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Abstract: Even before considering their introduction into the mouth, the choice of materials for
the optimization of the prosthesis depends on specific parameters such as their biocompatibility,
solidity, resistance, and longevity. In the first part of this two-part review, we approach the various
mechanical characteristics that affect this choice, which are closely related to the manufacturing
process. Among the materials currently available, it is mainly polymers that are suitable for this use
in this field. Historically, the most widely used polymer has been polymethyl methacrylate (PMMA),
but more recently, polyamides (nylon) and polyether ether ketone (PEEK) have provided interesting
advantages. The incorporation of certain molecules into these polymers will lead to modifications
aimed at improving the mechanical properties of the prosthetic bases. In the second part of the review,
the safety aspects of prostheses in the oral ecosystem (fragility of the undercuts of soft/hard tissues,
neutral pH of saliva, and stability of the microbiota) are addressed. The microbial colonization of the
prosthesis, in relation to the composition of the material used and its surface conditions (roughness,
hydrophilicity), is of primary importance. Whatever the material and manufacturing process chosen,
the coating or finishes dependent on the surface condition remain essential (polishing, non-stick
coating) for limiting microbial colonization. The objective of this narrative review is to compile an
inventory of the mechanical and physical properties as well as the clinical conditions likely to guide
the choice between polymers for the base of removable prostheses.

Keywords: denture base material; PMMA; polymethylmethacrylate; polyamide; polyetheretherketone;
mechanical proprieties

1. Introduction

By 2050, the world’s population of older adults is expected to reach 2 billion, which
suggests a significant increase in the number of users of removable prostheses [1–3]. In
view of the great geographical disparity in healthcare, older populations in economically
deprived areas are obliged to forego implants as a solution and tend toward rehabilitation
by removable prostheses using different polymers. These include polymethyl methacrylate
(PMMA; or poly [1-(methoxy carbonyl)-1-methyl ethylene]), which is the most widely
used polymer for prosthetic bases [4]. Chemically, PMMA is synthesized through an
addition chain reaction coupled with the polymerization of methyl methacrylate. The
polymerization reaction can be initiated at room temperature or higher (90–120 ◦C) by light
curing or microwaves [5]. Depending on the polymerization technique, by compression
or by injection, the parameters of flexural strength (FS) and flexural modulus (FM) vary.
Compression molding has shown its superiority in this area [6] (Figure S1).
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In the search for better functional performance, various members of the polymer
family have been tested, including polyamide, epoxy, polystyrene, or vinyl-acrylic resins,
but without yielding completely satisfactory results [7]. For flexibility and fracture resis-
tance, research showed the significant superiority of polyamide bases over PMMA [8].
The polyamides or “nylons” are thermoplastic polymers resulting from the condensation
between a diamine and a dibasic acid. This thermoplastic flexible polyamide resin is com-
posed of long chains with a few cross-linkers between them. The result is a low resistance
to surface pressure [9]. In addition, due to its chemical structure, this linear polyamide also
has low hardness and reduced abrasion resistance [10].

Another polymer, polyether ether ketone (PEEK), thanks to its ability to resist func-
tional stresses to bending, makes it possible to prolong the clinical use of a denture base
while counteracting the more frequent fractures of PMMA bases [11]. PEEK is a semi-
crystalline, thermoplastic polymer with a high melting temperature (machined or pressed
thermoplastic; 150–300 ◦C) resulting from the dialkylation of bis phenolates of PEEK
monomers [12]. PEEK is mainly shaped by injection molding, by compression, or by
extrusion for removable partial dentures (RPD) [13] (Figure S2).

All of these recent advances have improved the mechanical properties of polymer
materials and enable new performance concerning the clinical longevity of prostheses.
However, there are clear differences between these materials. Therefore, this narrative re-
view compiles an inventory of the mechanical, physical properties, and clinical conditions
likely to guide the choice between these polymers for the base of a removable partial or
complete prosthesis.

2. Mechanical Properties of Polymer Biomaterials (PMMA, Polyamide, and PEEK)

The absence of standardization concerning the means and the parameters used to
evaluate the mechanical properties of polymers makes it difficult to compare these bio-
materials. Comparisons are further complicated by the fact that companies employ different
manufacturing methods to produce polymers (PMMA, polyamide, and PEEK), whose
characteristics are variable. However, in vitro, if we refer to laboratory investigations only,
the risk of bias is minimized, as shown in Table 1.
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Table 1. Comparison of mechanical properties of PMMA, polyamide, and PEEK in in vitro studies.

Polymeric
Biomaterials

Various Mechanical Properties

Tensile Strength
(MPa)
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(4) 
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Al-Dwairi [20] et al.: 
Meliodent (14.75) 
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Meliodent compression 

(16.9 ± 1.0 kg/cm2) 
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Ivocap injection (13.5 ± 
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Polyamide 
Valplast 
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PEEK 
Carbon-reinforced 

(CFR-PEEK) 
Maloo et al. [25] 

2022 

Mushin et al. [14]: 
PEEK milled (Invi-bio 

and JuvoraLtd UK) 
(118 ± 5), PEEK 
pressed (97 ± 4) 

Maloo et al. [25]: 
PEEK (100, 69) 
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Shrivastava et al. [11]: PEEK (183.3 ± 
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Maloo et al. [25]: PEEK. (163, 88). 
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ISO 527 [27] 
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PEEK, DIN ISO 527 
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milled (4 ± 0.1), PEEK 

pressed (4.8 ± 0.4) 

Maloo et al. [25]: PEEK 
(26–29 VHN) 

PMMA, poly-methyl-methacrylate; PEKK, polyether ether ketone; ISO, international organization for standardization; DIN, deutsches institut für normung; HC, 
heat-cured; NR, not reported; VHN, vickers hardness number; TS, tensile strength; FS, flexural strength; CS, compressive strength; EB, elongation break; FM, 
flexural modulus; EM, elastic modulus; IS, impact strength; H, hardness. The superiority of the physical characteristics of PMMA (TS, EM, FS, FM, H) compared 
to those of polyamides justifies its indication for a prosthetic base for long-term use. The properties of polyamides (EB, IS) provide flexibility and explain their use 
for temporary removable prostheses. PEEK with a low impact strength is indicated mainly for the frameworks of removable partial prostheses thanks to its 
properties (TS, EM, FS, CS, EB, FM). 

Elastic Modulus
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Ucar et al. [16]: Deflex (78.3 ± 1.0) 
Yunus et al. [22]: Lucitone FRS is 

significantly lower than Meliodent 
and comparable with Lucitone 199. 

Takabayashi et al. [21]: Valplast, 
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were lower according to the ISO 
standard (higher flexibility). 
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kg/cm2) 

PEEK 
Carbon-reinforced 

(CFR-PEEK) 
Maloo et al. [25] 

2022 

Mushin et al. [14]: 
PEEK milled (Invi-bio 

and JuvoraLtd UK) 
(118 ± 5), PEEK 
pressed (97 ± 4) 

Maloo et al. [25]: 
PEEK (100, 69) 

Mushin et al. [14]: PEEK 
milled (5.59 ± 0.03), PEEK 

pressed (4.93 ± 0.02) 
Maloo et al. [25] PEEK (3, 5) 

Shrivastava et al. [11]: PEEK (183.3 ± 
4.79) 

Maloo et al. [25]: PEEK. (163, 88). 

PEEK, ISO 604 [26] 
(120) 

Maloo et al. [25] 
PEEK. (118–169) 

PEEK, DIN 
ISO 527 [27] 

(20) 

PEEK, DIN ISO 527 
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to those of polyamides justifies its indication for a prosthetic base for long-term use. The properties of polyamides (EB, IS) provide flexibility and explain their use 
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properties (TS, EM, FS, CS, EB, FM). 
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The success of PMMA is explained by its ease of implementation in the laboratory,
by the possibility of straightforward repairs, retouching, or rebasing, and by its low cost.
In the mouth, its low saliva absorption, solubility, and toxicity with biological tolerance
over the long term, as well as the excellent esthetic outcome, makes it a material of choice.
However, PMMA shows polymerization shrinkage, weak FS, low resistance to bending
and to shocks, and an inefficient resistance to fatigue [28–31].

Because of the aforementioned failures, an alternative in the family of polyamides is
sought. Among the various commercial polyamides available (Valplast®, Corp 200 Shames
Drive Westbury, NY, USA; Valplast Flexite ®, Flexite company, Mineola, NY, USA; Luci-tone
Versacry®, Dentsply Sirona, NY, USA; Vertex®, Dentimex, Zeist, Netherlands; Bre-flex® and
Brecrystal®, Bredent medical GmbH & Co. KG, Senden, Germany), the choice is governed
by the many advantages of polyamide/PMMA, such as the impact strength (IS). This is
partly attributed to the acrylic resin injection technique that is used to mold the prosthetic
base. During this phase, polymerization under high pressure by eliminating air bubbles
and limiting the reaction of the shrinkage of the resin during setting partly explains the high
IS value [32]. On the other hand, the low content of cross-linking agents in the polyamide
coupled with a non-negligible amount of residual monomer contributes toward improving
the IS [16]. For example, Ucar et al. reported that, in their study, the polyamide (Deflex®,
Nuxen S.R.L, Buenos Aires, Argentina) material had good FS (MPa = 78 ± 1.0) close to that
of PMMA (SR-Ivocap®, Ivoclar AG, Schaan, Liechtenstein, Germany; MPa = 69.8 ± 1.4)
and Meliodent® (Bayer Co., Leverkusen, Germany; MPa = 81.1 ± 1), but its FM remained
lower (GPa = 0.70 ± 0.13) than that of PMMA (SR-Ivocap®, GPa = 0.85 ± 0.27) and
Meliodent® (GPa = 1.70 ± 0.23) [16]. Concerning Knoop hardness (measured in kg/cm2),
these authors found values of 7.5± 1.0 for Deflex®, 13.5± 1.4 for SR-Ivocap®, and 16.9 ± 1.0
for Meliodent®. In these experimental conditions, the Meliodent® specimens fractured
during flexural testing, but none of the Deflex® specimens did [16]. Other more recent
studies in vitro confirmed this result [5,33–35].

Regarding the specificity of the partially removable prosthesis, an alternative to PMMA
and metal alloys is possible. In this context, the high-performance PEEK can be chosen
as the constituent material for dental prosthesis bases. For a few years, and also more
recently, numerous in vitro and in vivo studies have described the noteworthy properties
of PEEK with a universal testing machine: The superiority of PEEK/PMMA lies in its FS
(183 MPa > 84 MPa) and its hardness, as observed when using the Vickers microhardness
tester (24 VHN > 19.4 VHN) over the hardened PMMA at a high polymerizing temper-
ature [11]. In vitro, the modulus of elasticity of PEEK is 3.6 GPa. This can be improved
by adding carbon fibers and may reach 18 GPa, which is close to the values of cortical
bone (15 GPa) [36–38]. However, PEEK has a high risk of fracture and abrasion. More
recently, these different characteristics, determined by in vitro studies, mean that the milled
or pressed PEEK polymer at a mold temperature of 200 ◦C has mechanical properties
making it suitable for use as a removable partial prosthesis. However, its use in removable
prostheses remains limited because of the additional difficulty concerning the best way to
bond the PEEK to the artificial teeth; furthermore, progress must also be made concerning
the functional aspect of the claps.

Liebermann et al. evaluated, in vitro, the effects of aging on the physical and mechani-
cal properties of several materials (PEEK, PMMA, composite resin, hybrid materials) [39].
Samples were kept in various storage media (distilled water, sodium chloride, saliva, etc.)
for 1, 7, 14, 28, 90, and 180 days, after which the roughness, the water absorption, and the
solubility had changed. The results showed that PEEK had the lowest solubility and water
absorption values, as presented in Table 2 [40].
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Table 2. In vitro clinical properties (effect of aging) of PMMA, polyamide, and PEEK.

Polymeric Biomaterials

Clinical Properties

Density (g/cm3) at
Room Temperature

Water Absorption, ISO
(<32 µg/mm3)

Solubility, ISO
(<1.6 µg/mm3)

(%) and Time for Water
Absorption at Saturation

Roughness (below
Threshold of Accepted

Norm of 0.2 µm)

PMMA
heat polymerized

Mark et al. [41]: PMMA (1.18)
Kutz et al. [42]

Nguyen et al. [43]: SR Ivocap
HIP (25.8)

Nguyen et al. [43]: SR Ivocap
HIP (<0.6) slight increase in

weight (p < 0.5)

Nguyen et al. [43]: SR ivocap
HIP 32 days

Hamanaka et al. [44] PMMA
30 days

Al Dwairi et al. [45] 2019.
Meliodent (0.22 ± 0.07)

Sultana N et al. [46] 2023
SR Ivocap HI

(0.0669 ± 0.02 µm)

Polyamide
molded injection

Nguyen et al. [43]:
polyamide (1.14)

Nguyen et al. [43]: Breflex
(30.4), Valplast (13.6)

Tagabayashi et al. [21]:
Valplast (17).

Lucitone FRS (39); Flexite
supreme: (13).

Nguyen et al. [43]: Breflex
and Valplast (net increase in

weight) (p < 0.5)
Shah J et al. [47]

Flexite < PMMA Acron

Nguyen et al. [43]: Breflex
45 days

Valplast 35 days (3.0)
Lai YL et al. [48] Polyamides.

56 days

Abuzar et al. [49]: Flexiplast
unpolished (1.11 ± 0.17),

polished (0.14 ± 0.02); still
noticeably rougher (>3 times)

than the acrylic
after polishing

Sultana N et al. [46] 2023
Macro Flexi

(0.1971 ± 0.02 µm)

PEEK
Bio HPP (ceramic-reinforced),

Finoframe 100% PEEK,
Juvora medical 100% nature.

Maloo et al. [25]: PEEK
(1.30–1.54)

Skirbutis et al. [40]

Maloo et al. [25]: PEEK
(0.1–0.5)

Liebermann et al. [39]

Maloo et al. [25]: PEEK
(<0.03)

Porojan et al. [50]: Bio HPP
Finoframe PEEK

Juvora medical PEEK 7 days
(0.21–0.27); the weight
changes in subsequent

weeks were lower than 0.05%.

Porojan et al. [51]: Bio HPP
(0.09 ± 0.01). Finoframe

(0.08 ± 0.01). Juvora
(0.08 ± 0.01)

PMMA, poly-methyl-methacrylate; PEKK, polyether ether ketone; ISO, international organization for standardization; %, percentage; HIP, high-impact polymer; HPP, high-performance
polymer; FRS, super-flexible resin. According to ISO 1567 [52], the increase in the bulk density of dental polymers per unit of volume (water absorption) should not exceed 32 µg/mm3.
According to ISO 1567, the acceptable solubility is 1.6 µg/mm3 for heat polymers. The three polymers (PMMA, polyamide, and PEEK) comply with ISO water absorption and solubility
standards. The time for water absorption at saturation is better for PEEK than for PMMA and polyamide. The threshold roughness standard of 0.2 µm is accepted for PMMA and PEEK
but not for polyamide.
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Another study by Takabayashi et al. showed that the water absorption of two
polyamides (Valplast and Flexite Supreme) corresponds to the ISO standard (32 µg/mm3),
while on the other hand, that of Lucitone FRS is higher [21]. This may be related to the
hydrophilic characteristics (low contact angle) of this polyamide. Thus, assuming that the
concentration of the amide group promotes water absorption, the fact of lowering this level
would make it possible to limit the absorption, as is the case with nylon 6 or 66 [39].

To assess the consequences of in vitro aging, concerning dimensional changes and
ultimate tensile strength, three polyamide materials were tested for the manufacture of
prosthesis bases by injection molding. After a 6-month experimentation period evaluating
Biosens® (Perflex, Netanya, Israel), Bre.flex® 2nd edition (Bredent, Senden, Germany),
and ThermoSens® (Vertex Dental B.V., Soesterberg, The Netherlands), the ultimate tensile
strength was conclusively found for Biosens® and ThermoSens®, but with the weakest
alterations observed for Bre.flex® [53].

3. Different Materials Incorporated in PMMA, Polyamide, and PEEK Improve Their
Physical Characteristics

For many defects (low FS, low resistance to shock, and low fracture resistance), some
ameliorations of PMMA are still sought today. To this end, the addition of metal wires,
plates and fibers and the modification of the chemical structure have been tested, but most
experiments have been carried out in vitro and therefore need to be confirmed in vivo. For
example, the zirconia (3–5%) or 15% acrylamide monomer incorporated into the PMMA
makes it possible to resist the premature fatigue of the material [54] and enhance both FS
and FM [55]. To improve the FS of the PMMA, an in vitro study by Gray et al. showed the
importance of precisely locating the area requiring consolidation. The reinforcement entails
the use of a glass fiber mesh of specific dimensions in order to effectively contribute to the
increase in the FS of the prosthesis [56]. In the same way as improving the FS of PMMA,
three copolymers were incorporated: butyl-methacrylate (BMA), ethyl-methacrylate (EMA),
and isobutyl-methacrylate (IBMA), in different proportions (10%, 20%, 30%, and 40%). All
the samples tested were found to be higher than those of the control group (PMMA without
copolymer addition). The concentration of 40% was found to be significantly more effective
with IBMA [57].

The increase in the FS and the IS of the groups tested would stem from the low
participation of the acrylate groups during and after the polymerization [58]. Another
study reported that the matrix of the chemical structure of PMMA remains unchanged,
even when adding hydroxyethyl methacrylate (HEMA) and IBMA molecules to it, while
improving the FS [59]. Another incorporation of 0.6% polyimide significantly improves the
FS of the PMMA prosthesis by 13.5% compared to the control group. However, resistance
to bending decreases beyond this dose [60].

Interesting research comparing the material of the polyamide-based prosthesis (Valplast
International Corp., Northport, NY, USA) and the PMMA, both with the addition of E-glass
fibers, nylon 6 or nylon 6.6, revealed several consistent improvements. The Valplast resin
shows superiority in its level of resistance compared to PMMA with or without fibers, and
the same result applies to its modulus of elasticity. The added fibers, however, improved
the structural elasticity of the PMMA.

PEEK in a homogeneous form has limited mechanical properties. The rigidity of
PEEK remains a limitation, and thus the risk of fracture persists in the presence of direct
exposure to occlusal loads [61]. Also, to address this drawback, additions in the form of
fibers or ceramic molecules are currently being tested. This is why researchers have sought
to combine PEEK with other materials such as ceramic to improve its properties. Note, for
example, the high-performance biopolymer (BioHPP®, Bredent medical GmbH & Co. KG
Weißen-horner Straße 2, Senden, Germany), which is a PEEK-based polymer containing 20%
ceramic fillers [40]. These particles have a size of approximately 0.3–0.5 µm and are evenly
distributed in the PEEK matrix, which makes the material more resistant. The addition of
3% of Nano SiO2 to prepare a composite of SiO2/PEEK, based on a final mixture during
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melting, made it possible to obtain a good distribution of the nanoparticles. This mixture
increased the transverse resistance of the composite and lessened the hydrophobicity of the
material while reducing the surface roughness [62].

4. New Fabrication Processes Improve the Properties of Dentures

To improve the properties of dentures, for several years, an alternative to the conven-
tional method using CAD/CAM technologies has been proposed [63,64].

The manufacture of complete dentures using the CAD/CAM process provides several
advantages and fewer appointments with patients; moreover, these appointments are
shortened, but there is also a possibility of digital archiving the different stages of the
realization [65]. For digital RPDs, thanks to the CAD/CAM manufacturing methods, the
artificial teeth are manufactured and adapted to the morphology of the residual natural
teeth by imitating their shape and their size and by adapting the occlusal contacts. On the
other hand, concerning the prosthetic base, this mode of manufacture from the PMMA
discs provides physical and mechanical improvements and a better surface finish and an-
tibacterial properties compared to head-cured PMMA [66]. Moreover, some authors report
a high level of satisfaction among patients and dentists with CAD/CAM prostheses [67,68].

A recent meta-analysis argues for globally better mechanical properties of CAD/CAM
PMMA resins in comparison with heat-cured PMMA resin. In this review, from 13 studies
carried out only in vitro, the comparison between 222 samples of heat-polymerized PMMA
and CAD/CAM resin blocks of PMMA gave the following results: There was no difference
in FS between the two samples, while the FM and the surface roughness were better for the
PMMA resin blocks [69].

4.1. Advantages for Milling Dentures

Patients, practitioners, and laboratory technicians unanimously perceive the advan-
tages of CAD [67,68]. In many cases, removable prosthesis bases designed by CAD/CAM
are milled in acrylic resin blocks. The latter, which are manufactured industrially, have
the qualities (mechanical and physical) required for daily use. Thus, this material has low
porosity and releases a small amount of the monomer. It is characterized by its retention,
toughness, hardness, and resistance to bending [64,70]. Milling prostheses have superior
mechanical characteristics (resistance to bending, resistance to fracture), color stability, and
adaptation of the base compared with the impression prostheses (Table 3).
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Table 3. Physical comparison parameters between HC PMMA, 3D-printed resin, and milled PMMA in in vitro studies.

Parameters

Polymeric Biomaterials

Contact Angle (Zissis et al.
[71] 2001)
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Next Dent: (1.20 ± 0.69 kJ/m2) 

Milled PMMA 
AvaDent 

Tizian-Shütz 
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Abualsau et al., 2020. [75]: High 
pressure and high temperature 

improved the mechanical 
properties FS of 3D-printed < FS 

of milled PMMA 

NR 

Al Dwairi et al. [74] 2020: 
(24.56 ± 2.63 to 29.56 ± 6.94 

kJ/m2). Superiority of milled 
PMMA/3D-printed and HC-

PMMA. (Abualsau et al., 2020 
[75]) 

Results 
Modified surface wettability varies 

with chemical composition, 
topography, and salivary pellicule. 

Not significant, but differs between 
different polishing techniques (p > 0.05). 

Measure the resistance material (p 
< 0.05). Milled PMMA had higher 
values/heat-polymerized PMMA 

(Prpic 2020 [70]) (Ayman et al. [76] 
2017) 

Measure compressive, tensile, 
and shear stresses of materials 
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difference between Meliodent 
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Effects 

High hydrophobicity of 3D-printed 
denture base increases retain stain, 
plaque, and water sorption more 
than HC PMMA (Al-Dwairi et al. 
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Meirowitz, A et al. [78] 2021) 

Smooth denture surfaces reduce 
microbial adhesion and plaque (Choi et 
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Measure of how material resists 
plastic deformation during 
abrasion and mastication. 

Abdulwahhab et al. [81] 2013 

Prpic et al. [70] 2020 found 3D 
(Next dent) had lower FS than 
milled PMMA, polyamide, and 

HC PMMA.  
Aguirre et al. [6]: rubber can 

favor resistance to deformation 
(Shaefer et al. [82]; 2010) 

Ucar et al. [16] 2012: Not 
lower than 2 GPa 

Reflects vulnerability of 
denture fracture. Superiority 

of milled pre-polymerized 
PMMA due to high 

temperature and pressure 
values (Prpic et al. [70] 2020). 
Improve IS by rubber particle; 

Rickman et al. [83] 2012. 

Surface Roughness (Ra) 0.2
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Dent 2016)
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Al Dwairi et al. [20]: 
Dentona: (16.41 ± 0.96).  

Asiga: (16.24 ± 0.79)  
Next Dent: (16.20 ± 0.93) 

Al Dwairi et al. [20]:  
Dentona: (81.33 ± 5.88).  

Asiga: (79.33 ± 6.07) 
Next Dent: (74.89 ± 8.44) 

Al Dwairi et al. [20]:  
Nextdent > 2 GPa 

Dentona and Asiga < 2 GPa 
with bending before 

fracture. Dentona and Asiga 
exhibited considerable 
bending before fracture 

Al Dwairi et al. [20]: 
Dentona: (17.98 ± 1.76 kJ/m2) 

Asiga: (16.76 ± 1.75 kJ/m2) 
Next Dent: (1.20 ± 0.69 kJ/m2) 

Milled PMMA 
AvaDent 

Tizian-Shütz 

Al-Dwairi et al. [45] 2019:  
Avadent: (72.87 ± 4.83°) 

Tizian-Shütz: (69.53 ± 3.87°) 

Al Dwairi et al. [45] 2019: 
Avadent: (0.16 ± 0.03 µm) 

Tizian-Shütz: (0.12 ± 0.02 µm) 

Al-Dwairi et al. [45] 2019: 
Avadent: (20.62 ± 0.33) 

Tizian-Shütz: (19.80 ± 1.08) 

Abualsau et al., 2020. [75]: High 
pressure and high temperature 

improved the mechanical 
properties FS of 3D-printed < FS 

of milled PMMA 

NR 

Al Dwairi et al. [74] 2020: 
(24.56 ± 2.63 to 29.56 ± 6.94 

kJ/m2). Superiority of milled 
PMMA/3D-printed and HC-

PMMA. (Abualsau et al., 2020 
[75]) 

Results 
Modified surface wettability varies 

with chemical composition, 
topography, and salivary pellicule. 

Not significant, but differs between 
different polishing techniques (p > 0.05). 

Measure the resistance material (p 
< 0.05). Milled PMMA had higher 
values/heat-polymerized PMMA 

(Prpic 2020 [70]) (Ayman et al. [76] 
2017) 

Measure compressive, tensile, 
and shear stresses of materials 

p < 0.05 

Higher flexural strength is 
advantageous for rigidity 

and stiffness (p < 0.05). 

No statistically significant 
difference between Meliodent 
and 3D-printed resin (p < 0.05) 

Effects 

High hydrophobicity of 3D-printed 
denture base increases retain stain, 
plaque, and water sorption more 
than HC PMMA (Al-Dwairi et al. 
[45] 2019, Teixeira et al. [77] 2023, 

Meirowitz, A et al. [78] 2021) 

Smooth denture surfaces reduce 
microbial adhesion and plaque (Choi et 

al. [79] 2020) (Foggi et al. [80] 2016) 

Measure of how material resists 
plastic deformation during 
abrasion and mastication. 

Abdulwahhab et al. [81] 2013 

Prpic et al. [70] 2020 found 3D 
(Next dent) had lower FS than 
milled PMMA, polyamide, and 

HC PMMA.  
Aguirre et al. [6]: rubber can 

favor resistance to deformation 
(Shaefer et al. [82]; 2010) 

Ucar et al. [16] 2012: Not 
lower than 2 GPa 

Reflects vulnerability of 
denture fracture. Superiority 

of milled pre-polymerized 
PMMA due to high 

temperature and pressure 
values (Prpic et al. [70] 2020). 
Improve IS by rubber particle; 

Rickman et al. [83] 2012. 

Impact Strength kJ/m2
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3D-printed resin 
NextDent 
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Al Dwairi et al. [20] 2022: 
NextDent: (72.73 ± 2.10°), 
Dentona: (70.20 ± 2.43°)  

Asiga: (73.44 ± 2.74°) 

Al Dwairi et al. [20]: 
Nextdent: (0.22 ± 0.07 µm) 
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Asiga: (0.19 ± 0.03 µm) 

Al Dwairi et al. [20]: 
Dentona: (16.41 ± 0.96).  
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Dentona: (81.33 ± 5.88).  

Asiga: (79.33 ± 6.07) 
Next Dent: (74.89 ± 8.44) 

Al Dwairi et al. [20]:  
Nextdent > 2 GPa 

Dentona and Asiga < 2 GPa 
with bending before 

fracture. Dentona and Asiga 
exhibited considerable 
bending before fracture 

Al Dwairi et al. [20]: 
Dentona: (17.98 ± 1.76 kJ/m2) 

Asiga: (16.76 ± 1.75 kJ/m2) 
Next Dent: (1.20 ± 0.69 kJ/m2) 

Milled PMMA 
AvaDent 

Tizian-Shütz 

Al-Dwairi et al. [45] 2019:  
Avadent: (72.87 ± 4.83°) 

Tizian-Shütz: (69.53 ± 3.87°) 

Al Dwairi et al. [45] 2019: 
Avadent: (0.16 ± 0.03 µm) 

Tizian-Shütz: (0.12 ± 0.02 µm) 

Al-Dwairi et al. [45] 2019: 
Avadent: (20.62 ± 0.33) 

Tizian-Shütz: (19.80 ± 1.08) 

Abualsau et al., 2020. [75]: High 
pressure and high temperature 

improved the mechanical 
properties FS of 3D-printed < FS 

of milled PMMA 

NR 

Al Dwairi et al. [74] 2020: 
(24.56 ± 2.63 to 29.56 ± 6.94 

kJ/m2). Superiority of milled 
PMMA/3D-printed and HC-

PMMA. (Abualsau et al., 2020 
[75]) 

Results 
Modified surface wettability varies 

with chemical composition, 
topography, and salivary pellicule. 

Not significant, but differs between 
different polishing techniques (p > 0.05). 

Measure the resistance material (p 
< 0.05). Milled PMMA had higher 
values/heat-polymerized PMMA 

(Prpic 2020 [70]) (Ayman et al. [76] 
2017) 

Measure compressive, tensile, 
and shear stresses of materials 

p < 0.05 

Higher flexural strength is 
advantageous for rigidity 

and stiffness (p < 0.05). 

No statistically significant 
difference between Meliodent 
and 3D-printed resin (p < 0.05) 

Effects 

High hydrophobicity of 3D-printed 
denture base increases retain stain, 
plaque, and water sorption more 
than HC PMMA (Al-Dwairi et al. 
[45] 2019, Teixeira et al. [77] 2023, 

Meirowitz, A et al. [78] 2021) 

Smooth denture surfaces reduce 
microbial adhesion and plaque (Choi et 

al. [79] 2020) (Foggi et al. [80] 2016) 

Measure of how material resists 
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abrasion and mastication. 

Abdulwahhab et al. [81] 2013 

Prpic et al. [70] 2020 found 3D 
(Next dent) had lower FS than 
milled PMMA, polyamide, and 

HC PMMA.  
Aguirre et al. [6]: rubber can 

favor resistance to deformation 
(Shaefer et al. [82]; 2010) 

Ucar et al. [16] 2012: Not 
lower than 2 GPa 

Reflects vulnerability of 
denture fracture. Superiority 

of milled pre-polymerized 
PMMA due to high 

temperature and pressure 
values (Prpic et al. [70] 2020). 
Improve IS by rubber particle; 

Rickman et al. [83] 2012. 

PMMA heat-polymerized
Meliodent

Al Dwairi et al. [20] 2022:
Meliodent (66.71 ± 3.38◦)

Al Dwairi et al. [20] 2022:
(0.22 ± 0.07 µm)

(18.11 ± 0.65) (differs with level
of residual monomers) Al

Dwairi et al. [20] 2022.
Increased with copolymer

Kiran et al. [73] 2021

Al Dwairi et al. [20] 2022:
(92.44 ± 7.91)

Al Dwairi et al. [20]
(2.084.99 ± 180.33 MPa)

Al Dwairi et al. [74] 2020):
(16.64 ± 1.69 kJ/m2)
(14.76 ± 2.11 kJ/m2)

3D-printed resin
NextDent
Dentona

Asiga

Al Dwairi et al. [20] 2022:
NextDent: (72.73 ± 2.10◦),
Dentona: (70.20 ± 2.43◦)

Asiga: (73.44 ± 2.74◦)

Al Dwairi et al. [20]:
Nextdent: (0.22 ± 0.07 µm)

Dentona: (0.21 ± 0.06)
Asiga: (0.19 ± 0.03 µm)

Al Dwairi et al. [20]:
Dentona: (16.41 ± 0.96).

Asiga: (16.24 ± 0.79)
Next Dent: (16.20 ± 0.93)

Al Dwairi et al. [20]:
Dentona: (81.33 ± 5.88).

Asiga: (79.33 ± 6.07)
Next Dent: (74.89 ± 8.44)

Al Dwairi et al. [20]:
Nextdent > 2 GPa

Dentona and Asiga < 2 GPa
with bending before fracture.
Dentona and Asiga exhibited

considerable bending
before fracture

Al Dwairi et al. [20]:
Dentona: (17.98 ± 1.76 kJ/m2)

Asiga: (16.76 ± 1.75 kJ/m2)
Next Dent: (1.20 ± 0.69 kJ/m2)

Milled PMMA
AvaDent

Tizian-Shütz

Al-Dwairi et al. [45] 2019:
Avadent: (72.87 ± 4.83◦)

Tizian-Shütz: (69.53 ± 3.87◦)

Al Dwairi et al. [45] 2019:
Avadent: (0.16 ± 0.03 µm)

Tizian-Shütz: (0.12 ± 0.02 µm)

Al-Dwairi et al. [45] 2019:
Avadent: (20.62 ± 0.33)

Tizian-Shütz: (19.80 ± 1.08)

Abualsau et al., 2020. [75]:
High pressure and high

temperature improved the
mechanical properties FS of

3D-printed < FS of
milled PMMA

NR

Al Dwairi et al. [74] 2020:
(24.56 ± 2.63 to

29.56 ± 6.94 kJ/m2).
Superiority of milled

PMMA/3D-printed and
HC-PMMA. (Abualsau et al.,

2020 [75])

Results

Modified surface wettability
varies with chemical

composition, topography, and
salivary pellicule.

Not significant, but differs
between different polishing

techniques (p > 0.05).

Measure the resistance material
(p < 0.05). Milled PMMA

had higher
values/heat-polymerized
PMMA (Prpic 2020 [70])
(Ayman et al. [76] 2017)

Measure compressive, tensile,
and shear stresses of materials

p < 0.05

Higher flexural strength is
advantageous for rigidity and

stiffness (p < 0.05).

No statistically significant
difference between Meliodent
and 3D-printed resin (p < 0.05)

Effects

High hydrophobicity of
3D-printed denture base

increases retain stain, plaque,
and water sorption more than

HC PMMA (Al-Dwairi et al. [45]
2019, Teixeira et al. [77] 2023,
Meirowitz, A et al. [78] 2021)

Smooth denture surfaces
reduce microbial adhesion and

plaque (Choi et al. [79] 2020)
(Foggi et al. [80] 2016)

Measure of how material resists
plastic deformation during
abrasion and mastication.

Abdulwahhab et al. [81] 2013

Prpic et al. [70] 2020 found 3D
(Next dent) had lower FS than
milled PMMA, polyamide, and

HC PMMA.
Aguirre et al. [6]: rubber can

favor resistance to deformation
(Shaefer et al. [82]; 2010)

Ucar et al. [16] 2012: Not lower
than 2 GPa

Reflects vulnerability of denture
fracture. Superiority of milled

pre-polymerized PMMA due to
high temperature and pressure
values (Prpic et al. [70] 2020).
Improve IS by rubber particle;

Rickman et al. [83] 2012.

PMMA, poly-methyl-methacrylate; HC, heat-cured; CA, contact angle; ISO, international organization for standardization; FM, flexural modulus, FS, flexural strength; NR, not reported.
Superiority of PMMA HC polymerized for CA compared to 3D-printed resin and milled PMMA. No significant difference for RA between the three techniques. More significant values
for VHN concerning milled PMMA. For FS and FM, the PMMA HC polymerized had better performance. The IS for the milled PMMA is better than that of 3D-printed or PMMA
HC polymerized.
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In the form of ready-to-use blocks, PMMA is industrially polymerized under ideal
temperature and pressure conditions in order to limit deformation. This manufacturing
method produces fewer residual monomers [84]. The denture resulting from the machining
of PMMA blocks has a smooth surface, facilitating daily hygiene. Recently, in compari-
son with polymethyl methacrylate (PMMA), the fabrication of removable prostheses by
CAD/CAM systems focused on four materials: fiber-reinforced composite (FRC), nano-
zirconia (N-Zr), cobalt-chromium-molybdenum alloy (CCM), and PEEK. The thickness
of the palatal zone was 1.0 mm for PMMA and PEEK and 0.5 mm for FRC, N-Zr, and
CCM. Under a load of 200 N at the incisive papilla, the deformation of N-Zr and CCM was
half that of PMMA. At this same level, no significant difference in deformation between
PEEK, PMMA, and FRC was noted. Thus, whatever the material used, manufacturing by
CAD/CAM makes it possible to reduce the deformation of the prostheses [85].

4.2. Indication for Printing Dentures

Prostheses printed using stereolithography (SLA) 3D printers have better resolution if
the orientation of the print direction is tilted at 45◦ [85]. Concerning complete prostheses,
the impression technique seems to be attractive, but it still requires progress concerning
the materials and the methods used [6,86]. The fully digitized manufacture of RPDs is
currently limited to Kennedy III/IV classes. For partially edentulous cases of Kennedy
class I/II, the digital impression technique does not make it possible to register correctly
according to the edges of the base and the displacement of the mucosa under the pressure
of the prosthesis [87].

Printing by sintering or laser fusion (SLS) is faster than the other techniques but also
more expensive. In dental prosthetics, 3D printing can produce a model (in wax or plastic)
that can be transformed into a definitive prosthesis, or it can directly produce definitive
parts in metal, resin, or ceramic. Currently, the extrusion technique, which is ideal for
thermoplastic polymers, is mainly used with PEEK [88]. An in vitro comparison of the FS
values of six resins for prosthesis bases made it possible to establish the following hierarchy:
Machined resins (AvaDent and Polident) came out on top, followed by a conventional
heat-cured molded resin (Vertex) and a 3D-printed resin (NextDent), while polyamide
and another 3D-printed resin (Harz) had significantly lower FS values than conventional
resins [89].

4.3. Manufacturing Specificity of PEEK

The 3D printing technique for PEEK produces the best result in terms of the desired
resistance, both in bending and in tension. This superiority of 3D-printed PEEK over
other techniques depends on parameters such as temperature and printing speed [90]. It
is mainly in the field of removable partial dentures that PEEK provides advantages for
the replacement of an RPD framework in combination with acrylic resin teeth and a basic
prosthetic material. Indeed, thanks to its low specific weight, PEEK contributes to the
lightness of the prosthesis. For implementation, PEEK is suitable for extrusion and injection
molding processes, and it can also be used to manufacture turned or milled parts [91].
In addition, the fatigue resistance of BioHPP, which is very high (1200 N), seems to be
satisfactory for many indications [92]. However, concerning RPD, the study showed that
the in vitro retention strength and fatigue resistance of PEEK claps were inferior to those
of metal claps. A total of 16 metal clasps (1 mm thick) and 32 PEEK clasps (1 mm or
1.5 mm) were subjected to an insertion/removal test on a metal crown for 15,000 cycles.
The metal clasps had a significantly higher retention force than the PEEK clasps, regardless
of size [93]. Another recent in vitro experiment using fatigue tests confirmed that PEEK
resisted load values significantly lower than those of the Co-Cr alloy. However, these values
remained compatible with the daily clinical use of an RPD [94], which could jeopardize the
balance of Housset’s triad in the long term. The qualities sought for the hook are elasticity
for the necessary retention arm but also stabilization and support for the reciprocity arm.
Currently, these characteristics are better suited to metallic alloys (Co-Cr) than to PEEK.
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Since the study was conducted on metal crowns in vitro, further in vivo studies are needed
to determine whether the strength of PEEK clasps is clinically sufficient or not. Both for
milled and for pressed PEEK at a mold temperature of 200 ◦C, an improvement in tensile
strength is observed [14]. According to these authors, materials such as PEEK with high
flexibility are not ideal for a prosthetic base, but on the other hand, flexibility is essential
for the clasps of RPDs. This finding agrees with the results of Ucar et al. [16]; thus, the
bending modulus and rigidity are more important than high flexibility [16]. The PEEK
polymer can be considered a more resistant material at the level of bypassing the labial
and lingual frenulum than PMMA. PEEK has a higher Young’s modulus but lower flexural
deformation than PMMA. Its deflection curve is weaker than that of PMMA. Thus, the
effect of these two parameters can relieve the supporting tissues under the prosthesis of the
functional load [14,95].

The manufacture of removable prostheses from PEEK through the modeling of mol-ten
deposits is one of the additive methods that has already proven its worth. Indeed, the
adaptation of the PEEK frame of removable prostheses is satisfactory. However, this result
still needs to be confirmed in the long term [96,97].

5. Polymer Choice According to Indications
5.1. Chewing Efficiency

When masticatory efficiency is sought, PMMA remains the material of choice for
obtaining the best result [98–101]. However, for some authors, the polyamide offers better
stability and retention in a removable complete prosthesis [102–104]. Thermosetting acrylic
resins, thanks to their moduli of elasticity, are more resistant to deformation compared to
less rigid polyamides [105,106]. Other authors recommend increasing the thickness of the
polyamide bases to obtain sufficient rigidity [107]. However, polyamide, because of its
low flexural strength compared to PMMA, deforms during mastication [16]. In addition,
the elasticity of polyamide, such as Valplast, leads to the mobilization of the prosthetic
base during chewing [101]. In the presence of extreme biting forces, the flexibility of the
polyamide bases explains the absence of fracture [108]. On the other hand, in adult humans,
the biting force with full dentition is between 60 N and 305 N [109].

In the studies by Rismanchian M et al. [110] and Nick Polychronakis et al. [111], the
average value for a complete Valplast prosthesis is about 220 N after hydro-thermocycling
at 3000 cycles. These authors note a permanent deformation in the presence of extreme
loads. However, the values recorded for the tested materials exceed the minimum accepted
force values (55 N) proposed by ISO 1567. Concerning RPD, two thermoplastic materials,
acetal (AC) and polyamide (PA), can compete with resins based on PMMA [101]. Anna
Macura-Karbownik compared the chewing efficiency and occlusal forces in wearers of
PMMA, polyamide, and acetal RPD [101]. The replacement of missing teeth with PMMA
or acetal prostheses proved to be beneficial in terms of the masticatory efficiency and
the occlusal force developed. However, no significant correlation was found between
chewing efficiency and occlusal forces. Another finding from this study shed light on
the performance of removable prostheses fitted with clasps made of materials with a low
modulus of elasticity. Indeed, the latter are associated with chewing efficiency and weaker
occlusal forces.

An in vivo study focused on cases of Kennedy Applegate class I in the mandible
or maxilla. A comparative study between Co-Cr, PMMA, and Valplast made it possible
to test the effectiveness of mastication. After having restored the posterior occlusion,
the Co-Cr RPDs proved to be the most effective in restoring the function of mastication.
For these authors, among the three materials tested, Co-Cr offered the best performance
for older and frail patients concerning diet, thus allowing the body mass index to be
maintained [112]. In removable partial prostheses, the low elastic modulus of PEEK offers
a damping effect with respect to occlusal forces. For this reason and the lightness, these
removable prostheses based on PEEK have been tested to overcome the disadvantages
of metallic materials [12]. With zirconia-reinforced PEEK, hybrid resin is offered as an
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alternative to PMMA in patients developing significant occlusal forces or for removable
prostheses that have already suffered multiple fractures [113].

5.2. Fracture Cracks in the Denture Base

Different conditions can be at the origin of the fracture of a removable prosthesis, includ-
ing maladjusted occlusions, masticatory muscles developing powerful forces, the instability
of the prosthesis, or poor adaptation on the support surfaces. In addition, Beyli and Von
Fraunhofer et al. (1981) [114] mentioned patient stress, greatly diminished edentulous ridges,
as well as fragility due to the design of the prosthetic base. Each of these conditions justifies
the implementation of a new prosthesis with a reinforced material [114,115]. In vitro, after
simulating fractures in samples (50 mm × 25 mm × 3 mm) of acrylic resin (PMMA), the
repair made it possible to test three types of resin: thermo-, auto-, and photopolymeriz-
able. This experiment made it possible to highlight the superiority of thermopolymerized
resins that have a significantly higher breaking load (FS: 6.55 MPa under an 87.36 N load)
compared to self-curing (4.72 MPa under 72.94 N) and light-curing resins (4.06 MPa under
57.51 N) [116]. A review of the literature confirmed that the use of thermosetting PMMA
implemented by compression using a water bath is very widespread [4,117]. Although
for more precision, in vitro studies showed that PMMA has a high modulus of elasticity
(0.85 ± 0.27 GPa for injection-molded PMMA base material SR-Ivocap) compared with
conventional compression-molded PMMA (0.70 ± 0.23 GPa; Meliodent) [34,82].

However, in the presence of a fracture of the PMMA base, repair using a fiberglass
mesh has given rise to several in vitro studies, testing the resistance as a function of the
applied load. Flexural strength tests were carried out in vitro on 150 samples of heat-
cured acrylic resin. The fiber mesh in the tension area of the PMMA specimens improved
the flexural strength of the repair. However, the mesh and the dimension of the mesh
integrated in the resin are essential to obtain a resistance to bending of the fractured
prosthesis. Specimens repaired with the 20 mm fiber mesh placed in the tension zone
showed the highest average FS with thermal cycling/non-thermal cycling [56,118]. The
PEEK polymer could be considered as a resistant material to notch concentrations, as it
revealed a higher Izod impact strength than the PMMA [96].

Recently, an in vitro study tested different bonds between the resins for the base of the
removable prosthesis with, on the one hand, the prefabricated teeth (acrylic, composite,
nanohybrid, and reticulated) and, on the other hand, the teeth produced by CAD/CAM.
Bonding with a cold, hardened resin should be avoided when attaching prefabricated teeth
to a denture base. Indeed, cold-cured base resins are not able to diffuse effectively into the
prosthesis from the surface of the tooth. Regarding CAD/CAM (milled) and thermoset
denture base resins bonded to different types of prefabricated teeth, they exhibit similar
shear strength values [70].

6. Future Prospects

Continual progress is being made in the incorporation of nanoparticles into the poly-
mer for therapeutic purposes. These modified materials have ushered in a new field of
investigation that can improve both the prevention and treatment of stomatitis [119,120].
Another future challenge may be represented by 3D printing technologies and innovative
4D printing strategies. Thus, under the label of “intelligent materials”, it is envisaged that an
inert object will be able to modify the behavior of its 3D shape over time. Four-dimensional
printing uses stereolithographic principles. The influence of UV light is applied layer by
layer to act on the hardening of the material. This is because the thermomechanical charac-
teristics of memory polymers, called “intelligent material”, differ from those of ordinary
3D printing materials due to the change in shape [121]. Beyond 3D printing, 4D printing
incorporates the additional dimension of time. This parameter reflects the ability of the
material to deform over time. Thus, its influence within the oral cavity can be measured
through several fluctuating factors such as pressure, air, heat, and saliva. The goal is to take
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these different parameters into account during the manufacturing process so as to improve
the desired performance [122].

The 4D printing applied to the removable prosthesis makes it possible to adapt to
the teeth and the mucous membranes but also to the constraints in the oral cavity. Four-
dimensional printing uses smart materials for prosthetics adapting to the forces of bite,
age, and diet. Shape memory polymers from 4D printing offer hope for improvements by
increasing stiffness and having a faster reaction speed.

7. Conclusions

The ideal biomaterial combining the excellent characteristics of resistance, elasticity,
and tolerance with oral ecology still requires improvements and in vivo applications.
The choice of an appropriate polymer (PMMA, polyamide, or PEEK) for the base of
a denture depends, first of all, on the mechanical properties sought. Concerning the
manufacture of dental prostheses in the laboratory by the impression technique, several
types of performance in the mouth concerning printed PMMA remain inferior, such as
resistance to bending and fracture, compared to machined prostheses.

Removable dentures made of polyamide offer satisfactory results in terms of comfort
and esthetics. But concerning their chewing efficiency and the degree of microbial colo-
nization, improvements are necessary before they can compete with PMMA prostheses.
They also remain confined to small recessed gaps or are used in combination with a metal
frame to compensate for distal gaps. In the presence of a total loss of teeth, the mechanical
properties of the polyamide, concerning mastication, limit the performance.

PEEK seems to be an interesting alternative to the use of alloys (Cr-Co) for removable
partial prostheses with reinforcement. However, improvements are needed before they
can compete with metal alloys. Thus, it is desirable to increase the thickness of the PEEK
prosthetic base.

The second part of this review deals more specifically with the interactions between
the oral environment (tissue, saliva, microbiota, pH) and the surface state of the differ-
ent polymers—factors that will help us finalize our choice of polymer. Certain general
pathologies affecting the edentulous patient can also influence this choice. Thus, for the
treatment of denture stomatitis (DS), the preventive or curative therapeutic indications of
these different materials remain to be defined in vivo.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15173495/s1, Figure S1: Different polymerization techniques
of PMMA, by compression or by injection molding. SR Ivocap (Ivoclar®), cooking in boiling water,
a conventional compression molded heat polymerized (Meliodent®) (A); Pala X Press (Héraeus
Kulzer®), vacuum injected (B); Acron M C I (GC Europe®) microwave, a compression molded
microwave-polymerized (Acron MC®) (C); Swiss-Jet-Press (Condylator service®) injected pressed
technique (D). Figure S2: Polymers materials, poly-methyl-methacrylate (C5O2H8)n (A,B); polyamide
valplast CO (OH2)11NH)n (C,D); polyetheretherketone (-C6H4-O-C6H4-O-C6H4-Co-) (E,F).
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