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Abstract: Modelling the flow properties of rubber blends makes it possible to predict their rheological
behaviour during the processing and production of rubber-based products. As the nonlinear nature
of such complex processes complicates the creation of exact analytical models, it is appropriate to
use artificial intelligence tools in this modelling. The present study was implemented to develop
a highly efficient artificial neural network model, optimised using a novel training algorithm with
fast parallel computing to predict the results of rheological tests of rubber blends performed under
different conditions. A series of 120 real dynamic viscosity–time curves, acquired by a rubber process
analyser for styrene–butadiene rubber blends with varying carbon black contents vulcanised at
different temperatures, were analysed using a Generalised Regression Neural Network. The model
was optimised by limiting the fitting error of the training dataset to a pre-specified value of less than
1%. All repeated calculations were made via parallel computing with multiple computer cores, which
significantly reduces the total computation time. An excellent agreement between the predicted
and measured generalisation data was found, with an error of less than 4.7%, confirming the high
generalisation performance of the newly developed model.

Keywords: rubber blends; curing process; intelligent modelling; generalised regression neural
network; parallel computing

1. Introduction

The vulcanisation, cross-linking, or curing of rubber blends (RBs) is one of the most
crucial technological processes in the rubber industry. Throughout this process, the rheo-
logical behaviour of the vulcanised material undergoes changes attributed to the formation
of a spatial molecular network among the individual polymer chains [1]. Rheological mea-
surements conducted during cross-linking reactions enable the detection of these changes,
and the obtained results find application in various practical tasks, such as the design,
modelling, simulation, optimisation, and automation of the production process, assessment
of material processability and stability, quality control, and more [2]. The formation of
the cross-linked spatial structure during the curing process modifies the rigidity of the
blend. Consequently, monitoring the variations in modulus over the curing time delivers
continuous insights into the curing process and offers an understanding of the method and
degree of cross-linking. These aspects have fundamental significance within the rubber
industry [3].

The Rubber Process Analysers (RPAs) are currently the most powerful devices avail-
able for measuring and analysing changes in the rheological behaviour of RBs during the
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curing process. These RPAs assess the stiffness changes of the RB test sample over time
by subjecting them to sinusoidal shear-loading at a specific angular frequency and cure
temperature [4]. The results obtained from RPA measurements are typically interpreted
in the form of isothermal rheological cure curves (vulcanisation or rheometric curves) or
as a functional relationship between the elastic (storage) torque (proportional to the shear
modulus of elasticity or modulus of rigidity) and the curing time at a constant tempera-
ture [5]. Analysing the cure curves allows for the direct determination of essential curing
characteristics such as scorch time, optimum curing time, minimum torque, maximum
torque, and torque difference. Furthermore, it facilitates the calculation of various de-
rived characteristics, including curing speed ratio, cure rate index, degree of cross-linking,
thermo-plasticity, and reversion time [6]. Due to their capacity to provide a wide range
of technologically significant information, cure curves have become the most commonly
employed method for interpreting RPA measurements in routine rubber practice, as well
as in the targeted modification of existing materials, and in the research and development
of new polymer-based materials [7].

The results obtained from RPA measurements can also be interpreted by establishing
a functional relationship between actual dynamic viscosity (RDV) and curing time. RDV
represents the real component of the complex dynamic viscosity and serves as an indicator
of the material’s resistance to flow or deformation under external shear forces [8]. To
calculate RDV, the ratio of the loss (viscous) shear modulus to the applied oscillation
frequency is determined during the curing process at a given cure temperature [5,8]. RDV–
time curves offer a more detailed analysis of the curing process compared to dynamic
complex viscosity–time curves and cure curves [3]. They exhibit a significantly higher
sensitivity, particularly towards changes in the rheological behaviour of RBs resulting
from variations in the chemical cross-linking bonds during curing [4]. When combined
with cure curves, RDV–time curves provide a more comprehensive understanding of the
curing progress, which is important, especially when studying the extrusion and injection
moulding of elastomeric mixtures [9]. As a result, they have become a focal point of interest
in the present study.

Curing process modelling plays an essential role in both conventional rubber pro-
duction and the development of new rubber-based materials. This enables the efficient
optimisation of RBs’ processability, a prediction of their rheological behaviour under differ-
ent curing conditions, and estimation of the final performance of vulcanisates. However,
due to the highly sophisticated, complex, and nonlinear nature of RB curing, precise mathe-
matical treatments using traditional analytical methods are exceedingly challenging, if not
impossible [10]. Although several ad hoc models have been reviewed and are available,
for instance, in works [10–12], they consider different aspects of curing independently or
describe individual phases in a self-consistent manner. Currently, a complete analytical
model that encompasses all the features of RB curing does not exist in practice. The use
of artificial neural networks (ANNs) can prove highly beneficial in modelling complex
processes like these, as they have the unique ability to establish any nonlinear relationships
among numerous variables without prior knowledge of the processes or system mod-
els [13]. In fact, several studies have explored the application of ANNs in the modelling
and forecasting of curing processes for RBs. For example, in the work [14], an advanced
ANN model was developed to predict vulcanisation data for various commercially avail-
able RBs used in tire production. Study [15] employed an ANN approach to analyse the
dependency of rheometric properties on RB components. In article [16], three distinct
ANN architectures were introduced to forecast the optimal curing time for different RBs
at varying cure temperatures. The publication [17] compares various machine learning
methods to predict the rheometric properties of RBs. In article [18], the ANN was used to
provide predictions of vulcanisation characteristics based on a comprehensive database
of RBs with diverse compositions. In the aforementioned works, as well as in a number
of other studies, predictive models of RB curing have been formulated based on ANN
analysis of a set of experimental cure curves, which serve as representative network pat-
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terns. However, to the best of our knowledge, an ANN modelling of RB curing based on
RDV–time curves has not been extensively explored in the literature to date. Therefore, in
the presented study, a novel ANN model was proposed to predict RDV–time curves of
RBs with varying compositions cured under different temperature conditions. The flexible
architecture of the model, developed using the Generalised Regression Neural Network,
allows for researchers to extend its application to other aspects (input and output variables),
not only for RBs but also for polymers in general.

Generalised Regression Neural Network Theory

Various types and architectures of ANNs are widely recognised as one of the most
powerful tools in artificial intelligence for modelling complex nonlinear phenomena [13].
As a result, they find extensive application in various practical fields [19]. Currently, the
most commonly used type of ANN is the multi-layer, feed-forward ANN, trained using the
error back-propagation learning algorithm (BPNN) [20,21]. However, BPNN has limitations.
It requires a high number of iterations to converge to the desired solution, tends to fall into
local minima during network optimisation, and is sensitive to initial weights and biases, as
well as the setting and iterative tuning of several training parameters during the training
process [13,19–21]. In order to overcome these limitations, a new ANN concept called the
Generalised Regression Neural Network (GRNN) was introduced by Specht in 1991 in [22].
Since this type of ANN is the focus of the presented work, we provide a brief description in
the following lines of this section.

The GRNN is a memory-based, supervised, probabilistic type of feed-forward ANN.
It utilises a radial basis activation function in the hidden layer and has a simple, highly
parallel, dynamic structure. It possesses a strong ability to nonlinearly map any continuous
functions between input and output vector variables [7]. The network’s straightforward
structure and computational implementation have led to its extensive use in various
fields, particularly when solving function approximation or regression problems [23].
The most significant advantage of GRNN over BPNNs is its considerably faster one-pass
training algorithm. This algorithm eliminates the need for iterative procedures during
supervised learning, allowing for the function estimate to be drawn directly from the
training data, without prior knowledge of the specific functional form [24]. Instead, the
unknown function is represented as a conditional probability density function between
independent and dependent variables, which can be empirically determined from the
observed dataset using a Parzen–Rosenblatt density estimator with a specified Gaussian
kernel bandwidth [25]. Consequently, the probabilistic prediction of the dependent variable
for a given independent variable is unique and not reliant on the training procedure or
initial conditions, as is the case with BPNNs [26].

The concept of the GRNN is based on the theory of nonlinear regression analysis [27],
and its structure consists of four neuron layers, input, pattern (radial basis), summation, and
output (linear) layer, as shown schematically in Figure 1 [13]. (The software implementation
of the GRNN general topological structure can be found in our previous work [7].)

The GRNN is a feed-forward ANN, so the signals always propagate from the first
neuron layer to the last one [13]. The number of neurons in the input and output layers
corresponds to the number of independent (input) and dependent (target) variables x, y
of the network, respectively. The input layer is fully connected to the pattern layer, where
the number of hidden neurons is equal to the number of n input training samples xi. The
Gaussian Radial Basis Activation Function (RBF) or Gaussian RBF kernel [25] using (1)

ψi(x, xi) = ∑n
i=1exp

(
−

D2
i (x, xi)

2σ2

)
, (1)

in each pattern layer neuron is centred on each training sample xi, which is then stored in
the neuron memory. Its output is a measure of the squared Euclidean distance Di of the
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current input vector element x from each training input vector sample xi, that is computed
using the Formula (2) [27].

D2
i (x, xi) =

m

∑
i=1
‖x− xi‖2 =

m

∑
i=1

(x− xi)
T(x− xi). (2)

Each pattern layer neuron is connected to the two neurons in the summation layer: the
SN—summation neuron, which computes the sum of the weighted outputs of the pattern
layer (3)

SN =
n

∑
i=1

yiψi, (3)

and the SD—summation neuron, which is used to compute the unweighted sum of the
output of each pattern layer neuron (4)

SD =
n

∑
i=1

ψi (4)

where the weights yi are the target training vector values.
The output layer divides the output of the SN—summation neuron by that of the

SD-summation neuron to obtain the predicted value ŷ of the target vector y as (5):

ŷ =
SN
SD

. (5)

After substituting Equations (1)–(4) into Equation (5), the regression of a dependent
variable y on an independent variable x, which is an estimate of the most probable value
ŷ(x, σ) at a given σ, can be presented in the form of Nadaraya–Watson kernel estimator of
the regression function as (6) [28]:

ŷ(x, σ) =
∑n

i=1yiexp
(
− ∑m

i=1(x−xi)
T(x−xi)

2σ2

)
∑n

i=1exp
(
− ∑m

i=1(x−xi)
T(x−xi)

2σ2

) . (6)

Equation (6) shows that the regression of a dependent variable y on an independent
variable x, or conditional mean value of ŷ(x, σ), is a nonlinearly weighted average of all
training target values yi for training input cases xi, with the weighting depending on the
Euclidean distance of training sample xi from the point of prediction x and Gaussian RBF
kernel shape σ, usually called the smoothing factor or spread constant. When a new pattern
is presented to the network, that input pattern is compared to all of the stored patterns in
the training set to determine how far it is from those patterns. The output that is predicted
by the network is a proportional amount of all of the outputs in the stored training set,
whereas the proportion is based on how far the new pattern is from the given patterns
in the training set. It is also clear from Equation (6) that the spread constant σ is the only
unknown parameter in the network affecting the fitness of the GRNN architecture that
needs optimisation.

The spread constant σ determines if the conditional mean ŷ(x, σ), or GRNN model
given by Equation (6), works as an approximator (large σ values will straighten the path of
the model line) or as an interpolator (small σ values essentially create a dot-to-dot map).
However, if the value of σ is too big, it degrades the fitting error (network underfitting phe-
nomena). In contrast, a too-small value of σ can degrade the GRNN’s ability to generalise
and may generate ineffective predictions (network overfitting phenomena) [28]. At the
same time, it represents the standard deviation of x from xi in the Gaussian RBF kernel, so
the GRNN can produce optimal results with variance σ2 as long as the σ value is no greater
than this standard deviation. Therefore, the optimised σ is theoretically not unambiguous,
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and must be found empirically in the process of the network training so that the error
between the target and predicted data is minimal [13].
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Generally, GRNN training represents the optimisation of its spread constant using
various optimisation methods [29,30]. A trial-and-error method was, for example, used to
determine the spread constant σ of the GRNN model to predict the curing characteristics of
RBs in our earlier work [7]. A cross-validation method for the GRNN optimisation was
employed in article [31], which was dedicated to the identification of material parameters
in the constitutive model of hyper-elastic materials such as rubber. A hold-out method
of selecting the optimal value of σ was proposed in [22]. In [32], a plug-in algorithm and
a cross-validation procedure based on traditional mathematical methods, including the
theory of kernel density estimators, as well as a nature-inspired optimisation approach
known as the particle swarm optimisation method, is described. Article [33] presents
an extensive review of the research conducted on the optimisation of ANNs, including
GRNNs, through genetic algorithms of artificial intelligence searches. In [22], the GRNN-
training algorithms employing data dimensionality reduction techniques, such as K-means
clustering and principal component analysis (increasing the model performance), are
discussed. The presented study describes a novel training algorithm that optimises the
GRNN σ value for modelling RDV–time curves of RBs with varying CB filler contents
vulcanised at different cure temperatures. The algorithm utilises a novel optimisation
procedure and parallel computing technique, which leverages multiple computer cores to
perform multiple operations simultaneously [34,35]. This approach dramatically reduces
the total time required for the network training compared to the commonly used algorithms
mentioned above.

2. Materials and Methods
2.1. Materials

The composition of the investigated RBs, the function of individual ingredients in
them, and their manufacturers are provided in Table 1.

Table 1. Composition of studied rubber blends.

Material Contents
(phr) Producer Function

Styrene–butadiene rubber
grade 1500 100 Synthos Kralupy a.s., Kralupy nad Vltavou, Czech

Republic Matrix

Carbon black type N550 (CB) 0, 15, 30–75 * Makrochem Sp. z o.o., Lublin, Poland Filler
Zinc oxide (ZnO) 3 SlovZink a.s., Koseca, Slovakia Vulcanisation activator

Stearic acid 1 Setuza a.s., Ústí nad Labem, Czech Republic Vulcanisation activator
Sulfur Crystex OT33 (S) 1.75 Eastman Chemical Company, Kingsport, TN, USA Vulcanising agent

TBBS ** 1 Duslo a.s., Šal’a, Slovakia Vulcanisation accelerator

* 30–75 with a steady increase of 5 phr (parts per hundred rubber) in CB filler ** N-tertiarybutyl-2-
benzothiazole-sulfenamide.
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2.2. Samples Preparation

The blends were prepared using a two-stage mixing in accordance with ISO2393 [36] in
a laboratory mixer, Brabender Plastograph EC plus (Brabender GmBG & Co.KG, Duisburg,
Germany), with an electrically heated chamber volume of 80 cm3. In the initial three
minutes, the rubber matrix of the blend was masticated at a temperature of 90 ± 1 ◦C and a
rotor speed of 50 ± 1 rpm. Then, the ZnO was added and mixed for 45 s, followed by the
CB, which was mixed for 3 min, and finally the stearic acid, which was mixed for 30 s. The
mixed blend was further homogenised at a temperature of 70 ± 1 ◦C using a laboratory
two-roll mill, LaboWalz W150 (Voght Labormaschinen GmBH, Berlin, Germany), with a
cylinder diameter of 150 mm, length of 400 mm, a working gap between the rolls of 1.5 mm,
a roll speed of 24 rpm, and a gear ratio of 1:1.4. After homogenisation, the blends were
allowed to rest for 24 h at laboratory temperature. In the second mixing stage, the rested
blends were mixed for 3 min under the same conditions as in the first mixing stage. After
this duration, S and TBBS were added, with each ingredient mixed for 1.5 min. The mixed
blends were again homogenised on the two-roll mill under the same conditions as in the
first mixing stage, and then left to rest for 24 h at laboratory temperature before subsequent
rheological analysis.

2.3. Rheological Analysis

The rubber process analyser RPA 2000 (Alfa Technologies Ltd., Akron, OH, USA) was
used to collect the experimental time dependence RDV curves of the investigated RBs
with varying CB filler contents: 0 phr, 15 phr, and 30–75 phr (with a constant increment of
5 phr). In order to assess the impact of curing temperature on the RDV values, each blend
underwent isothermal rheological tests conducted at constant temperatures ranging from
165 ◦C to 210 ◦C (with a constant increment of 5 ◦C). The oscillating angle of the rheometer
disk was set to 1◦, and the oscillating frequency was set to 1.67 Hz.

2.4. Artificial Neural Network Modelling

The GRNN model was implemented in the MATLAB® software package, Version
R2016a 64-bit (win64), with the inclusion of the Neural Network Toolbox and Parallel
Computing Toolbox (MathWorks, Natick, MA, USA). These toolboxes offer all the necessary
resources for efficient work with ANNs and parallel computing. The MATLAB® software
package was installed on a personal computer running Windows 10; Intel® CoreTM i5-
12450H, CPU@ 2.4 GHz, 16 GB RAM, 64-bit; SSD 250 GB; GPU: NVIDIA GeForce GTX 1650,
6 GB.

3. Results and Discussion
3.1. Experimental Results

The RDV–time curves η’(c, T, t) for the RBs with CB filler contents of c = [0, 15,
30:5:75] phr, vulcanised at constant cure temperatures of T = [165:5:210] ◦C, are presented
in Figure 2.

From Figure 2a–j, it is evident that, much like the rheological cure curves, the RDV–
time curves can be segmented into several parts that correspond to different phases of
the curing process [1]. The initial segment of the curve occurs immediately after the
sample is placed in the rheometer measuring chamber. During this stage, the blend is
pre-heated, and the sample temperature gradually equilibrates with the temperature of the
rheometer chamber. Additionally, the preliminary chemical reactions that occur during the
induction stage of curing [37] are initiated. As time progresses during the curing process,
the temperature of the sample rises, causing the blend’s resistance to flow during its cyclic
shear loading to decrease, resulting in a decrease in the RDV value. The rate of this decrease
is dependent on both the CB contents and the cure temperature. In accordance with the
recipe, increasing the CB contents leads to a decrease in the rubber content of the blend.
This, in turn, accelerates the pre-heating process of the blend to a constant temperature that
is uniformly distributed throughout the sample volume while simultaneously decreasing
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the RDV value [38]. With an increase in the cure temperature, the rate of pre-heating in the
blend accelerates while the RDV value decreases. Additionally, when both the CB contents
and cure temperature increase, the local minimum of the RDV–time curve at this stage
of the test tends to shift towards lower times. However, it is important to note that the
homogeneity of the individual samples plays a crucial role in this trend. A lower degree of
dispersion of the filler in the blend can result in non-uniform pre-heating, leading to the
non-monotonic nature of this trend [39].
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After reaching its local minimum, corresponding to the scorch time of the blend ts1 [2],
the RDV–time curve begins to increase due to the formation of a spatial molecular network,
leading to an increase in the blend’s resistance to flow. At this stage of the test, a peak
appears on the RDV–time curve that is not visible on the cure curve [7]. The peak is the
result of two competing and parallel processes: the formation and breakdown of poly-
sulfidic cross-links, creating more sulphur radicals. These radicals subsequently allow for
the formation of not only mono- and di-sulfidic cross-links but also un-cross-linked pendant
sulfidic groups [40]. The peak position shifts almost monotonically towards lower times
with an increase in CB content and cure temperature, as the activators and accelerators
of vulcanisation enter the network formation process slightly earlier each time [41]. The
slopes of the peak correspond to the rate of the networking process. Until the peak is
reached, the formation of new poly-sulfidic cross-links dominates, which is the reason
for the increase in the RDV value. However, after the peak is exceeded, their breakdown
dominates, accompanied by a decrease in the RDV, which continues until a local minimum
is reached at this stage of the test, with a tendency to shift towards lower times. As poly-
sulfidic cross-links are thermally unstable, the rate of their breakdown increases with an
increase in cure temperature [42]. At CB contents above 15 phr and cure temperatures
of 170 ◦C or higher, the RDV–time curve starts to increase again after reaching its local
minimum. This increase is due to the predominance of the formation process of more solid
and thermally stable mono- and di-sulfidic cross-links over the breakdown of poly-sulfidic
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ones. The uncrosslinked pendant sulfidic groups also contribute to the increase in blend
resistance to flow, naturally leading to an increase in RDV.

At cure temperatures above 200 ◦C in the final stage of the test, the CB contents in
the blend and the degree of uniformity of its pre-heating during the induction stage of
curing determine the type of cure that occurs in RBs. Depending on these factors, cure
to no equilibrium (with an incomplete cross-linking process), cure to equilibrium (with a
completed cross-linking process), and cure to a maximum RDV with reversion (with the
continued process of breaking sulfidic cross-links) can be observed [43].

3.2. Data Pre-Processing for Neural Network Computations

In order to develop a predictive GRNN model of RDV–time curves for RBs with different
contents of CB filler cured at various temperatures, the CB content c, cure temperature T, and
curing time t were used as input data [7]. The corresponding values of RDV η’(c, T, t) served
as the target data of the network. The raw experimental data registered before the onset of
the rise of the individual RDV–time curves (Figure 2a–j) do not represent the networking
process itself, but only the pre-heating of the blend and the temperature-initiated preliminary
chemical reactions occurring during the induction stage of curing [4]; therefore, these data
points were excluded from the ANN analysis.

The input and target data were arranged into the Inputs = [c; T; t] and Targets = [η’]
data matrices, respectively, which can be presented in the shortened matrix form as:

Inputs =
(

inputsij

)
m,n

=

 ck
ij

Tk,l
ij

tk,l
ij


3,q

(7)

and
Targets =

(
targetsij

)
m,n

=
(

η′k,l
ij

)
1,q

, (8)

where i = 1, 2, ..., m and j = 1, 2, ..., n represent the row and column index of the input/target
matrix, respectively; k = 1, 2, ..., length(c), l = 1, 2, ..., length(T) and q = 1, 2, ..., length(t) are
the index of the element of the vector of CB contents c, cure temperatures T and curing
times t, respectively, where length(c) and length(T) represent the lengths of the respective
vectors, while

length(t) =
kxl

∑
p=1

length
(

tk,l
1,qp

)
(9)

is the sum of the lengths of the vector t for CB contents k and cure temperature l, and m is
the number of input/target variables.

The min–max normalisation technique was used to rescale all the input and target data
to fall within the interval [0, 1] while preserving their original distribution. This ensures
that the training of the network is not biased by variables with significantly larger value
ranges while also partially reducing the influence of outliers in the noisy experimental data.
The min–max normalisation was carried out according to the following formula [44]

xnorm =
x− xmin

xmax − xmin
, (10)

where xnorm is the normalised data, while x, xmin and xmax are the original data, and their
minimum and maximum values, respectively. The normalised data can be reversed to the
original data after GRNN simulation according to the following relationship [44]

x = xmin + xnorm(xmax − xmin). (11)

Consequently, both the normalised input and target data were split into a training
dataset, representing a set of representative patterns used for training the GRNN, and two
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tests or generalisation datasets, which were used to evaluate the predictive performance
and generalisation ability of the trained model [19]. The CB contents of ctrain = [0, 15, 30:5:40
50:5:75] phr, cure temperatures of Ttrain = [165:5:185, 195:5:210] ◦C, corresponding curing
time values of ttrain and RDV values of η’(ctrain, Ttrain, ttrain) were used for training the
GRNN. The range of representative training data was selected to correspond to the ranges
of CB contents in RB and cure temperatures commonly used in rubber processing, taking
into account the technological, economic and environmental aspects of the production
process [1,9]. The remaining data of cgen = 45 phr at Tgen = [165:5:210] ◦C, cgen = [15, 30:5:75]
phr at Tgen = 190 ◦C, corresponding values of tgen and η’(cgen, Tgen, tgen), which were not
included in the training dataset, were selected to evaluate the predictive performance and
generalisation ability of the model. Since the sample without a CB filler (cgen = 0 phr) served
only as a reference frame when training the GRNN; it was not used in testing. In contrast,
a sample with a CB content of 15 phr with a significantly shorter curing time registered
at all temperatures was incorporated into the ANN analysis in order to investigate the
effect of its length on the forecasting skills of the trained model. Normalised training
inputs and targets, as well as normalised generalisation targets, are presented in Figures 3
and 4, respectively.
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Figure 3. Normalised training inputs for: (a) CB contents ctrain = [0, 15, 30:5:40 50:5:75] phr in RB;
(b) cure temperatures Ttrain = [165:5:185, 195:5:210] ◦C; (c) curing time ttrain and (d) normalised
training targets η’(ctrain, Ttrain, ttrain).
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contents cgen = 45 phr in RB.

3.3. GRNN Training Algorithm for Parallel Computing

As mentioned above, the essence of the GRNN training process lies in the optimi-
sation of spread constant σ as the sole adjustable parameter that directly influences the
network’s predictive success and determines its generalisation performance. Commonly
used methods to find the optimal value of σ involve systematically searching the state
space of possible solutions to minimise an appropriate cost function, typically by iteratively
reducing the sum-squared error (SSE) or mean-squared error (MSE) between the predicted
and target datasets at different values of σi. Generally, during the GRNN-supervised
training on representative training patterns, an iterative search is performed for the value
of σ, at which the SSE (MSE) between the trained network’s predicted and measured
generalisation data is minimised. However, this approach places significant demands on
computational time, memory, and computer performance, especially when dealing with
problems with a large number of high-dimensional, nonlinear training patterns (as in our
case). Additionally, it requires a time- and memory-consuming iterative solution to the
problem of network overfitting—where the developed GRNN model, while accurately
fitting the training targets, may fail to reliably predict generalisation data—and the problem
of network underfitting—where the model’s performance is poor on both training and
generalisation data [13].

In order to improve the efficiency of the parameter σ optimisation process, we pro-
posed and successfully implemented a new and powerful GRNN training algorithm in this
study. This algorithm requires significantly fewer iterations, and with repeated computa-
tions performed within each iteration, harnesses the abilities of fast parallel computing,
utilizing all available cores of a modern computer’s multi-core processor [34,35]. In contrast
to the commonly used optimisation methods mentioned earlier, the proposed algorithm
does not aim to minimise the error between the trained network’s predicted and target
generalisation data. Instead, in the interval [σmin, σmax], it searches for σ from the popula-
tion of its expected values σi, where the maximum of the mean absolute percentage error
(MAPE) between the modelled and real training data is smaller than a pre-specified value
and, from a practical point of view, a sufficiently small value of Errmax. Once the algorithm
finds a suitable σ value, a trained GRNN is simulated using generalisation inputs, leading
to a significant reduction in the total number of computations or computation time. The
error value Errmax, along with the range of the interval of expected σi values and the step of
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their successive selection s, allows for efficient regulation of the network’s balance between
overfitting and underfitting, without requiring multiple time-consuming retrainings. Fur-
thermore, the implementation of parallel computing techniques in repetitive computations
ensures the simultaneous and processor-controlled utilisation of all available computational
resources (cores) of the utilised computer, resulting in a further substantial reduction in
computational time.

The proposed GRNN parallel training algorithm automates the solution of the network
training optimisation problem, which is formulated as the following model:

ŷ(x, σ) = ŷ
(

x, argmax
σi

(MAPE(y, ŷ, σi) < Errmax)

)
=

SN(x, y, σ)

SD(x, σ)
, (12)

for
σi = σmin : s : σmax, where i = 1, 2, . . . , m, (13)

and

MAPE =
1
n

n

∑
j=1

∣∣∣∣∣yj − ŷj

yj

∣∣∣∣∣·100, (14)

where x, y, ŷ are training inputs, measured and predicted training targets with n elements,
respectively; σmin and σmax are the bounds of the interval of assumed m values of the σi
of parameter σ chosen with step s, while the quantities SN and SD are the outputs of the
GRNN summation neurons as described above. A MATLAB® code of parallel computing
implementation for GRNN training algorithm (12) is presented in Algorithm 1 below:

Algorithm 1. MATLAB® code for GRNN parallel training algorithm

% Setting the spread constant population vector with step s
Spread = [Spread_min:s:Spread_max];

% Parallel computing loop for calling the built-in GRNN training function
parfor ii = 1:length(Spread)

pop_GRNN(ii).net = newgrnn(Inputs_train,Targets_train,Spread(ii));
end

% Calling the built-in simulation function of the trained GRNN with
% training inputs in parallel computing mode
for ii = 1:length(Spread)

Outputs_train = sim(pop_GRNN(ii).net,Inputs_train,...
‘useParallel’,’yes’);

% Calculation of the absolute error of the trained network
Err = Targets_train − Outputs_train;

% Calculation of the average absolute percentage error of the trained
network
pre_MAPE = abs(Err./Targets_train);
mean_MAPE = mean(pre_MAPE(isfinite(pre_MAPE))) * 100;

% Conditional storage of the corresponding variables in the pop_GRNN
% structure
if mean_MAPE < max_MAPE

pop_GRNN(ii).Spread = Spread(ii);
pop_GRNN(ii).Outputs = Outputs_train;
pop_GRNN(ii).MAPE = mean_MAPE;

else

% Premature termination of the cycle
break

end
end

% Identification of the MAPE maximum value index in the pop_GRNN
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Algorithm 1. Cont.

% structure
[~,k] = max([pop_GRNN.MAPE]);
% Setting the variables of the found values of the corresponding
% parameters
if ~isempty([pop_GRNN(k).Spread])

spread = pop_GRNN(k).Spread;
net_GRNN = pop_GRNN(k).net;
Outputs_GRNN_train = pop_GRNN(k).Outputs;

% Removing empty fields from the pop_GRNN structure
pop_GRNN = pop_GRNN(1:length([pop_GRNN.Spread]),:);

else

% Terminate execution
return

end

A necessary and sufficient condition for running Algorithm 1 in the parallel computing
mode is that the computations in the individual operations in the parfor loop with integer
steps are independent of the results of the computations in the previous iterations so that
they can be distributed among all available processor cores and executed simultaneously.
Otherwise, the parfor loop, as well as network simulations using the sim instruction,
with the “useParallel” parameter disabled, will run as they do in traditional serial data
processing with a single computational resource [34]. If the PC used, or its software, does
not allow for parallel computing (older versions of MATLAB® and versions without the
Parallel Computing Toolbox installed), removing the prefix par from the parfor command,
as well as the “useParallel” and ”yes/no” parameters from the sim command, will ensure
the normal mode of serial computations. However, the GRNN training algorithm will
then be much slower—the computational time required to train a network with a fitting
error Errmax of less than 1%, and then simulate the optimised GRNN model on the training
data with the parameter σ sought by Algorithm 1 within the interval of its expected values
[0.014, 0.015] with a selection step of 0.001, amounts to approximately 170 s, while the
time required to simulate the optimised model on the generalisation data amounts to
approximately 5 s. Using the technique of parallel computation on the four available
physical cores of the processor of the cooperating computer, described in Section 2.4, the
time required to train the network and then simulate the optimised model on the training
data was reduced to approximately 62 s almost three times, while the time required to
simulate the optimised model on the generalisation data remained almost unchanged. It
is natural to expect that a processor with a higher number of physical cores would result
in further increases in computational speed. In testing, it has been shown that, compared
to the standard training algorithm, which, in each training iteration, minimises the SSE
between predicted and target generalisation data without the use of parallel computing
techniques, the computation time of Algorithm 1 is more than 10 times shorter.

3.4. Goodness-of-Fit Model Evaluation

A quantitative evaluation of the goodness-of-fit of the GRNN model (12) to the training
data was performed using the basic statistical accuracy metrics [45], namely using the linear
regression coefficient or correlation coefficient

R =
cov(y, ŷ)

sysŷ
, (15)

where cov(y, ŷ) is the covariance and sy, sŷ are the standard deviations of the variables
y, ŷ, respectively:

mean absolute error:

MAE =
1
n

n

∑
j=1

∣∣yj − ŷj
∣∣, (16)
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mean squared error:

MSE =
1
n

N

∑
j=1

(
yj − ŷj

)2, (17)

root mean squared error:

RMSE =

√√√√ 1
n

n

∑
j=1

(
yj − ŷj

)2. (18)

Mean absolute percentage error MAPE is defined by relation (14).
Mean of residuals is calculated by relation (19)

MOR =
1
n

n

∑
j=1

(
yj − ŷj

)
, (19)

and residuals by (20)
Training Errors = yj − ŷj. (20)

The results of the goodness-of-fit model evaluation to the training data are shown
in Figure 5a,b. Since the GRNN model was optimised in the process of global network
training off all the training data, all the observed accuracy metrics presented in these figures
were calculated for the entire training dataset, not for the individual RDV–time curves
η’(ctrain, Ttrain, ttrain) of the investigated RB with different CB contents ctrain at different cure
temperatures Ttrain.
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As can be seen from Figure 5a, the value of the linear correlation coefficient
R = 0.99994 is very close to +1, and the best linear regression (solid line) practically
overlaps the perfect linear fit line (dotted line), which indicates a very strong positive
correlation between the targets and outputs of the training data. The relatively very
low parameter values MAE ∼= 6.97 × 10−4, MSE ∼= 5.89 × 10−6, RMSE ∼= 2.43 × 10−3

and MAPE ∼= 1 (Figure 5b) indicate a low mean of residuals, low variance and a low
standard deviation, as well as a low mean of absolute percentage model error, respec-
tively. The residuals of the individual RDV–time curves (Training Errors) are relatively
uniformly distributed around the near-zero line, with outliers mainly concentrated in the
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lower part [45], which slightly reduces the degree of reliability of the optimised GRNN
model. With the increasing content of CB filler in RB and increasing cure temperature,
the variance values of residuals exhibit a strong non-monotonic trend (Figure 5b), but this
is not indicative of their high heteroscedasticity [45]. In fact, for a single constant value
of ctrain and Ttrain, the only independent variable in the analysed functional dependence
η’(ctrain, Ttrain, ttrain) is the curing time variable ttrain, which has very little effect on the
distribution of residuals and their variance values (excluding a few outliers corresponding
to local extrema), as demonstrated in Figure 6. This figure displays the simulation results
of the trained network and the accuracy metrics of the trained GRNN model computed for
the RDV–time curve with cgen = 50 phr at Tgen = 175 ◦C, which was chosen randomly.

Polymers 2023, 15, x FOR PEER REVIEW 16 of 21 
 

 

  

(a) (b) 

 

(c) 

Figure 6. (a) GRNN simulation results and accuracy metrics of the trained model for the RDV–time 

curve with ctrain = 50 phr at Ttrain = 175 °C: (b) R and (c) MAE, MSE, RMSE, MAPE, MOR and Training 

Errors (blue line). 

From the above analysis of training accuracy metrics, it can be concluded that the 

fitting performance of the GRNN model (12) on the training data is very satisfactory, with 

a mean of residuals MOR ≅ −2.48 × 10−5 (red line) and mean absolute percentage error 

MAPE less than the required 1% (Figure 5b). 

3.5. Model Generalisation Capability and Forecasting Accuracy Evaluation 

The evaluation of the generalisation capability and forecasting accuracy of the devel-

oped GRNN model was performed on two normalised generalisation datasets corre-

sponding to all CB contents, except cgen = 0 phr, at a cure temperature of 190 °C, and to all 

cure temperatures at cgen = 45 phr of CB contents in RB, which were not included in the 

training data. 

The simulation results of the trained GRNN with both generalisation datasets are 

presented in Figures 7 and 8 as a graphical comparison of normalised generalisation tar-

gets and normalised model outputs. From the above figures, it can be seen that due to the 

global training of GRNN on the entire training dataset, the prediction confidence level for 

different values of generalisation cgen and Tgen varies, with the GRNN trained model being 

Figure 6. (a) GRNN simulation results and accuracy metrics of the trained model for the RDV–time
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Errors (blue line).

From the above analysis of training accuracy metrics, it can be concluded that the
fitting performance of the GRNN model (12) on the training data is very satisfactory, with
a mean of residuals MOR ∼= −2.48 × 10−5 (red line) and mean absolute percentage error
MAPE less than the required 1% (Figure 5b).
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3.5. Model Generalisation Capability and Forecasting Accuracy Evaluation

The evaluation of the generalisation capability and forecasting accuracy of the de-
veloped GRNN model was performed on two normalised generalisation datasets corre-
sponding to all CB contents, except cgen = 0 phr, at a cure temperature of 190 ◦C, and to all
cure temperatures at cgen = 45 phr of CB contents in RB, which were not included in the
training data.

The simulation results of the trained GRNN with both generalisation datasets are
presented in Figures 7 and 8 as a graphical comparison of normalised generalisation targets
and normalised model outputs. From the above figures, it can be seen that due to the
global training of GRNN on the entire training dataset, the prediction confidence level for
different values of generalisation cgen and Tgen varies, with the GRNN trained model being
slightly more sensitive to changes in Tgen at a constant cgen than to changes in cgen at a
constant Tgen.
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Since, for rubber practice, it is essential to know the prediction accuracy for each
single predicted RDV–time curve, the statistical accuracy metrics (14)–(20) were computed
with generalisation data simulated individually for each pair of Tgen/cgen and cgen/Tgen.
The values of the observed accuracy metrics, divided into two groups based on their
corresponding magnitudes, are presented in the bar charts shown in Figures 9 and 10.
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The analysis of accuracy metrics for individual predicted RDV–time curves showed
that R values range from 0.9683 to 0.9959, MAE from 2.9 × 10−3 to 12.1 × 10−3, MSE
from 1.22 × 10−3 to 20.3 × 10−3, RMSE from 3.5 × 10−3 to 14.3 × 10−3, MOR from
−9.5 × 10−3 to 7.5 × 10−3, and MAPE from approximately 1 to 4.7, which confirms the
very good predictive performance and generalisation ability of the developed GRNN
model. At this point, it is appropriate to note that the discrepancy between fitting error
(Errmax) and prediction error (MAPE) is a direct consequence of the optimal balance
between underfitting and overfitting achieved in the GRNN training process in the
process of optimizing the GRNN model (6) by the training algorithm (12).
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The raw experimental data, data prepared for visualisation, and MATLAB® scripts
enabling their detailed viewing are available at [46].

4. Conclusions

The presented work is dedicated to the intelligent modelling of the rheological proper-
ties of rubber blends during their vulcanisation.
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A series of 120 real dynamic viscosity–time curves obtained by a Rubber Process Anal-
yser for styrene–butadiene rubber blends with varying carbon black contents vulcanised at
different temperatures was analysed.

A novel, highly efficient Generalised Regression Neural Network model was devel-
oped to predict the changes in the real dynamic viscosity of the investigated rubber blends
during their vulcanisation process.

The optimisation of the model was performed through a novel training algorithm
based on an iterative search for such a value of the Generalised Regression Neural Network
spread constant that the fitting error of the target training data was less than a pre-set, from
a practical point of view, sufficiently small value of 1%.

All repeated computations in the training process, as well as all network simula-
tions, were performed through parallel computing using all available cores of a multi-core
computer’s processor. This approach made it possible to significantly reduce the total com-
putational time required for very satisfactory network training and model optimisation.

A clearly noted MATLAB® code of the developed parallel computing training algo-
rithm for Generalised Regression Neural Network is presented.

An excellent agreement was found between the predicted and measured generalisation
data, with an error of less than 4.7%, confirming the high generalisation performance of the
optimised model.

The presented study demonstrates the potential of intelligent modelling to predict the
rheological properties of rubber blends. This approach can find practical applications in the
design and optimisation of production processes within the conventional rubber industry.
Additionally, it holds significant promise for research and development efforts focused on
creating new materials and composites based on rubbers or elastomers in general. It is also
possible to use the Generalized Regression Neural Network Model presented in this paper
to conduct experimental studies on polymers, as it can be used to accurately predict the
results of unrealized tests from the entire range of representative training data.
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