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Abstract: Activated carbon (AC) and activated carbon fibers (ACFs) are materials with a large
specific surface area and excellent physical adsorption properties due to their rich porous structure,
and they are used as electrode materials to improve the performance of adsorbents or capacitors.
Recently, multiple studies have confirmed the applicability of AC/polymer compo-sites in various
fields by exploiting the unique physical and chemical properties of AC. As the excellent mechanical
properties, stability, antistatic and electromagnetic interference (EMI) shielding functions of activated
carbon/polymer composite materials were confirmed in recent studies, it is expected that activated
carbon can be utilized as an ideal reinforcing material for low-cost polymer composite materials.
Therefore, in this review, we would like to describe the fabrication, characterization and applicability
of AC/polymer composites.
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1. Introduction

Activated carbon (AC) and activated carbon fibers (ACFs) have rich porous struc-
tures, large specific surface areas, and excellent physical adsorption properties. Such AC
and ACFs can be synthesized using various raw materials such as coal [1], petroleum [2],
biomass [3], and the like, and activated carbon having various properties can be manufac-
tured according to activation methods such as gas activation [4] and chemical activation [5].
Usually, owing to its excellent adsorption performance, AC is widely used in all indus-
tries as an adsorbent for decolorization, deodorization, solvent recovery, and water and
wastewater treatment; furthermore, it has been used as an electrode material to improve
the performance of capacitors [6–29].

As it is applied to various fields, the demand in the market has increased widely.
In addition, recently, research on using AC and ACFs as a filler for the development
of high-functional polymer composite materials [30–49] has been steadily progressing
just like carbon materials such as carbon fibers [50–54], carbon nanotubes [55–68], and
graphene. However, AC and ACFs have great potential to replace other carbon materials,
but their potential use in polymer composite materials as reinforcing fillers has not been
fully explored.

Recently, multiple studies have confirmed the applicability of AC/polymer compos-
ites in various fields by exploiting the unique physical and chemical properties of AC.
For example, due to the porous structure, the molten polymer enters the pores of the
activated carbon to form a three-dimensional network to improve the tensile properties
of the composite material, or to improve the electrical properties or electromagnetic wave
shielding properties of the polymer composite material due to its electrical conductivity.
Owing to its low cost, excellent stability, and antistatic and electromagnetic interference
shielding functions, AC/polymer composite material can be used in various applications,
such as automobile parts and shielding materials [69–98].
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This work aimed to investigate the current status of related research fields by summa-
rizing the manufacturing, characterization, and applicability of AC/polymer composite
materials reported in the literature. Herein, the applicability and properties of AC/polymer
composite materials, such as adsorption, mechanical, electromagnetic interference shielding
(EMI SE), and other properties, according to various manufacturing conditions are detailed.

2. Adsorption Properties of Activated Carbon/Polymer Composites

Various studies have been conducted on the evaluation of the absorption proper-
ties of AC/polymer composites; the results of some studies are summarized in Table 1.
Akter et al. [69] investigated the removal properties of Pb(II) using chitosan-activated
carbon-polyvinyl alcohol (CS-AC-PVA) composite beads and reported that the amount of
Pb adsorption was 0.2801 mg/g. Bekhoukh et al. [70] used an activated carbon/polyaniline
composite as an adsorbent to confirm the properties of anionic methyl orange removal.
Ramadoss et al. [71] used an activated carbon/PVP composite to fabricate a biodegradable
membrane for brackish water treatment; the results indicated that the dye adsorption
efficiency was 100% for methyl orange and up to 57% for rhodamine B within 3 h (Figure 1).
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Figure 1. Dye adsorption efficiency of (a) RhB cationic dye and (b) methyl orange anionic dye [71].
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Lelifajri et al. [72] prepared an immobilized activated carbon/polyvinyl alcohol com-
posite material for the adsorption removal of 2,4-dichlorophenoxyacetic acid. The results
indicated that the prepared adsorbent exhibited adequate reuse performance and that it
was an effective and promising adsorbent for removing herbicides. Industrial wastewater
with heavy metals is a major environmental problem, and research on the development
of adsorbents that can remove these heavy metals is ongoing. Aswini and Jaisankar [73]
investigated the adsorption of heavy metals, such as copper, cadmium, and lead, using
sugarcane-based AC and polymer composites. The results confirmed that the prepared
AC and composite material can be used as an adsorbent for the removal of heavy metal in
wastewater. Khalili et al. [74] synthesized a pine cone-based activated carbon/polyaniline
composite for capturing CO2 via oxidative polymerization and analyzed the CO2 adsorp-
tion capacity of the prepared composite. The results indicated that the CO2 adsorption
capacity significantly increased from 1.91 mmol/g for AC to 2.69 mmol/g for AC-PANI-
F and 3.16 mmol/g for AC-PANI-S at 25 ◦C and 1 bar. This indicates that activated
carbon/PANI composites can be used as effective adsorbents to capture CO2 from flue
gases. Hwang et al. [75] studied the properties and filtration efficiency of activated car-
bon/polymer composites for humic acid removal. The results indicated that AC addition
significantly affected the membrane morphology, pore size distribution, porosity, and
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chemical properties. Activated carbon/polyurethane foam composites were prepared by
adding AC during PU foam synthesis. The prepared composite material exhibited the
maximum adsorption capacities of MB and phenol of 100 and 66.5 mg/g, respectively. The
manufactured AC/PU composite material can be molded into a desired shape depending
on the mold used, confirming its applicability in various fields [76].

Table 1. Adsorption characteristics of AC/polymer composites according to the preparation condition.

Preparation Condition Adsorption Characteristics Enhancement

Chitosan (3 g)-AC (1 g)/PVA (4 g)
composites by mixing and heating [69]

Adsorbed amount of Pb
(0.2801 mg/g)

Adsorbed amount of Pb: 115.95%
(compared with CS)

AC/PANI composites via in situ
polymerization [70]

MO removal capacity (192.52 mg g−1 at
298 K and pH 6.0)

311.19% (compared with PANI)

AC/NaCMC/PVP (1:3:2) composites
using the solution casting method [71]

Adsorption of two toxic dyes, Rhodamine
B (57%) and methyl orange (100%) -

AC/polyvinyl alcohol composites using the
solution method [72]

Adsorption of 2,4-dichlorophenoxyacetic
acid (55.9 mg/g) -

Sugarcane bagasse–AC/PVP composites [73] Adsorption capacity of Pb (96.39%),
Cu (98.38%), and Cd (79.43%)

4.63%, 3.15%, and 2.75% (compared
with AC)

AC/polyaniline composites via in situ
polymerization [74]

CO2 adsorption capacity
(3.16 mmol/g)

65.44%
(compared with AC)

AC/PPSU/PEI/PEG (0.25/35/5/6 wt.%)
composites using the wet phase inversion
technique [75]

Humic acid removal efficiency (80%) -

AC/polyurethane foam (PU) composites [76] Adsorption capacity of MB
(100 mg/g) -

3. Mechanical Properties of Activated Carbon/Polymer Composites

Many studies have been conducted on the evaluation of the mechanical proper-
ties of AC/polymer composites; the results of some studies are summarized in Table 2.
Wang et al. [77] reported the manufacturing method and analyzed the mechanical proper-
ties of biomass-activated carbon (BAC)/ultra-high-molecular-weight polyethylene (UHMWPE)
composites using physical mixing and the twin-screw extrusion process. The results indi-
cated that when 65% of BAC was added, the tensile strength increased by approximately
325.86%, from 22.93 to 97.65 MPa. The uniformly distributed BAC in the composites im-
proved the mechanical properties. They explained that the molten UHMWPE entered
the pores of the BAC powder and formed a three-dimensional network through pore
bonding (Figure 2a,b), effectively bearing the load and improving the tensile properties of
the composites.
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the internal bonding model of AC/UHMWPE composite material [77]. “Reprinted/adapted with
permission from Ref. [77]. 2021, John Wiley and Sons”.

It was confirmed through the SEM images that the molten UHMWPE was embedded
in the pores of the BAC like a rivet structure. Nisar et al. [78,79] prepared a polyethylene (PE)
nanocomposite reinforced with magnetic (Ni, Co, Fe)-AC using the melt mixing method
and investigated the mechanical properties of the composites. The results confirmed that
the AC-Ni/PE composites showed the highest improvement in mechanical properties, and
the modulus of the composites was 1202 MPa, which was approximately 53% higher than
that of HDPE. They explained that the elongation at break decreases by strongly limiting
the strength of the polymer chain as the fillers are dispersed in the polymer matrix, and
they also showed the improvement of mechanical properties through various factors such
as the dispersion of the filler and the crystal structure of the polymers.

Minugu et al. [80] investigated the effect of AC content on the mechanical strength of
composite materials using Arhar fiber biomass as a precursor and a reinforcing material
for synthesized AC epoxy composites. Minugu’s research team prepared AC with many
micropores and mesopores, and they confirmed that the strength of the composites increases
as the polymer resin penetrates the porous structure of AC and forms a strong bond. The
results indicated that the tensile and flexural strengths of the composite material with
2% AC were 56 and 95 MPa, respectively (Figure 3a,b).
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Makara et al. [81] developed a technique for converting dead leaf biomass into AC
and studied the mechanical properties of the composites using it as a reinforcing material
for natural rubber. For comparison with carbon black (CB), which is generally used as a
reinforcing material for rubber, the mechanical properties of CB/rubber and AC/rubber
composite were comparatively analyzed. Both types of carbon fillers improved the me-
chanical strength of the rubber, which was explained by the network formation caused
by the interaction between the filler and rubber. The tensile strength and modulus of the
composite with 15 PHR of dead leaf-AC increased by ~8% and 40%, respectively. The
CB/rubber composites had better mechanical properties than the AC/rubber composites.
However, in the case of the studied dead leaf-AC, it was confirmed that it is a promising
material that can improve the mechanical properties of rubber at a lower price than CB.
Mustafa et al. [82] investigated the tensile strength of an epoxy composite material accord-
ing to the AC content. The AC content of each composite was 0, 5, 10, 15, 20, 25, 30, 35,
and 40 wt.%, and the composite with AC of 15 wt.% had the best tensile strength. The
results indicated that the tensile strength of the composite material with 15 wt.% of AC
was 36.34 MPa, which is an improvement of approximately 19%. They also demonstrated
through FT-IR, SEM, DSC analysis, etc. that there is a strong interaction between the
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epoxy matrix and AC powder. Nawras et al. [83] investigated the effect of the addition of
AC on the mechanical properties of jute fiber/polyester composites. The AC content of
each composite was 1,3,5, and 10 wt.%, and the mechanical properties also improved as
the AC content increased. The composites with 3 wt.% AC had the best impact strength,
and when 3 wt.% AC was added, the impact strength increased by approximately 51% to
6.4 kJ/m2. Mahmud et al. [84] investigated the effects of contact pressure and sliding speed
on the friction coefficient and wear of activated carbon/epoxy composites. Hilmi et al. [85]
investigated the frictional properties of activated carbon/epoxy composites. Wang and
Su [86] investigated the effect of AC surface treatment on the mechanical properties of
epoxy composite materials and confirmed that the fracture toughness of the composite
material improved by approximately 234%. They explained that the reinforcing mechanism
of mechanical properties is due to the physical properties of AC due to the large specific
surface area and porous structure and the chemical bond formed by the reaction of the
functional group of AC with the epoxy group of matrix. Khalil et al. [87] investigated the
fracture toughness of an activated carbon/epoxy composite material with an addition of
5% AC and reported that the fracture toughness of the composite material improved by
approximately 17%. Song et al. [88] confirmed the compressive strength of a specimen
by manufacturing AC/phenolic foam. The AC/phenol was foamed using microwaves.
They explained that AC strengthens the foam structure by trapping gases such as H2O
generated during the curing reaction. The compressive strength of the specimen with AC
was approximately 9.7% higher than that of the specimen without. These showed that
the addition of AC and AC surface treatment are effective at improving the mechanical
properties of composite materials. Most of the research results showed that the mechanical
properties of the AC/polymer composites were improved as the polymer penetrates the
pores of the AC and the bonding force between the two materials increases. These research
results confirmed the improvement of the mechanical properties of the composites by
adding AC, suggesting the possibility of application in various fields such as automobiles
and aviation parts.

Table 2. Mechanical characteristics of AC/polymer composites according to the preparation condition.

Preparation Condition Mechanical Characteristics Enhancement

BAC (65%)/UHMWPE (35%) composites
using the twin-screw extrusion process [77]

Tensile strength
(97.65 ± 5.23 MPa)

Tensile strength: 325.86%
(compared with UHMWPE)

AC–Ni/PE composites (2 wt.%) composites
using the melt mixing technique [78,79]

Tensile modulus
(1202 MPa)

Tensile modulus: 53.51%
(compared with HDPE)

AC (2%)/epoxy composites
using mechanical stirring methods [80]

Tensile and flexural strengths
(56 and 95.2 MPa, respectively)

Tensile strength: 329%
Flexural strength: 226%
(compared with epoxy)

Dead leaf-AC (15 PHR)/rubber (SMR)
composites using the mixing and
compounding process [81]

Tensile strength and
modulus elongation -

AC (15 wt.%)/epoxy composites
using a laboratory shear mixture [82]

Tensile strength
(26.34 MPa) Tensile strength: 19.16%

AC (3%)/jute fiber (21%)/polyester
composites
using the hand lay-up process [83]

Impact strength
(6.4 kJ/m2) Impact strength: 51%

AC (60%)/epoxy (40%) composites
using a hot-press machine [84] Coefficient of friction and wear -

PKAC (70 mass%)/epoxy (30 mass%)
composites using a hot-press machine [85] Friction coefficient -

0.3% NAC (ammonia-treated)/epoxy
composites using mill technology [86]

Fracture toughness
(KIC: 3.88 ± 0.06 MPa m1/2) KIC: 234.48%
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Table 2. Cont.

Preparation Condition Mechanical Characteristics Enhancement

AC (5%)/epoxy composites by mixing [87] Fracture toughness (0.92 J) Fracture toughness: 17.94%

phenolic resin (90)/acid (10)/AC (1)
composite foams by microwave foaming [88] Compressive strength (2170 kPa) Compressive strength: 9.7%

4. Electrical and EMI Shielding Properties of Activated Carbon/Polymer Composites

Some research results on the Electrical and EMI shielding properties of AC/polymer
composites are summarized in Table 3. Singsang et al. [89] mixed AC synthesized from
waste coffee grounds with poly(butylene succinate) (PBS) in a batch-type internal mixer
and confirmed the influence of AC content on physical properties. They prepared the
AC/PBS composites by adjusting the concentration of AC to 0, 1, 1.5, 2 and 5 wt.%,
and they investigated their mechanical, electrical, and morphological properties. The
electrical properties of the composites were confirmed through electrical conductivity
measurement, and it was confirmed that the electrical conductivity of the composites
increased rapidly when 1.5 wt.% of AC was added. The electrical properties of the AC
(5 wt.%)/PBS composites were the best. They explained that it was due to the high electrical
conductivity of AC. The electrical conductivity of the composite material with 5% activated
carbon was 4.32 × 10−5 (Ω m)−1, which was approximately 229% higher than that of PBS,
confirming that AC could be used as a reinforcement in the PBS matrix. Abdullah et al. [90]
prepared the Fe-AC powders by chemically bonding Fe to AC, and they confirmed that
a stable bond was formed through analysis such as FT-IR. In addition, adjusting the
content of the Fe-AC powders to 10, 20, and 25% to prepare Fe-AC/PVA composites
confirmed the electromagnetic properties. In particular, they confirmed the electromagnetic
wave absorption properties of the Fe-Ac/PVA composites; the results indicated that this
composite material exhibits excellent electromagnetic wave absorption properties in the
frequency range of 4–6 GHz and that the composite material with 20% AC has a return loss
value of −32.5 dB at a frequency of 4.65 GHz. Naeem et al. [91] reported research results for
the development of multifunctional PLA composites by synthesizing AC from acrylic fiber
waste (Figure 4). Acrylic fibrous waste–AC particles were added to PLA at 1, 5, and 10 wt.%
to prepare AC/PLA composite films by solvent casting, and their electrical conductivity,
EMI shielding, thermomechanical and thermal stability properties were investigated. The
electrical conductivity of the acrylic fibrous waste–AC/PLA composite films was observed
by measuring the surface resistance, and as a result of the analysis, it was confirmed that
the resistance decreased rapidly after adding 10 wt.% to the acrylic fibrous waste–AC. They
explained that this was due to the tunneling effect. In addition, the analysis of the EMI
shielding properties of the activated carbon/PLA composite revealed a shielding effect of
approximately 16 dB, confirming its potential as a packaging material for electronic devices.
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Xia et al. [92] manufactured an activated carbon/kenaf fiber/polyester composite
using the VARTM process and investigated the electromagnetic wave shielding properties
of the composite material. The AC content of the composite material was added as 0, 10,
20, and 30%, and the EMI shielding properties of the composite material were confirmed
according to the AC content. With increasing AC content, the EMI shielding effectiveness
increased to 93.0%. The incorporation of AC into the composite was very effective at
shielding electromagnetic waves. They explained that the addition of AC is particularly
effective in enhancing the electromagnetic wave absorption of the composite, which reduces
secondary electromagnetic pollution. Shaaban et al. [93] manufactured an AC (8 wt.%)/PU
composite material using the chemical blowing method and investigated its microwave
absorption characteristics. They synthesized a novel AC using rubber wood sawdust
as a raw material, and the prepared AC had a BET surface area of 1301 m2/g. As the
AC content increased, the electromagnetic wave shielding properties increased, and the
AC (8 wt.%)/PU composites showed the best shielding properties. The results of EMI
shielding of AC (8 wt.%)/PU indicated that it has a value of approximately 10 dB (Figure 5).
Khan et al. [94] prepared an AC/acrylic resin (AR) composite material according to the AC
content using the solution processing method. The AC/AR composites were prepared with
AC content of 0, 1, 5, 10, 20, and 30%, and the composites were characterized through FT-IR,
XRD, TGA, and SEM analysis. In addition, electrical properties were measured to confirm
the applicability of the AC/AR composite material as an electromagnetic wave shielding
material. The electrical properties of the AC/AR composites were confirmed by measuring
the surface resistance. With increasing AC content, the electrical resistivity of the composite
material decreased. As the AC content increased, the electrical resistance of the composite
material decreased. The composite material with 30% of AC had a considerably lower
resistivity (104 ohm/sq) compared to that of the pure acrylic resin. These results suggest
that activated carbon/acrylic composites are suitable materials for electromagnetic wave
shielding coatings.
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Junhua and Chung [95] confirmed the electromagnetic wave shielding properties of
AC fiber/carbon fiber/polymer composite materials; the electromagnetic wave shielding
effect of these materials was 38 dB, which was approximately 30% higher than that of the
carbon fiber/epoxy composite material. Khan et al. [96] prepared a composite by dispersing
AC (1~30 wt.%) in an acrylic resin (AR) matrix and confirmed the electromagnetic shielding
properties of the composites. In addition, they analyzed the structural and morphological
properties of AC/AR composites through XRD, Raman, and SEM analysis, and they
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confirmed that AC was effectively dispersed inside the AR matrix. It was confirmed that
the electromagnetic wave shielding effect value of the AC (30 wt.%)/AR composite material
was −36 dB, and this value corresponds to about 1400% of the AR shielding value (−2.4 dB).
As a result of the study, the AC/AR composites had a shielding efficiency of 99.9% or
more, confirming that it is a suitable material as an EMI shielding material. Yew et al. [97]
prepared a composite by dispersing a hybrid filler containing AC in an epoxy resin matrix.
Three types of fillers were used: coconut shell (CS), CS-AC, and beta-silicon carbide (β-
SiC). The elemental composition, surface morphologies and structural properties of epoxy
composites according to hybrid fillers were investigated, and it confirmed that CS and
CS-AC fillers had a positive effect on the electromagnetic properties of composite materials
from the results of dielectric properties and electrical conductivity analysis.

Table 3. EMI shielding characteristics of AC/polymer composites according to the preparation
condition.

Preparation Condition Electrical and EMI Shielding Properties Enhancement

Coffee-AC (5 wt.%)/PBS composites using
the melting process [89]

Electrical conductivity
(4.32 × 10−5 (Ω·m)−1) 229.77% (compared with PBS)

Fe-AC (20%)/PVA composites using the
solution method [90] Microwave absorption (−32.5 dB) -

Acrylic fibrous waste–AC (10 wt.%)/PLA
composites via solvent casting [91]

EMI shielding properties (16 dB)
and electrical conductivity (10,000 Ω·cm)

EMI shielding properties: 220%
(compared with AC 1 wt.%)
Electrical conductivity:
5 × 1015 Ω·cm (Pure PLA)

AC (28.9%)/polyester composites using the
VARTM process [92] EMI shielding properties (93%) 124.63% (compared with AC 0%)

AC (8 wt.%)/PU composites using the
chemical blowing method [93] Microwave absorption (10 dB) -

AC (30 wt.%)/acrylic resin(AR) composites
using the solution process [94] Electrical resistivity (104 Ω/sq) Pure AR (1011 Ω/sq)

ACF/epoxy composites using filament
winding machine [95] EMI shielding properties (38 dB) 31% (compared with CF/epoxy)

AC (30 wt.%)/acrylic resin(AR) composites
using the solution process [96] EMI shielding effectiveness (−36 dB) 1400% (compared with AR)

Coconut shells(CS)/CS-AC/beta-silicon
carbide (β-SiC)/epoxy resin composites
using the solution process [97]

Dielectric properties and Electrical
conductivity -

5. Other Properties of Activated Carbon/Polymer Composites

Table 4 shows the research results on other properties of AC/Polymer composites.
Yun et al. [98] prepared a composite hydrogel by adding AC to poly(vinyl alcohol) (PVA)
and poly(acrylic acid) (PAAc) polymers by free-radical polymerization. The PVA/PAAc
composite hydrogels containing two different types of AC, coconut-based AC and coal-
based AC, were prepared. The drug was efficiently loaded due to the abundant pore
structure of AC in the fabricated composite hydrogel system. The hydrogel matrix used a
swelled well in basal conditions to release the drug loaded into the AC. The drug-release
behavior of AC/PVA/PAAc composite materials was studied, and it was confirmed that
the composite hydrogel containing AC by changing the type and pH of AC is a material
that can easily control drug release.

Gong et al. [99] prepared AC/Ni2O3/polypropylene composites through melt mixing
and investigated the thermal stability and flame retardancy of the composites. They
confirmed that AC was effectively dispersed in the PP matrix through XRD, SEM, and
TEM analysis, and they studied thermal stability through thermogravimetric analysis and
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flame retardancy through cone calorimeter testing. The addition of AC/Ni2O3 significantly
improved the thermal stability of the PP composites and significantly reduced the heat
release rate. As a result of the study, it was confirmed that the thermal stability and flame
retardancy of the composite material were improved by forming a network structure of AC
and Ni2O3 particles in the matrix. They explained that the formation of a denser protective
layer due to the formation of a network of AC/Ni2O3 particles in the PP matrix improved
the flame retardancy of the PP composites (Figure 6).
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Alston et al. [100] characterized the hygroscopic behavior of ACFs/phenolic resin
composites, and as a result of the study, it was confirmed that activated carbon fibers act as
sinks or water sources by absorbing water due to pores. The observed water absorption
and diffusion behavior of the ACFs/phenolic resin composites was very complex due to
the combination of water adsorbed and absorbed by the fibers and water in the resin due to
curing. They have successfully developed a “source-sink” model to simulate the absorption
and diffusion behavior of the composites. In addition, the porosity of the ACFs confirmed
that a high level of accuracy could be achieved using the proposed “source sink” extension
model. Zhang et al. [101] prepared polyvinyl chloride (PVC) composites containing AC
and molybdenum oxide (MoO3), and they investigated the effect of the addition of AC
and MoO3 on improving the flame retardancy of the composite. As a result of the analysis,
it was confirmed that as AC and MoO3 were added, the heat dissipation property of the
composite material was greatly reduced, and the smoke suppression property was greatly
improved. When the total content of AC and MoO3 was 10 PHR, the flame retardancy of the
composite material was the best, and the heat release rate and smoke generation rate values
were the lowest at 173.80 kW/m2 and 0.1472 m2/s, respectively. This is a result of 47.3%
and 59.9% reduction, respectively, when compared with the value of PVC. Oh et al. [102]
prepared a composite material by adding AC to a mixture of poly(ε-caprolactone) (PCL)
and poly(ethylene oxide) (PEO) polymers, and the drug release properties of AC/PCL/PEO
composites were investigated. As a result of the analysis, the drug release properties of the
AC/PCL/PEO composites were significantly improved due to the microporous structure
of AC and the swelling and selective dissolution properties of the PCL/PEO polymers. In
addition, the prepared composites were effective in controlling both drug loading and drug
release. The study results of the drug release properties, thermal stability, flame retardancy,
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and hygroscopicity were summarized as other properties of the AC/polymer composites.
Through this, it was possible to confirm the application potential of the AC/polymer
composite material for drug delivery as well as flame-retardant and moisture-absorbent
materials, and the possibility of application in various other fields can also be expected.

Table 4. Other characteristics of AC/polymer composites according to the preparation condition.

Preparation Condition Other Properties Enhancement

AC/PVA/PAAc composite hydrogel by
free-radical polymerization [98] Drug release behavior -

AC/Ni2O3/polypropylene composites using
the melt mixing process [99] Thermal stability and flame retardancy -

ACFs/phenolic resin composites composites
via solvent casting [100] Hygroscopic behavior -

AC/MoO3/PVC composites using the solution
process [101]

Heat release rate (173.80 kW/m2) and smoke
generation rate (0.1472 m2/s)

47.3% and 59.9% reduction
(compared with PVC)

AC/PCL/PEO composites using the
oil-in-water emulsion solvent evaporation
method [102]

Drug release behavior -

6. Conclusions

Through this work, the current status of related research fields is investigated in order
to confirm the preparation, characterization, and applicability of AC/polymer composites
reported in the literature. This review summarizes the results of studies on the effects of
AC and ACFs as reinforcing materials in polymer composites on the mechanical properties,
adsorption properties, and electrical properties of the composite materials. AC and ACFs
are materials with a rich porous structure, a large specific surface area, and excellent
physical adsorption properties. Using the unique physical and chemical properties of AC,
it is possible to develop AC/polymer composites for application in various fields. As the
polymer matrix penetrates the pores of AC, the mechanical properties of AC/polymer
composites are significantly improved. The dispersion properties and surface properties
of AC are also important factors in determining the mechanical properties of composites.
Due to the excellent adsorption properties of AC, AC/polymer composites can be used
as adsorbents for dyes and heavy metals. In addition, AC presents the possibility of
application as an electromagnetic wave shielding material and an antistatic material by
giving electrical properties to the polymers. The application potential of the AC/polymer
composite material for drug delivery, flame retardant, and moisture absorption was also
confirmed. The research results summarized in this review show positive effects of AC and
ACFs added to polymer composites, confirming their potential use in various industrial
applications such as aerospace, EMI shielding, automotive, and sporting goods. In addition,
activated carbon is a very inexpensive material compared to nano-carbon materials such as
CNTs and graphene, suggesting the possibility of developing a low-cost, high-functional
composite material through various types of activated carbon and various surface treatment
technologies. Through various research results, the possibility of application in other
various fields of AC/polymer composite can also be expected.
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