
inter- and/or intramolecular crosslinking) and hydrated aldehydes in the solid state [23].
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In the temperature range above 350 °C, the TGA curves of PegPRαCD2 and PegPRαCD1
are very similar. Meanwhile, Plu–COOH exhibits a clear two-step weight loss (Figure 4b).
Because the significant thermal decomposition of Peg begins at around 350 ◦C (Figure 4a),
the initial weight loss that starts at 200 ◦C results from the thermal decomposition of the
Ppg units of Plu–COOH. The weight losses of βCD and βCD–CHO assigned to the loss
of moisture (~110 ◦C) and decomposition of glucose units (~310 ◦C) were consistent with
those observed in the previous studies [23,53]. Owing to the relatively low coverage ratio
of PluPRβCD3, the decomposition of Ppg units after the loss of moisture is clearly observed
between 200 and 310 ◦C. PluPRβCD2 exhibits a gradual decrease in the residual weight
by 200 ◦C caused by the loss of moisture and thermal decomposition of trityl groups [55].
Similar to PegPRαCD1, the weight loss of PluPRβCD1, which begins at 250 ◦C, indicates the
decomposition of polyacetal structures and Ppg units. However, unlike the other samples,
no significant residual weight changes are observed for this compound in the temperature
range above 350 ◦C. It is noteworthy that the introduction of aldehyde groups produced a
similar trend in the TGA profiles, while the residual weights at the inflection points (i.e.,
275 and 350 ◦C) strongly depended on the CD molar content.
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3.5. Tensile Testing of PRATs

The successful characterization of the synthesized polymers led to an investigation
of the effect of PRs on the mechanical properties of the PRATs fabricated via reductive
amination. The obtained threads contained wrinkles along the thread direction owing to
the alignment of atelocollagen molecules [23], which were not previously observed for
other types of soft materials based on collagen and atelocollagen (e.g., gels and membranes).
Molecular alignment is potentially advantageous for increasing the strength and flexibility
of PRATs. The results of tensile testing obtained under humidified conditions are presented
in Figure 5 (Figure 5a shows a representative photograph of the utilized tensile testing
setup). Crosslinking of atelocollagen thread (AtCol) by Peg10kPRαCD1 and Peg20kPRαCD1
increased both the fracture stress and strain as compared with AtCol alone (Figure 5b,c,f),
leading to a 5-fold toughness increase (Figure 5d). The Young’s modulus calculated from
the initial linear region of the stress–strain curve increased by a factor of 4 (Figure 5e).
The obtained mechanical parameters reflected the entropic elasticity derived from the
slide-ring characteristics of PegPRαCD1 [7,56]. However, the molecular weight of Peg did
not significantly affect the mechanical properties of the synthesized PRATs. Previously,
Takeoka et al. examined the extensibility of N-isopropylacrylamide-based polymer gels
crosslinked by PRs with the same coverage ratio but different molecular weights of the axile
polymer (i.e., Peg) [57]. Both the fracture stress and strain were enhanced by increasing
the molecular weight of the PRs from 20,000 to 100,000, which indicated that the increased
effective range of αCD resulting from the higher molecular weight significantly affected
the gel mechanical properties. A similar effect of molecular weight was reported for ate-
locollagen hydrogels post-crosslinked with carboxymethyl PRs [58]. Note that molecular
weight exerted a stronger effect on the fracture stress and strain than coverage ratio in
the previous studies. The major difference between the PRATs and previously reported
PR-crosslinked gels is the nature of matrix molecules. The matrix molecules were randomly
oriented in the gels, whereas the atelocollagen molecules of the PRATs were tightly aligned
along the thread direction [23]. Therefore, we tentatively concluded that the effects of the
PRs depended on the alignment of the molecules to be crosslinked. We have found that
Plu9kPRβCD1 and Plu15kPRβCD1 significantly enhance the mechanical properties of the
PRATs. Plu9kPRβCD1 and Plu15kPRβCD1 further increased the fracture stress by approx-
imately 2.3 times as compared with that of PegPRαCD1, maintaining the fracture strain
(Figure 5b). Consequently, the toughness was further increased by a factor of 1.6 (no signifi-
cant differences between Plu9kPRβCD1 and Plu15kPRβCD1 are observed in Figure 5c,d),
while the Young’s modulus and fracture strain were maintained constant (Figure 5e,f). We
found consistency in that molecular weight showed a negligible effect on the mechanical
properties of the PRATs. In addition to the molecular alignment of atelocollagens, the
observed effect of PluPRβCD1 was discussed based on the PR characteristics. One of
the possible reasons for this phenomenon is the modified property nature of Peg units
upon the application of an external force [59]. Ito et al. observed the crystallization of
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Peg units during the tensile testing of PR-crosslinked materials by lowering the coverage
ratio (~2 mol%). Because PluPRβCD1 also contains wide uncovered Peg units, an external
force applied to the PRATs may similarly induce the crystallization of Peg units. However,
we cannot exclude the possibility that the ring size affects the slide-ring properties of the
PRs. The increased ring size from αCD to βCD can promote solvent uptake into the CD
inner cavity. The interactions between the OH groups of CDs, oxygen atoms in Peg units,
and solvent molecules (i.e., water) facilitate the formation of hydrogen bonds, leading to
molecular friction that prolongs the stress relaxation time [50,60]. These two factors, in
addition to the alignment of atelocollagen molecules, may contribute to the unique me-
chanical properties of the produced PRATs. It should be noted that the increased fracture
stress but maintained fracture strain provided by PluPRβCD1 had not been previously
observed for PR-crosslinked materials. Further experimental investigations combined with
theoretical studies regarding the unprecedented results should clarify the role of PRs as the
characteristic components of the PRATs.
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4. Conclusions

In this study, we investigated the effects of the molecular weight and coverage ratio of
PRs on the mechanical properties of the produced PRATs. A novel method was established
for the syntheses of PRs with relatively low coverage ratios. The obtained PRs were
successfully characterized by 1H NMR, FT–IR, and TGA. Interestingly, the results of tensile
testing demonstrated that coverage ratio was the main factor affecting the mechanical
properties of the PRATs, whereas molecular weight produced a negligible effect on these
properties. It is noteworthy that the effects of PRs on the PRAT properties potentially
depend on the alignment of atelocollagen molecules. Although further investigations are
required to support our conclusions and to further improve the mechanical properties
for practical use in humans, the results of this study offer insights into the fundamental
properties and applications of PR-reinforced biomaterials.

Supplementary Materials: The following supporting information can be downloaded from: https:
//www.mdpi.com/article/10.3390/polym15153325/s1, 1H NMR spectra. Figure S1: 1H NMR
spectrum of PegPRαCD2. Figure S2: 1H NMR spectrum of PluPRβCD3. Figure S3: 1H NMR
spectrum of PluPRβCD2.
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