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Abstract: Two reversible furan–maleimide resins, in which there are rigid -Ph-CH2-Ph- structures
and flexible -(CH2)6- structures in bismaleimides, were synthesized from furfuryl glycidyl ethers
(FGE), 4,4′-diaminodiphenyl ether (ODA), N,N’-4,4′-diphenylmethane-bismaleimide (DBMI), and
N,N′-hexamethylene-bismaleimide (HBMI). The structures of the resins were confirmed using Fourier
transform infrared analysis, and the thermoreversibility was evidenced using differential scanning
calorimetry (DSC) analysis, as well as the sol-gel transformation process. Mechanical properties and
recyclability of the resins were preliminarily evaluated using the flexural test. The results show the
Diels–Alder (DA) reaction occurs at about 90 ◦C and the reversible DA reaction occurs at 130–140 ◦C
for the furan–maleimide resin. Thermally reversible furan–maleimide resins have high mechanical
properties. The flexural strength of cured FGE-ODA-HBMI resin arrives at 141 MPa. The resins
have a repair efficiency of over 75%. After being hot-pressed three times, two resins display flexural
strength higher than 80 MPa.

Keywords: Diels–Alder reaction; furan–maleimide resin; thermally reversible cross-linking resins;
high-performance resin

1. Introduction

Thermosetting resins are a class of highly cross-linking polymers that are often me-
chanically strong and hard [1]. Therefore, thermosetting resins are indispensable in the
fields of composite materials, structural adhesives, electronic packaging materials, and
protective coatings [2]. Thermosetting resins form three-dimensional networks connected
to each other by covalent bonds after curing. Covalent bonds are usually strong but ir-
reversible, making thermosetting resins difficult to be reprocessed. This runs counter to
the goal of achieving a circular economy [3]. Fortunately, introducing dynamic reversible
bonds allows for the recycling of strong thermosetting resins [1]. Moreover, dynamic re-
versible reactions produce no additional products and do not demand any other reactants,
meaning they are carbon-economical. Nowadays, dynamic covalent bonds are widely
used to prepare dynamically reversible cross-linked resins. The reactions that generate
dynamic covalent bonds include Diels–Alder (DA) reactions [4,5], disulfide bond exchange
reactions [6,7], interesterification reactions [8,9], transamidation reactions [10], imine and
acylhydrazone bond exchange reactions [11,12], siloxane equilibrium reactions [13], alkyl
transfer reactions [14], and olefin metathesis reactions [15].

The DA reaction is ideal for preparing thermally stimulated repair polymeric materials
due to its good thermal reversibility, high yield, few side reactions, and mild reaction
conditions. Most studies have focused on the DA reaction between furan (diene) and
maleimide (dienophile) due to the high reactivity exhibited by the imide group [16]. The
furan ring shows a distinct diene character rather than an aromatic ring, which means that
its chemical behavior is more similar to cyclopentadiene than benzene [17]. Bismaleimide
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(BMI) resins are bifunctional thermosetting resins with maleimide as the reactive end
group [18]. BMI resins have high mechanical properties and dimensional stability. However,
they are not recycled due to the high crosslinking structures after curing [19]. Furan–
maleimide resins based on the DA reaction undergo a [4 + 2] reaction between furan
rings and maleimide groups at lower temperatures. The reversible-DA (r-DA) reaction
occurs above 120 ◦C so that furan–maleimide resins are depolymerized into furan and
maleimide [20]. Fan et al. [21] prepared a series of recyclable polymers via a Diels–Alder
reaction between furan-functionalized poly(hydroxyamino ether) and 1,5-bis(maleimide)-2-
methylpentane. In their work, the crosslink density of the recyclable network was adjusted
by varying the content of the flexible-(CH2CH2O)-structure. They found that with the rise
in the content of the flexible structure, the glass transition temperature decreased while
the r-DA reaction temperature increased. Currently, most of the furan–maleimide resins
reported in the literature have flexural strengths below 50 MPa [22,23]. The introduction of
flexible chains is a common method to improve the mechanical properties of resins [24].
Ma et al. increased the impact strength by up to 100% by introducing the poly(ethylene
glycol) structure into polytriazole resins [25].

In this paper, two reversible furan–maleimide resins with either a rigid -Ph-CH2-Ph-
structure or a flexible-(CH2)6- structure in the bismaleimide units were prepared by one-pot
synthesis using furfuryl glycidyl ether (FGE), 4,4′-diaminodiphenyl ether (ODA), N,N′-4,4′-
diphenylmethane-bismaleimide(DBMI), and N,N′-hexamethylene-bismaleimide (HBMI) as
the raw materials. The curing behaviors, thermal properties, mechanical properties, and
reversible properties of the resins were investigated and, meanwhile, the effect of flexible
structures on the properties was discussed.

2. Materials and Methods
2.1. Materials

Furfuryl alcohol, tetrabutylammonium bromide, epichlorohydrin, maleic anhydride,
sodium hydroxide (NaOH), anhydrous sodium sulphate (Na2SO4), ethyl acetate,
1,6-hexanediamine, N,N′-dimethylformamide (DMF), sodium acetate (AcONa), acetic
anhydride ((Ac)2O), triethylamine (TEA), sodium bicarbonate (NaHCO3), petroleum ether,
4,4′-oxydianiline (ODA), and N,N′-4,4′-diphenylmethane-bismaleimide (DBMI) were ob-
tained from Shanghai Titan Technology Co., Shanghai, China. All reagents were analytical
reagent grade.

2.2. Instruments and Measurements

The Fourier transform infrared (FT-IR) spectrum was measured using a Nicolet iS10
infrared spectrometer (Thermo Scientific Corporation, Madison, WI, USA). The scanning
range was 400–4000 cm−1 with a resolution of 4 cm−1 and a scanning time of 32. The
proton nuclear magnetic resonance (1H-NMR) spectrum was carried out using an AVANCE
III 400 spectrometer (Bruker, Billerica, MA, USA) operating at 400 MHz with deuterated
chloroform (CDCl3) as the solvent and tetramethylsilane (TMS) as the internal standard.
The melting point (Tm) was measured using an X4 melting apparatus (Shanghai Analytic
Instrument Factory, Shanghai, China). The electron impact mass spectrometry (EI-MS)
spectrum was performed using the GCT Premier EI-TOF mass spectrometer (Waters,
Milford, Massachusetts, USA) with an m/z range of 10–1500 Da. Differential scanning
calorimetry (DSC) analysis was carried out with a TA Instruments Q2000 analyzer (TA,
New Castle, DE, USA) by setting a ramp from 40 ◦C to 300 ◦C with a heating rate of
10 ◦C/min and a N2 flow of 50 mL/min. Thermogravimetric analysis (TGA) was carried
out on a TGA/DSC 1LF analyzer (METTLER TOLEDO, Greifensee, Switzerland) in N2
with a gas flow rate of 60 mL/min and a heating rate of 10 ◦C/min. The flexural properties
were tested according to GB/T 2567-2021 on an electronic universal testing machine (SANS
CMT 4204, Shanghai, China). The three-point flexural model was used for the test, and
the test loading speed was 2 mm/min. The size of the sample for the flexural test was
80 × 15 × 4 mm3.
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The content of soluble components of the resins in acetone with different structures
was measured using a Soxhlet extractor. Resins with mass m0 were put into the extractor
and continuous extraction at the reflux temperature of acetone for 24 h was conducted.
Then, the resins after extraction were taken out and dried under vacuum. Afterwards, the
resins were weighed and recorded as m1. The content of soluble components (S) in the
resins was calculated according to Equation (1):

S =
m0 −m1

m0
×100% (1)

The reversibility of the resins was verified using the hot-pressing process. The resins
were first cut into small scraps; then, the scraps were pressed in a flat vulcanizing machine
at 140 ◦C under the pressure of 3 MPa for 30 min. Afterwards, the pressed scraps were
continually placed at 90 ◦C for 24 h.

2.3. Synthesis of Furfuryl Glycidyl Ether (FGE)

The synthesis of FGE was shown in Scheme 1. Furfuryl alcohol (FAL, 9.82 g,
0.100 mol) and tetrabutylammonium bromide (TBAB, 0.450 g, 14.0 mmol) were added to a
three-necked flask equipped with a reflux condenser, a thermometer, and a mechanical
stirrer. Epichlorohydrin (ECH 10.2 g, 0.110 mol) was dropped into the flask under inert
gas protection and the reaction mixture was stirred vigorously at room temperature for
4 h. Then, the mixture was cooled to 10 ◦C with an ice bath and 50 wt% NaOH aqueous
solution (20 mL) was slowly added into the flask. After the reaction mixture was stirred
for 2 h at ambient temperature, 30 mL deionized water was added. The product was
extracted with 10 mL ethyl acetate and the organic phase was separated in a separator. The
extraction was conducted three times. The organic extracted product was collected and
washed three times with deionized water. The organic phase was separated out, dried
with anhydrous Na2SO4, and filtrated to give a transparent solution. Then, the solvent in
solution was removed under reduced pressure to get an orange-yellow liquid. In addition,
the liquid was further purified using column chromatography with a mixed solvent of
acetate/petroleum = 1/1 to obtain a light yellow liquid product (FGE, yield 78%) [16,26].
1H-NMR (400 MHz, CDCl3) δ: 7.44–7.39 (t, 1H, -O-CH=CH-), 6.38–6.31 (d, 2H, =CH-CH=),
4.53 (q, 2H, C-CH2-O), 3.80–3.40 (q, 2H, -O-CH2-CH), 3.16 (m, 1H,
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2.4. Synthesis of N,N′-Hexamethylene-Bismaleimide (HBMI)

The synthesis of HBMI is shown in Scheme 2. 1,6-Hexanediamine (HDA, 11.6 g,
0.100 mol) and DMF (100 mL) were added to a four-necked flask equipped with a reflux
condenser, a thermometer, and a mechanical stirrer. Maleic anhydride (21.6 g, 0.220 mol)
dissolved in DMF (100 mL) was dropped into the flask and the mixture was stirred at 90 ◦C
for 3 h. At the end of the reaction, the mixture was cooled to 60 ◦C, after which AcONa
(2.00 g, 0.0244 mol) was added and a mixture of (Ac)2O (100 mL) and TEA (20 mL) was
dropped into the flask. Then, the mixture was heated at 90 ◦C for another 3 h. The reaction
solution was washed with ice water. The solid was separated and washed with saturated
NaHCO3 followed by washing with deionized water several times to obtain a yellow
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powder. Finally, the powder was dried in a vacuum oven at 100 ◦C for 12 h. A light yellow
powder product was obtained, N,N′-hexamethylene-bismaleimide (HBMI, yield 56%, Tm
137–138 ◦C) [27]. 1H-NMR (400 MHz, CDCl3) δ: 6.60 (s, 4H, HC=CH), 3.39 (t, 4H, -NCH2-),
1.56–1.34 (m, 4H, -NCH2CH2-), 1.34–1.09 (m, 4H, -NCH2CH2CH2). FT-IR (KBr, cm−1):
3107 (=C-H, υ), 2942 (-CH2-, υ), 1690 (C=O, υ), 1587, 1453 (C=C, υ), 1227 (C-N, υ), and 698

(=C-H, δ). EI-MS (m/z): 276 [M]+, 110 [M-
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2.5. Synthesis of Cured FGE-ODA-BMI Resins

Prior to the preparation of resins, a preliminary investigation of the reaction tempera-
tures between the different monomers was carried out, as detailed in the Supplementary
Materials (Figures S3–S6). The synthesis of two FGE-ODA-BMI resins, namely FGE-ODA-
DBMI resin and FGE-ODA-HBMI resin, was shown in Scheme 3. The synthesis of FGE-
ODA-DBMI was taken as an example to demonstrate the synthesis details. FGE (5.15 g,
33.0 mmol), N,N′-4,4′-diphenylmethane-bismaleimide (DBMI 5.98 g, 16.7 mmol), and DMF
(5 mL) were added to a 100 mL three-necked flask equipped with a stirrer, a thermometer,
and a condenser. After that, the temperature of the mixture was slowly raised to 55 ◦C
under stirring until the mixture became transparent. Then, 4,4′-diaminodiphenyl ether
(ODA, 1.65 g, 8.25 mmol) was added into the flask. The mixture was stirred well to ensure
homogenous mixing. A certain amount of the mixture was put into a preheated mold
covering a release agent in a 125 ◦C vacuum oven for 30 min to remove the solvent. Then, a
reddish-brown liquid was formed at 125 ◦C (FGE-ODA-DBMI resin) [28]. After the resin
was heated at 110 ◦C for 12 h and at 90 ◦C for 24 h, a reddish-brown cured FGE-ODA-DBMI
resin was obtained. The cured FGE-ODA-HBMI resin was made in the same way except
using HBMI instead of DBMI.
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3. Results
3.1. Curing Procedures and Structural Characterization of FGE-ODA-BMI Resins

The reactions between FGE and DBMI, FGE and ODA, DBMI and ODA, and among
DBMI, FGE and ODA are investigated using DSC analysis and the results are shown
in Figure 1. As shown in Figure 1a, there is an exothermic peak (1st) in the range of
68–104 ◦C, an endothermic peak in the range of 124–155 ◦C, and another exothermic peak
(2nd) in the range of 155–205 ◦C for the mixture of FGE and DBMI. The former exothermic
peak (1st) is due to the DA polymerization reaction, and the latter exothermic peak (2nd) is
the self-polymerization of DBMI, while the endothermic peak is due to the reversible DA
reaction [29–31]. There is an exothermic peak between 105 ◦C and 232 ◦C in the DSC curve
for the mixture of FGE and ODA, which is due to the ring-opening reaction of oxirane
rings with amino groups. For the mixture of ODA and DBMI, there is an endothermic peak
between 90 ◦C and 150 ◦C due to the melting of the mixture. As shown in the curve of the
DBMI and ODA, the exothermic phenomenon occurs above 150 ◦C. Usually, the Michael
addition reaction between the -C=C- of DBMI and the amino group of ODA is exothermic
and usually occurs above 130 ◦C [29,30]. Therefore, the exothermic phenomenon is due to
the Michael addition reaction between DBMI and ODA. As shown in Figure 1b, the thermal
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curing reaction of FGE-ODA-DBMI resin includes three stages in the range of 40–160 ◦C.
The first one (67–102 ◦C) is owing to the DA reaction and the second one (107–125 ◦C) is
due to the ring-opening reaction between oxirane rings and amino groups, and, then, the
third one (125–153 ◦C) is attributed to the r-DA reaction [29,30]. The reactions between
FGE and HBMI, FGE and ODA, HBMI and ODA, and among HBMI, FGE and ODA are
investigated using DSC analysis and the results are shown in Figure S7.
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Figure 1. DSC curves of FGE mixed with DBMI, FGE mixed with ODA, ODA mixed with DBMI (a),
DSC curves of FGE-ODA-DBMI resin (b).

Three curing procedures, i.e., 90 ◦C/36 h, 110 ◦C/36 h, and 110 ◦C/12 h + 90 ◦C/24 h,
for the resins are designed. The FGE-ODA-DBMI resins are cured under three different
curing procedures, and the resultant cured resins are noted as cured FGE-ODA-DBMI-1
resin, cured FGE-ODA-DBMI-2 resin, and cured FGE-ODA-DBMI-3 resin, respectively.
The flexural properties of cured FGE-ODA-DBMI resins are shown in Figure 2a. Cured
FGE-ODA-DBMI-3 resin has the highest flexural strength (125 MPa) and flexural modulus
(4.30 GPa). For cured FGE-ODA-DBMI-1 resin, the ring-opening reaction between oxirane
rings and amino groups has not yet taken place at 90 ◦C. Thereby, cured FGE-ODA-DBMI-1
resin has the lowest flexural strength. When the resin is heated at 110 ◦C for 36 h, the
ring-opening reaction between oxirane rings and amino groups partially occurs while the
DA reaction is not obvious during this curing temperature, meaning the resulting resin is
further cross-linked. The flexural properties further increase. When the resin is heated at
110 ◦C for 12 h and, then, at 90 ◦C for another 24 h, the partially cross-linked resin continues
to form DA bonds, leading to a higher cross-linking degree; hence, cured FGE-ODA-DBMI-
3 resin has the highest flexural properties. The effect of three curing procedures on the
flexural properties of the cured FGE-ODA-HBMI resin is also investigated and the results
are shown in Figure 2b. Similarly, cured FGE-ODA-HBMI-3 resin possesses the highest
flexural properties. Therefore, the curing procedure (110 ◦C/12 h + 90 ◦C/24 h) is optimal
for FGE-ODA-DBMI and FGE-ODA-HBMI resins. The FGE-ODA-BMI resins will be cured
with the above optimal curing procedure unless otherwise stated.

FT-IR spectroscopy is used to analyze the changes in the characteristic functional
groups of the cured FGE-ODA-DBMI resin and its raw material, as shown in Figure 3a.
The disappearance of the asymmetrical stretching (918 cm−1) of oxirane rings in the cured
FGE-ODA-DBMI resin and the appearance of the extensive absorption at about 3450 cm−1

corresponding to hydroxyl groups generated through the ring opening reaction between
ODA and FGE reveal that oxirane rings react with amino groups [29,30]. The peaks at
2930 cm−1 and 2860 cm−1 are attributed to the antisymmetric and symmetric stretching
vibration of -CH2 in turn, and the peak at 1424 cm−1 is due to the bending vibration of
-CH2 [29,30]. The appearance of a new peak at 1776 cm−1 corresponding to succinimide
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rings generated through the DA reaction confirms the successful synthesis of cross-linked
networks. The pattern of change for the cured FGE-ODA-HBMI resin is similar and shown
in Figure S8a. Meanwhile, FT-IR spectroscopy is used to analyze the changes in the charac-
teristic functional groups of FGE-ODA-DBMI resin during the curing process (Figure 3b).
As the curing time of FGE-ODA-DBMI resin increases, the C-O-C stretching vibration peak
on the oxirane ring at 1254 cm−1 gradually decreases, and the C-N characteristic peak at
1668 cm−1 gradually increases. When the resin is cured at 110 ◦C for 12 h, the C-O-C peak
disappears, and the C-N peak no longer increases. This result shows that oxirane rings
react with amino groups. A new peak is identified at 1776 cm−1, which is specific to the
DA adduct of maleimide [25]. The absorption peak at 1776 cm−1 no longer increases when
the curing procedure changes from 110 ◦C/12 h + 90 ◦C/24 h to 110 ◦C/12 h + 90 ◦C/30 h,
indicating that the curing procedure (110 ◦C/12 h + 90 ◦C/24 h) for FGE-ODA-DBMI resin
is reasonable. The pattern of change for FGE-ODA-HBMI resin is similar and would not
be repeated (Figure S8b). A Soxhlet extractor is used to measure the content of soluble
components in resins of different structures to determine the curing degree of the resin. The
content of soluble components in cured FGE-ODA-DBMI resin and cured FGE-ODA-HBMI
resin are 2.21% and 1.29%, respectively. The content of soluble components decreases
when the flexible structure is introduced into the resin (FGE-ODA-HBMI). This demon-
strates that cured FGE-ODA-HBMI resin possesses a higher cross-linking degree than cured
FGE-ODA-DBMI resin.
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3.2. Thermal Property of the Cured FGE-ODA-BMI Resins

The thermoreversibility of the resins is characterized using DSC analysis and the DSC
curves for cured FGE-ODA-BMI resins are shown in Figure 4. As shown in Figure 4a, the
reversible Diels-Alder (r-DA) reaction peak temperature of the cured FGE-ODA-HBMI
resin (141 ◦C) is higher than that of the cured FGE-ODA-DBMI resin (130 ◦C). This is
because the flexible structure in the cured FGE-ODA-HBMI resin gives molecular chains
greater mobility. The TGA curves of the resins with different structures are shown in
Figure 4b. The decomposition does not happen below 150 ◦C, which further ensures
the thermoreversibility. There are two possible reasons for the weight loss of the resin
at 150–300 ◦C. One reason is that the resins undergo the r-DA reaction below 155 ◦C,
depolymerizing into FGE-ODA and BMI (shown in Figure S9). Based on the TGA curves
of FGE-ODA and BMI, it can be seen that FGE-ODA shows significant weight loss below
300 ◦C (as shown in Figure S10). Therefore, the weight loss of the resin below 300 ◦C is
attributed to the weight loss of FGE-ODA. Another possible reason is that the DA adducts
dehydrate to form a benzene ring [32].
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3.3. Reversible Performance of the Cured FGE-ODA-BMI Resins

The reversibility of the cured FGE-ODA-BMI resin is further analyzed using DSC tests.
As shown in Figure 5a, the cured FGM-ODA-DBMI is firstly heated from 20 ◦C to 140 ◦C at
a heating rate of 10 ◦C·min−1 (1st heating) and immediately cooled to 20 ◦C at a cooling
rate of 10 ◦C·min−1 (1st cooling), and, then, heated to 140 ◦C again at the same heating
rate (2nd heating). There is an endothermic peak at 130 ◦C and 131 ◦C in 1st heating and
2nd heating, respectively. At the same time, an exothermic peak appears at about 90 ◦C in
1st cooling. The results indicate that for the cured FGE-ODA-DBMI resin, the DA reaction
occurs at about 90 ◦C and the r-DA reaction at about 130 ◦C. As shown in Figure 5b, an
endothermic peak for the cured FGE-ODA-HBMI resin appears at 142 ◦C and 143 ◦C in the
1st heating and 2nd heating, respectively. Meanwhile, there is an exothermic peak at about
95 ◦C in 1st cooling. The results indicate that for the cured FGE-ODA-HBMI resin, the DA
reaction occurs at about 95 ◦C, and the r-DA reaction does at about 140 ◦C.

The reversibility of cured FGE-ODA-BMI resins is verified using the sol-gel trans-
formation process. The cured FGE-ODA-DBMI resin is taken as an example. The cured
FGE-ODA-DBMI resin slightly swells after being immersed in DMF at 50 ◦C for 6 h. The
phenomenon indicates that the cured FGE-ODA-DBMI resin is cross-linked and thus in-
soluble in DMF (Figure 6b). Then, when heated at 140 ◦C, the resin quickly turns into
a reddish-brown liquid (Figure 6c), which indicates that the r-DA reaction of oxanor-
bornenes in the network has taken place. Due to the reduction in molecular weights, the
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depolymerized resin is easily dissolved in DMF. Subsequently, when the liquid is heated at
90 ◦C for a period of time, the broken DA bonds reunite to form a cross-linked network.
As the DA reaction progresses, the cross-linking degree gradually increases. After 4 h, the
resin forms a gel (Figure 6d). Finally, the resin repolymerizes into a reddish-brown lumpy
solid. The sol-gel transformation process of the cured FGE-ODA-HBMI resin is similar to
that of the cured FGE-ODA-DBMI resin (Figure S11). These results show that the cured
FGE-ODA-DBMI resin and the cured FGE-ODA-HBMI resin are thermosetting resins with
good thermal reversibility.
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Since the resin is thermally reversible, the fractured resin could be reshaped using
the hot-pressing method to form a homogeneous solid (Figure S12). The schematic repair
process of the cured FGE-ODA-BMI resins is shown in Figure 7.
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The repair efficiency of the resin is determined by testing the flexural strength of the
resin after hot pressing. As listed in Table 1, cured FGE-ODA-DBMI and FGE-ODA-HBMI
resins possess the flexural strength of 125 MPa and 141 MPa, and the flexural moduli of
4.30 GPa and 4.25 GPa, respectively, indicating that the flexible structures in the resin could
increase flexural strength but slightly reduce flexural modulus. Because cured FGE-ODA-
DBMI resin has a lower r-DA reaction peak temperature, the r-DA reaction is easier to occur,
which is beneficial to repair. Thus, the repair efficiency of cured FGE-ODA-DBMI resin is
higher than that of cured FGE-ODA-HBMI resin. In addition, the flexural property of the
resin declines after repair. This is because furan rings generated by the depolymerization
of DA bonds are easily oxidized at high temperatures [33].

Table 1. Changes in flexural properties after multiple processing.

Sample

Cured FGE-ODA-DBMI Resin Cured FGE-ODA-HBMI Resin

Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

Retention
Rate
(%)

Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

Retention
Rate
(%)

R-0 125 ± 3 4.30 ± 0.23 - 141 ± 5 4.25 ± 0.13 -
R-1 109 ± 7 4.08 ± 0.15 87.2 111 ± 9 3.95 ± 0.17 78.7
R-2 98 ± 8 3.82 ± 0.23 78.4 102 ± 5 3.87 ± 0.21 72.3
R-3 83 ± 6 3.69 ± 0.19 66.4 86 ± 3 3.68 ± 0.16 61.1

After the cured FGE-ODA-BMI resins were reshaped using the hot-pressing method,
the flexural properties are tested and the retention rate is calculated. The initial resins are
named R-0, and the resins reprocessed for the first, twice, and third time are named R-1,
R-2, and R-3, respectively. As shown in Table 1, after the cured FGE-ODA-DBMI resin is
recompressed three times, the flexural strength is 83 MPa, giving a retention rate of 66.4%
compared to the initial flexural strength. Similarly, the cured FGE-ODA-HBMI resin has a
retention rate of 61.1% after being repressed three times.

4. Conclusions

In this paper, two kinds of thermally reversible cross-linking resins (FGE-ODA-DBMI,
FGE-ODA-HBMI) are prepared by changing the structure of BMI. In addition, the properties
of FGE-ODA-DBMI and FGE-ODA-HBMI resins are studied. First, the curing process of
the two resins is studied using DSC and FT-IR analyses. The optimal curing process of
110 ◦C/12 h + 90 ◦C/24 h is determined. Secondly, the reversibility of the cured FGE-ODA-
DBMI and FGE-ODA-HBMI resins is analyzed using DSC tests. The DA reaction occurs
at about 90 ◦C and the r-DA reaction occurs at about 140 ◦C for FGE-ODA-BMI resins.
At the same time, the thermal reversible behavior of resin is verified using the sol-gel
transformation process. Finally, the cured resin is reshaped using the hot-pressing method
to form a homogeneous solid. The cured FGE-ODA-DBMI and FGE-ODA-HBMI resins
have a repair efficiency of over 75% at the beginning. After being repressed three times,
both resins retain more than 60% of flexural strength. Compared to the FGE-ODA-HBMI
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resin, the FGE-ODA-DBMI resin with a rigid structure has a lower flexural property but
better reversibility. These results would provide a reference for the design and preparation
of high-performance reversible resins.
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(the mixture after heating at 55 ◦C for 30 min); Figure S4: 1H-NMR spectra of FGE, HBMI and
FGE + HBMI (the mixture after heating at 55 ◦C for 30 min); Figure S5: 1H-NMR spectra of ODA,
DBMI and ODA + DBMI (the mixture after heating at 125 ◦C for 30 min); Figure S6: 1H-NMR spectra
of FGE, HBMI and ODA + HBMI (the mixture after heating at 125 ◦C for 30 min); Figure S7: DSC
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resin (c), the gel state of cured resin (d); Figure S12: The flow chart of the hot-pressing process of
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