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Abstract: The article considered the three types of description of the material behavior model: elastic,
elastic–plastic, and viscoelastic. The problem is considered in the framework of deformable solid
mechanics. The paper considers the possibility of describing modern polymeric and composite
materials used as antifriction sliding layers in the viscoelasticity framework. A numerical procedure
for finding the coefficients to describe the viscoelastic material behavior using the Prony model has
been implemented. Numerical results and experimental data are compared. The model problem of
spherical indenter penetration into polymer half-space is realized. The influence of the system dis-
cretization on the numerical solution is analyzed. The influence of the polymer behavior description
in static and dynamic problem formulations is analyzed.

Keywords: Hertz contact; elastic model; elastic–plastic model; viscoelastic model; polymer;
deformation behavior; contact; contact pressure; Prony model; gamma-modified PTFE

1. Introduction
1.1. Research Objectives

The investigate different types of mathematical models of behavior describing of a
polymer material is the purpose of the work: elasticity; elastoplasticity; viscoelasticity. As
well as to evaluate the possibility of applying the model depending on the type of analysis
and load.

Research objectives:

1. The behavior description of polymeric materials in viscoelastic terms using the gener-
alized Maxwell model;

2. Comparison of experimental data and numerical solutions of three different mathe-
matical models of material behavior: elastic, plastic, and viscoelastic;

3. Carrying out verification of the numerical Hertz problem;
4. Constructing numerical models of the specimen behavior (elastic–plastic, viscoelastic);
5. The influence study of mathematical models of polymers’ behavior in a dynamic

setting (loading and subsequent exposure for 1 h at room temperature).

1.2. Problem Context

The study of various characteristics of materials, as well as their application possibility
in this or that field, is an urgent task among scientists all over the world [1–3]. One of
the modern popular materials is polymers. Such materials are useful because, with the
help of certain combinations of their structural links, it is possible to obtain materials with
different characteristics [4]. In all production areas, there is a search for a type of polymeric
material that will have all possible positive characteristics but, at the same time, will have
low cost and a low environmental footprint, both in manufacturing and disposal [5,6].
Scientists from all over the world create certain combinations of monomers and further
investigate their characteristics and properties [7]. One important quality of polymers is the
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combination of various useful properties, such as impact resistance, electrical conductivity,
and insulation [8], plasticity and elasticity, lightness, chemical resistance, impermeability,
corrosion resistance, etc.

In particular, one of the actively used polymeric materials in industry is PTFE, along
with its various modifications [9,10]. It is a material that has unique properties such as
high chemical resistance, low thermal conductivity, abrasion, and corrosion resistance, and
high dielectric constant. Both pure PTFE and composites based on it are used in various
industries, such as mechanical engineering, the oil and gas industry, electrical engineering,
medicine, etc. PTFE and its modifications are widely used in the production of electronic
components and equipment such as capacitors, resistors, switches, and other components
since they have a high dielectric constant and high temperature resistance [11–13].

In the chemical industry, manufacturers and researchers use PTFE as a gasket and
rod material [14]. PTFE is a biocompatible material and has no allergic reactions. There-
fore, it has wide application in medicine for the production of prosthetic joint implants,
prostheses, catheters, and other medical devices [15,16]. In mechanical engineering, PTFE
and composites based on it are used in the production of bearings, shafts, seals, and other
components that must operate under conditions of high temperature and pressure [17–19].
In its pure form, PTFE has a number of characteristics; however, its essential feature is its
bonding with reinforcing elements. Fluoroplastic is mainly used as a matrix to create a
new material. In particular, its gamma radiation modifications are the matrix for a wide
range of composite materials [20]. In numerical simulation of the performance of polymeric
materials and composites based on them, an important step is the correct choice of the
approach to describe both the material’s properties and its behavior [21]. There are different
approaches to building qualitative models of composites. One of them is to describe the
properties of the matrix and the inclusions or reinforcing elements separately from one
another [22,23].

Studies of the properties of polymers and composites based on them have existed
since the appearance of polymers themselves. However, much of this research has focused
on the study of these materials as elastic or elastic–plastic bodies. It was found that the data
obtained in solving such problems are not sufficient to qualitatively describe the behavior
of the material. This is due not only to the lack of description of viscous behavior but also
to the presence of a description of plasticity. It is noted that polymers are generally divided
into two types: viscoelastic–plastic and viscoelastic. In addition, if, in the first type there, is
a trace of plastic deformations, the second type will have insignificant plastic deformations.
Studies aimed at analyzing both the viscoelastic–plastic behavior of materials [24–27] and
viscoelastic behavior of materials [28–30] are gaining momentum. The paper considers a
mathematical model of only viscoelastic behavior for the first stage of the study.

1.3. Problem Description

Polymer materials have gained a strong foothold in the international market and are
actively used on a large scale in various industrial fields. In particular, the materials are
used as sliding layers in various types of friction units. However, there is a lack of research
on the deformation behavior of polymers under various design conditions [31–33]. In
particular, studies are most often directed towards a single configuration of a working
structure. However, in order to qualitatively describe the behavior of the structure, it is
necessary to consider its operation in a complex [34]. For this purpose, it is necessary
to consider the problem not in a static formulation, but in a dynamic one, taking into
account such factors as variable cyclic load, variable temperature, and different variations
of geometrical configuration. However, to qualitatively describe and consider all these
factors, it is necessary to choose the right description of the material behavior model.

This work aims to investigate the influence of the choice of a polymer behavior model.
Gamma-modified PTFE is described in three ways: an elastic body, an elastic–plastic
body, and a viscoelastic body. The model problem of introducing a spherical indenter into
polymer half-space is realized.
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2. Materials and Methods
2.1. Materials

Composite materials are widely spread in different spheres of human activity. How-
ever, creating and study the matrix [35,36] and composite fillers [37,38] is an important
task. Matrices from different materials allow the structure to work in different conditions:
increased and decreased temperatures [39], responsible friction nodes [40], aggressive
environments [41], etc.

The article presents a study of one of the common matrices of composite materials in
bridge-building activities—gamma-modified PTFE. The material has high strength and
antifriction properties [42]. A full-scale experiments series were realized to determine the
following: elastic characteristics, stress–strain dependence, friction properties, and dynamic
characteristics for this material. Experimental studies were performed by Dr. Adamov A.A.
using the equipment of the Ural Branch of the Russian Academy of Sciences. The experi-
mental study was conducted using Zwick Z100SN5A (Zwick Roell AG, Ulm, Germany),
which allows mechanical, quasi-static tests for uniaxial tension, compression, creep, etc.
Test specimens are made in the form of cylindrical bodies (Figure 1) with characteristic
dimensions: length, l = 20± 0.1 mm; radius, r = 10± 0.1 mm.
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Figure 1. Experimental studies: (a) experiment scheme; (b) full-scale sample. Sections 1 and 2 are
upper and lower steel sections, respectively; 3—polymer.

The specimen is deformed by ∆l up to 2 mm from the original size. The surface S1
is rigidly fixed. Displacements are applied at a constant rate V∆l = 0.006 mm/min on the
surface S2. The paper has established that the material has no barrel-like deformation
during experimental investigations. Consequently, only is realized in the z-axis direction
within the experiment.

The elastic compression modulus E = 863.8 MPa was determined within the experi-
ment at uniaxial deformation under constrained compression. The Poisson’s coefficient
ν = 0.461 was determined using uniaxial deformation experiment.

The specimen was uniaxial compression stress tested (ε = 10%) to obtain the stress–
strain relationship at (Figure 2).
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Figure 2. The σ− ε diagram for gamma-modified PTFE.

The figure shows that the PTFE elastic behavior occurs when the sample is deformed
up to 1%, after which the material enters plasticity. It was also observed that the material
recovered its original geometric dimensions after some time. Therefore, plastic deformation
is negligible in the polymer. From this, it can be concluded that the stress reduction is due
to the viscoelastic behavior of the material.

The next step was to determine the dynamic characteristics of the material under
uniaxial stress. One loading cycle was carried out:

- The specimen was tested at a strain rate of 0.006 mm/min up to 10%;
- Constant strain was held for 15 min;
- The load was removed from the material until normal stresses of 0.1 MPa was reached

at a rate of 0.006 mm/min.

Based on this, the following dependencies were obtained: strains on time (Figure 3a),
normal stresses on time (Figure 3b), and stresses on strain (Figure 3c).
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Figure 3. Dynamic characteristics determination of the material: (a) strain–time dependence,
(b) stress–time dependence; (c) stress–strain dependence.

The obtained data will be used to describe the material behavior via the deformation
theory of elastic–plasticity and the model of viscoelastic behavior based on the Prony series.

2.2. Description of Polymer Behavior

Currently, three types of material description are common: an elastic body, an elastic–
plastic body [43], and a viscoelastic body [44]. The elastic–plastic body is described by the
deformation theory of elastic–plasticity [45].

Many authors consider polymeric materials, matrices, and composites in the form
of a Maxwell body [46,47]. The Prony series is the most common model for describing a
Maxwell body [48].
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The mathematical formulation of the problem includes the equilibrium equation:

div σ̂ = 0, (1)

where σ̂ is the stress tensor.
The problem is considered in the framework of large deformations:

ε̂ =
[
∇u + (∇u)T +∇u(∇u)T

]
/2, (2)

where u is the displacement vector; and ε̂ is the strain tensor.
Let us write down the stress–strain relationship for each case when describing the

polymer material by different models:

- Elastic body:

σ̂ = λI1(ε̂) Î + 2µε̂, (3)

where λ and µ are Lame parameters; I1(ε̂) is the first invariant of the stress tensor; and Î is
a unit vector;

- Elastoplastic body:

σ̂ = 2σI
[
ε̂− I1(ε̂) Î/3

]
/(3εI) + KI1(ε̂) Î, (4)

where σI and εI are the stress and strain intensity, respectively; and K is the bulk modulus
of elasticity;

- Viscoelastic body:

σ̂ =

T∫
0

[
E∞ + E0

k

∑
i=1
αi exp(−(T − τ)/βi)

]
dε(τ), (5)

where E0 and E∞ are Young’s moduli at the initial and final moment of time, respectively;
αi is weighting coefficient; and βi is relaxation times.

A numerical procedure is created to describe the viscoelastic behavior of a polymer
material (the scheme is presented in Figure 4). Experimental data are input to this procedure.
The unknown coefficients are found by solving the minimization problem of function (6).
The presented functional has a parabolic form. Therefore, it has one global minimum (one
solution). They are necessary for a correct description of material behavior.

F =
n

∑
j=1

[
σ

Exp
j − σNum

j (x)
] 2

, (6)

where n is the number of experimental points; σExp
j is the experimental stress value at j

point; σnum
j (x) is the numerical stress value at j point; and x = (αi,βi) is the vector of

unknowns, which consists of 2 k parameters.
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Figure 4. The numerical procedure scheme.

This numerical procedure is used to find the coefficients necessary to describe the vis-
coelastic behavior of the material. The solution is realized using the finite element method
in ANSYS Mechanical APDL 2021R2 (Livermore, California, USA) software package in
synergy with Python. During the operation of the numerical procedure, the coefficients are
selected, then the experiment is numerically realized, and the results of numerical and in
situ experiments are verified. The numerical procedure runs until the error is less than 5%
between the experimental and numerical values.

The numerical procedure consists of 3 stages:

- First (preliminary) stage: input of experimental data in the form of a text file with data,
model selection, and generation of the initial vector of unknowns from Equation (5);

- The second stage is based on the Nelder–Mead optimization algorithm: creation of a
script-file describing the numerical experiment in ANSYS Mechanical APDL, conduct-
ing the numerical experiment, obtaining the results file, comparison of numerical and
experimental data, generation of the vector of unknowns from Equation (5) at step i,
and transition to the next iteration;

- The third (and final) step is performed when the error between the experimental
and numerical data reaches 5%: formation of the final vector of unknowns from
Equation (5) and exit from the procedure.

2.3. The Hertz Formulation

The Hertz contact problem is one of the common problems of contact interaction
between an indenter and a half-space [49]. Figure 5 shows the contact interaction scheme
between a spherical indenter and a half-space.

The spherical indenter of radius R = 0.2 m is penetrated with force F = 1000 N into a
half-space with geometrical characteristics: length is lp = 0.31 m; height is hp = 0.05 m.

All possible contact states at the site SK are considered within the problem. The contact
boundary conditions are of the following forms:

- Sliding friction: u1
n = u2

n, u1
τ1
6= u2

τ1
, u1

τ2
6= u2

τ2
, σ1

n = σ2
n, σ1

nτ1
= σ2

nτ1
, σ1

nτ2
= σ2

nτ2
,

when |σnτ1 | = µ(σn)|σn|;
- No contact:

∣∣u1
n − u2

n
∣∣ ≥ 0, σnτ1 = σnτ2 = σn = 0;

- Adhesion: u1 = u2, σ1
n = σ2

n, σ1
nτ1

= σ2
nτ1

, σ1
nτ2

= σ2
nτ2

,

where µ(σn) is friction coefficient; τ1 and τ2 are the axes designations that lie in the plane
tangent to the contact surface; un are displacements along the normal to the corresponding
contact boundary; uτ1 and uτ2 are displacements in the tangent plane; σn is stress along
the normal to the contact boundary; σnτ1 and σnτ2 are tangential stresses at the contact
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boundary; σnτ is the value of the tangential contact stress vector; and 1 and 2 are conditional
numbers of the contacting surfaces.
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The Hertz solution is obtained for the case of a parabolic pressure profile and has the
following form:

p(r) = p0

(
1− r2/a2

)1/2
, (7)

where r is the distance for an arbitrary point on the plane; a is the Hertz contact radius; and
p0 is the maximum contact pressure.

This dependence will be used to analyze the convergence of the problem within the
static problem formulation in a subsequent study.

3. Results
3.1. Invastigation of Mathematical Models

The mathematical model choice for describing material behavior is an important part
of computer engineering as it affects the accuracy of the results obtained in the study. This
article compared experimental data and mathematical models at the first stage of the study.

The numerical procedure (Section 2.2) allows us to find the vector of unknowns for
the Prony series with an error of less than 5%. The final vector of unknowns is presented in
Figure 6.

It can be noted that the weight coefficients αi have the largest values in the values
range of relaxation times βi [102;104].

Numerical modeling of a cylindrical specimen uniaxial deformation has been
conducted—similarly to the field experiment (paragraph 2.1.). Uniaxial deformation occurs
up to a strain value equal to 10%. The problem was solved in a static formulation and let
us obtain the stress–strain diagram for all considered variants of body behavior (Figure 7).

Elastic and viscoelastic bodies behave linearly over the entire deformation interval
of the specimen when solving the static problem. At the same time, the elastic–plastic
body describes the deformation of the specimen up to 10%, with an error of less than
5%. Consequently, the use of the mathematical model of the elastic–plastic body allows
us to explore problems in analyzing the strength of a structure within the framework of
static calculations.

Moreover, predicting the performance of the structure at all stages of its life cycle is
an important feature of numerical modeling. Let us perform numerical modeling of the
experiment depending on the time of the load impact on the specimen (Figure 8).
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The article notes that when comparing the numerical solution with the experimental
one, it does not fully describe the behavior of the material and has a linear character over the
entire range of deformation in the framework of the theory of elasticity. In the framework of
elastic–plasticity and viscoelasticity theory, the time dependencies of stresses present a more
qualitative description of material behavior. The difference from the experimental data in
the elastic–plastic model is, at the loading stage, 5%, and at the unloading stage, 20%. This
is due to significant plastic deformations, due to which there is an extreme drop in stress.
In the case of the viscoelastic body the difference from experimental data is, at loading
stage, 1%, and at the unloading stage, 0.53%. Consequently, the description of polymer
behavior by the viscoelastic model allows for a better description of its dynamic behavior.

For a qualitative assessment of the material behavior, we show the stress–strain
dependence in Figure 9.
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Similar to the time dependence of stresses, a significant difference between the elastic
body and all others is noted. The elastic body behaves linearly during the loading and
unloading phases of the numerical model. It should be noted that for an elastic–plastic
body at unloading, the stress values decrease linearly, which is due to the accumulated
plastic deformation in the body. There is no zone of stress reduction at load holding. When
considering the viscoelastic model, it is worth noting the qualitative and quantitative
description of material behavior in the dynamic formulation.

The following conclusions can be drawn from the above: it is necessary to use the
elastic–plastic model to analyze the structure strength in the static setting, and it is necessary
to use the viscoelastic model to predict the performance of the structure during the life cycle.

3.2. Hertz Contact Calculation Model

The model problem of indenter penetration into a half-space is solved to practice the
use of mathematical models in the structure operation.

The first study step is to determine the optimal value of the mesh size within the
framework of computer engineering. For this purpose, we conduct a series of numerical
experiments to determine the optimal finite element partition size (Figure 10). The size of
the finite element near the contact is chosen as the variable parameter he.
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When analyzing the finite element partitioning, it can be seen that the largest error
occurs in the leftmost and rightmost contact nodes. However, when the finite element size
is reduced, the numerical solution approaches (7). An error of less than 1% is achieved with
finite element partitioning he = 0.03125 mm.

Further, we realize the problem in dynamic formulation for two models: the elastic–
plastic body and the viscoelastic body. The paper also considers the value of contact
pressure at maximum load and its endurance for 1 h (Figure 11).
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An elastic–plastic body does not change with time. In a viscoelastic body, the following
are observed: a decrease in contact pressure values, and an increase in the contact area
between the spherical indenter and the half-space.

Further, the article considers the distribution of maximum strain values as a function
of time (Figure 12).
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It should be noted that the initial point of the strain intensity plots coincide for
elastic–plastic and viscoelastic bodies. However, with the time passage, the values of
strain intensity in the elastic–plastic body are constant. At the same time, the value of the
viscoelastic body grows nonlinearly. From the above, we can conclude that the creep of the
material occurs with the passage of time.

Let us also consider the maximum values distribution of stress intensity (Figure 13).
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Similar to deformations, the stress intensity has a different distribution of values over
time depending on the body type. An elastic–plastic body has a constant value over the
entire time range. At the same time, for a viscoelastic body, the level of stress intensity
decreases with time due to the material creep (Figure 12).

4. Discussion
4.1. Limitation Statement

The paper presents the results of numerical identification and simulation of the behav-
ior of gamma-modified PTFE. The work has a number of limitations that are planned to be
eliminated in the future:
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1. The material behavior is considered at a constant temperature of 20 ◦C;
2. The model problem of spherical indenter penetration into a half-space is considered;
3. For each material, it is necessary to carry out a separate description of the

mathematical model;
4. Long time ranges are not considered, while the material works for a long time.

Further directions for the development of the work:

1. Investigation of the material on a large range of operating temperatures;
2. Study of the material on the dependence on the load impact rate on the

polymer material;
3. Study of temperature characteristics of the material;
4. Realization of the problem on the example of a bridge bearing structure under

cyclic loading.

In the future, we plan to proceed to consideration of a real structure within the
framework of contact interaction problems. The real structure consists of two steel plates:
one with a spherical indenter and one with a spherical notch, and there is a sliding layer
between them. The Hertz model was chosen as a simplified model for the initial verification
of the obtained results on the viscoelastic behavior of the polymer material.

When considering the model of a real structure, we plan to simulate its operation
under cyclic loads, as well as at different temperature parameters. In this case, we plan to
obtain a description of deformation behavior as close as possible to the behavior of a real
structure in which irreversible deformations occur over time.

4.2. On the Choice of a Mathematical Model

There is a certain variety of descriptions for the viscoelastic–plastic behavior of a
material; in particular, there are such models as the cooperative-viscoplasticity theory
based on overstress (VBO) model [16], combining a nonlinear viscoelastic model with a
viscoplastic model using the von Mises yield criterion [12,24,50–52], etc. However, in the
present work, gamma-modified PTFE is considered. In a number of experiments, it is noted
that there is no need to describe the behavior of the material as a viscoelastic–plastic body;
a viscoelastic model is sufficient for a qualitative description of its behavior. Within the
framework of the first approximation, the Prony viscoelastic model was chosen.

As an example, consider the work [53], in which an experimental and numerical
study of a Prony series as the main relation of the matrix description was conducted. It is
shown that when the number of unknown terms increases, the numerical data describe the
experimental data with an error of 10%.

This model has a number of advantages: a sufficient description of material behavior,
the active application of this model by other researchers [29,54], the relative simplicity of
the mathematical description, etc. The numerical algorithm has been tested early for the
description of lubricant behavioral models [55].

4.3. Applicability of the Research

Gamma-modified PTFE is widely used in bridge bearings as an antifriction mate-
rial [40,45,56]. In this design, the material operates under large temperature differences
(from −40 ◦C to +40 ◦C) and cyclic loads directed in different directions; thus, numeri-
cal experiments in dynamic formulation are necessary for qualitative prediction of the
load-bearing structure performance. It was obtained that the elastic–plastic description
of materials is suitable only for describing the performance of the structure in the static
formulation; thus, to describe the material behavior over time, it is necessary to describe
it in a viscoelastic formulation. In the future, it is planned to transfer to a model of a real
bridge support structure with a different set of temperature and cyclic tests.

5. Conclusions

Description of material behavior is an important part of computational engineering
research. Its correct description allows us to qualitatively predict the performance of a
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structure during its life cycle. Within the framework of this work, gamma-modified PTFE
has been described in three ways: an elastic body, an elastic–plastic body, and a viscoelastic
body. Within the numerical analysis, the following has been established:

- The use of an elastic–plastic body to describe the material behavior can be used only
in static problems to determine the strength properties of the structure;

- The use of a viscoelastic body to describe the mathematical model of material behavior
allows for evaluation of the performance of a structure at the entire stage of its
life cycle.

The model problem of introducing a spherically shaped indenter into polymer half-
space is realized.

The research presented in the article will draw attention to the necessity of correct
and detailed descriptions of mathematical models of material behavior. This, in turn, will
allow for improvements to the quality of solved problems within the computer engineering
framework. At the same time, at early stages, it will be possible to track problem areas of
the structure operation and perform manipulations for their elimination in a timely manner.

The presented study can be used in compression contact nodes; for realization in
tensile problems, it is necessary to undertake additional research.
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