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Abstract: The interfacial adhesion between carbon fibers (CFs) and a thermoplastic matrix is an
important aspect that should be improved in manufacturing CF-reinforced thermoplastics with
high strength and rigidity. In this study, the effects of a two-step surface treatment comprising
electrochemical oxidation and silane treatment of the CF surface on the mechanical properties of
CF/maleic anhydride-grafted polypropylene (MAPP) composites were confirmed. The surface
characteristics of the treated CFs were analyzed via scanning electron microscopy, atomic force
microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The
tensile testing of a single CF and interfacial adhesion of the samples before and after the surface
treatment were analyzed using a single-fiber testing machine and a universal testing machine. After
the silane treatment, the roughness of the CF surface increased due to the formation of a siloxane
network. In addition, the interfacial shear strength increased by ∼450% compared to that of the
untreated CFs due to the covalent bond between the -NH2 end group of siloxane and MAPP. This
two-step surface treatment, which can be performed continuously, is considered an effective method
for improving the mechanical interface strength between the CF and polymer matrix.

Keywords: carbon fiber; silane treatment; electrochemical oxidation; composites; interfacial
shear strength

1. Introduction

Carbon fibers are highly functional materials with advantageous characteristics, such
as high strength, high elasticity, heat resistance, and light weight, and they are widely
used as an ideal reinforcement for polymer matrix composites in various applications [1].
In general, carbon fibers are divided into polyacrylonitrile (PAN) [2], petroleum-based
pitch [3], and cellulose (rayon) types [4] depending on the precursor. Among these, PAN-
based carbon fibers with excellent mechanical properties are often used. PAN-based
carbon fibers are used as a structural material for aerospace, defense, automobiles, and
various high-performance carbon-fiber-reinforced plastics (CFRPs) owing to their superior
tensile strength, modulus of elasticity, and chemical resistance compared to other industrial
fibers [5–7]. In particular, with the development of new types of ecofriendly energy,
such as high-performance batteries and fuel cells, new types of air transport devices,
such as personal air vehicles and drones, are being developed for various purposes. The
development of this new type of ecofriendly energy is actively shifting towards ecofriendly
vehicles to address emission problems, such as volatile organic compounds (e.g., SOX and
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NOX), which are the biggest problems of internal combustion engine vehicles and one of
the main causes of environmental pollution, and CO2, which causes global warming [8,9].
Among such electric vehicles, purpose-built vehicles, which are representative ecofriendly
vehicles that use batteries and driving systems for various purposes, are in the spotlight [10].

These new types of transportation have a common requirement of light weight, which
is essential for energy efficiency. As such, lighter materials with higher strength than that
of existing materials are required. Traditional materials based on steel and metal alloys
have high strength and stiffness, but have the disadvantage in terms of weight reduction
due to their high density. Thus, there is an emerging use of composites that can satisfy
high strength and weight reduction. A composite is a material that combines two or more
materials and maintains the characteristic of its components. A representative composite
is fiber-reinforced plastics, in which a fiber-type reinforcing material to increase strength
is combined with a light polymer plastic base material with low density. Fiber-reinforced
plastics are classified into glass fiber-reinforced plastics [11], CFRPs [12], and aramid-
reinforced plastics [13]. Among these, CFRPs with low density, high strength, and high
rigidity are excellent alternatives to steel.

CFRPs are largely divided into carbon-fiber-reinforced thermosetting plastics (CFRSPs)
and carbon-fiber-reinforced thermoplastics (CFRTPs). Compared with CFRSPs, CFRTPs can
be used to produce lightweight metal replacement parts in engineering applications owing
to their flexible manufacturing process, superior machinability, weldability, and recyclabil-
ity [14]. The representative thermoplastic resins used in CFRTPs include polypropylene
(PP), polyamide, and polycarbonate.

While CFRTPs have several advantages, most commercially produced carbon fibers are
surface treated and sized for carbon-fiber-reinforced thermosetting composites, resulting in
weak interfacial adhesion to the carbon fiber surface when combined with thermoplastic
resins [15,16]. Improving the interfacial adhesion between carbon fibers and thermoplastics
is important because a weak interfacial adhesion induces a low shear force and leads to
the premature failure of composites. In particular, it is necessary to improve the interfa-
cial adhesion with the thermoplastic matrix by modifying the inert carbon fiber surface
to manufacture CFRTPs with high strength and rigidity [17–19]. Methods for modify-
ing carbon fiber surfaces include gas-phase oxidation [20], liquid-phase oxidation [21],
plasma oxidation [22], electrochemical oxidation [23], surface coating [24], and thermal
treatment [25]. Among various surface treatments, electrochemical oxidation is preferred
for commercial use due to the easy treatment process and increased polarity because it
allows the introduction of oxygen functional groups and imparts roughness to the carbon
fiber surface [26]. However, for a thermoplastic resin with an inert molecular structure, it
is difficult to significantly improve the interfacial adhesion with carbon fibers via electro-
chemical oxidation. In addition, chemical oxidation and etching during treatment damage
the carbon fiber, thereby deteriorating the mechanical properties [27].

When a silane coupling agent [28] is introduced, numerous functional groups that can
react with the surface of the oxidized carbon fibers are formed. Silane coupling agents have
a chemical structure of R(4−n)-Si-(R’X)n (n = 1, 2), where R is the alkoxy, X is the organofunc-
tionality, and R’ is an alkyl bridge connecting the Si atom and organofunctionality. In the
past decades, studies on silane treatment of various reinforcing materials, such as glass,
carbon, and natural fibers, have been conducted with most of them using trialkoxysilanes.
The organofunctionality of silanes interacts with the matrix depending on the polymer
compatibility. The nonreactive alkyl groups of silanes increase compatibility owing to their
similar polarity with nonpolar matrices. However, reactive organofunctionality can be
physically compatible and covalently bound to the matrix. The organofunctionalities of
silane are generally amino, mercapto, glycidoxy, vinyl, or methacryloxy groups. Among
them, γ-aminopropyltriethoxysilane (APTS) has been frequently reported as a coupling
agent between carbon fibers and a matrix [29]. The introduction of these silane coupling
agents can effectively impart wettability to the surface of the carbon fibers and improve
their compatibility with the matrix. In addition, they can supplement the physical prop-
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erties of carbon fibers with reduced tensile strength due to the surface treatment [30–32].
Furthermore, chemical crosslinking, such as through covalent bonds, between the func-
tional groups and matrix on the surface of silane-treated carbon fibers can occur, improving
the interfacial adhesion of CFRTPs [33–35].

In this study, surface treatment was performed through silane treatment after the
electrochemical oxidation of carbon fibers, and a CFRTP was fabricated using maleic-
anhydride-grafted PP (MAPP) as a matrix to investigate the effect of surface treatment on
interfacial adhesion.

2. Materials and Methods
2.1. Materials

In this study, PAN-based unsized carbon fibers (TZ-607, Taekwang Co., Seoul, Republic
of Korea) were used, and the thermoplastic resin was MAPP (PH-200, MFI > 100 g/10 min,
density = 0.36 g/cm3, MA graft ratio > 1 wt.%, Lotte Chem. Co., Seoul, Republic of Korea)
was used as the matrix. The electrolyte used for electrochemical oxidation treatment
was ammonium bicarbonate (NH4HCO3, Daejung Chem. Co., Siheung, Republic of Korea)
and (3-Aminopropyl)triethoxysilane (APTS, Sigma-Aldrich, Burlington, MA, USA). Ethanol
(Sigma-Aldrich, Burlington, MA, USA) and deionized water were used for the
silane treatment.

2.2. Carbon Fiber Surface Treatment

The surface of the carbon fibers was first oxidized via electrochemical oxidation.
Subsequently, the carbon fibers were immersed in 0.2 mol/L of ammonium bicarbonate
solution. The carbon fibers and graphite plates were connected to the anode and cathode,
respectively, and treated for 100 s at a current density of 1 A/m2. The oxidized carbon
fibers were washed with distilled water and dried in an oven at 100 ◦C for 1 h. Silane
treatment was then performed on the surface-oxidized carbon fibers. After the addition of
ethanol and distilled water (19:10 vol.%) to a beaker, the mixture was stirred at 60 ◦C for
30 min with 25 mL of acetic acid. Subsequently, 1, 3, and 5 wt.% silane coupling agents were
mixed with the aqueous solution. After further stirring at 60 ◦C for 30 min, the mixture
was transferred to a treatment tank. Finally, silane treatment was performed by immersing
the electrochemically oxidized carbon fibers in an aqueous solution of each silane coupling
agent for 10 min. The silane-treated carbon fibers were dried in an oven at 80 ◦C for 24 h to
prepare the samples. The samples were labelled according to their treatment conditions;
the details are provided in Table 1.

Table 1. Treatment conditions and sample names.

Sample Name Treatment Conditions

AS-CF Unsized carbon fiber
EO-CF Electrochemical-oxidation-treated carbon fiber

EOS1-CF Silane-treated carbon fiber at a concentration of 1 wt.%
EOS2-CF Silane-treated carbon fiber at a concentration of 2 wt.%
EOS3-CF Silane-treated carbon fiber at a concentration of 3 wt.%

2.3. Single-Carbon-Fiber Microdroplet Test

Figure 1 shows the method for measuring the interfacial adhesion between the
electrochemical-oxidation- and silane-treated carbon fibers and MAPP. First, a single carbon
fiber was placed at the center of the paper frame and bonded with epoxy resin. The MAPP
fiber was knotted in the middle of the carbon fiber placed at the center of the paper frame,
melted at 160 ◦C for 1 h, and cooled to room temperature (25 ◦C) to produce a perfect
sphere as the microdroplet test sample.



Polymers 2023, 15, 3784 4 of 12
Polymers 2023, 15, x FOR PEER REVIEW 4 of 12 
 

 

 
(a) 

 
(b) 

Figure 1. Schematic of the microbond test: (a) sample preparation and (b) debonding process. 

The interfacial shear strength (IFSS) of the fabricated samples was measured through 
the microdroplet test and calculated as follows: 𝐼𝐹𝑆𝑆 𝐹𝜋𝐷𝐿 (1)

where F is the peak pullout force (N), D is the fiber diameter (µm), and L is the embedded 
fiber length (µm) in the matrix. The results of more than 10 successful measurements were 
averaged. 

2.4. Characterization 
Scanning electron microscopy (SEM; AIS2000C, Seron Tech. Inc., Anseong, Republic 

of Korea) was used to examine the surface morphology before and after the surface treat-
ment of the carbon fibers. Each sample was placed in a sample holder and coated with os-
mium to obtain clear images. All images were obtained at an acceleration voltage of 25 kV 
at 1.0 × 10−5 torr. 

The surface of the carbon fibers was observed through atomic force microscopy (AFM; 
Park Systems Co., Suwon, Republic of Korea). The surface roughness was measured in the 
tapping mode. The scanning rate was 0.2 Hz, and the scanning scope was set to 5 × 5 µm. 

The functional groups on the surface-treated carbon fibers were confirmed and ana-
lyzed by Fourier transform infrared (FTIR) spectroscopy (Nicolet™ iS™ 10, ThermoFisher 
Scientific, Waltham, MA, USA) at the wavenumber range from 4000 to 500 cm–1. The FTIR 
samples were prepared as discs by grinding the carbon fibers and potassium bromide 
(Sigma-Aldrich, Saint Louis, MO, USA) together and applying a clamp force of 7 tons for 
2 min using a hydraulic press (CrushIR, PIKE Technologies, Madison, WI, USA). 

Figure 1. Schematic of the microbond test: (a) sample preparation and (b) debonding process.

The interfacial shear strength (IFSS) of the fabricated samples was measured through
the microdroplet test and calculated as follows:

IFSS =
F

πDL
(1)

where F is the peak pullout force (N), D is the fiber diameter (µm), and L is the embedded
fiber length (µm) in the matrix. The results of more than 10 successful measurements
were averaged.

2.4. Characterization

Scanning electron microscopy (SEM; AIS2000C, Seron Tech. Inc., Anseong, Republic of
Korea) was used to examine the surface morphology before and after the surface treatment
of the carbon fibers. Each sample was placed in a sample holder and coated with osmium
to obtain clear images. All images were obtained at an acceleration voltage of 25 kV at
1.0 × 10−5 torr.

The surface of the carbon fibers was observed through atomic force microscopy (AFM;
Park Systems Co., Suwon, Republic of Korea). The surface roughness was measured in the
tapping mode. The scanning rate was 0.2 Hz, and the scanning scope was set to 5 × 5 µm.

The functional groups on the surface-treated carbon fibers were confirmed and ana-
lyzed by Fourier transform infrared (FTIR) spectroscopy (NicoletTM iSTM 10, ThermoFisher
Scientific, Waltham, MA, USA) at the wavenumber range from 4000 to 500 cm−1. The
FTIR samples were prepared as discs by grinding the carbon fibers and potassium bromide
(Sigma-Aldrich, Saint Louis, MO, USA) together and applying a clamp force of 7 tons for
2 min using a hydraulic press (CrushIR, PIKE Technologies, Madison, WI, USA).
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The chemical components and relative contents of the functional groups on the carbon
fiber surface were analyzed through X-ray photoelectron spectroscopy (XPS; PHI 5000
Versa Probe II, ULVAC-PHI, Chigasaki, Japan). Unless otherwise specified, the X-ray anode
was operated at >5 W, and the voltage was maintained at 5.0 kV. The energy resolution was
fixed at 0.50 eV to ensure sufficient sensitivity. The base pressure of the analyzer chamber
was ~5 × 10−8 Pa. Both the full-scan (0–1200 eV) and narrow spectra were recorded with
extremely high resolutions for individual elements. The binding energies were calibrated
with respect to the adventitious carbon peak (C1s: 284.6 eV). The high-resolution C1s, O1s,
Si2p, and N1s peaks of the samples were deconvoluted using a Shirley-type baseline and
iterative least-squared optimization algorithm. Furthermore, a curve-fitting procedure
was carried out using a nonlinear least-square curve-fitting program with a Gaussian–
Lorentzian production function.

The tensile properties of single carbon fibers were measured using a Favigraph semi-
automatic device (Textechno Company, Mönchengladbach, Germany). The gauge length of
the fiber was 20 mm, and the draw-off clamp speed was set to 1 mm/min. The filament
was suspended between the grips of the testing machine. Load was applied to the carbon
fiber until failure. The force–displacement curve was recorded. The microdroplet test for
a single fiber was performed using a universal testing machine (UTM; Lloyd, UK) at a
constant speed of 0.1 mm/min.

3. Results
3.1. Surface Morphology and Chemical Structural Analysis

The SEM images shown in Figure 2 confirm the morphological changes of the carbon
fibers according to the surface treatment. The AS-CF sample exhibits grooves along the
fiber length direction, which became shallow after electrochemical oxidation. It is assumed
that the deep grooves formed along the fiber length direction via the electrochemical
oxidation treatment became shallow owing to the surface etching. According to previous
studies, etching proceeds with electrochemical oxidation, thereby changing the diameter
and decreasing the strength of the carbon fiber [23]. In this study, as the carbon fiber
diameter did not change significantly after electrochemical oxidation, it can be inferred
that etching did not proceed excessively. For the electrochemical-oxidation-treated and
silane-treated carbon fibers, a partially overtreated silane layer was observed. The resulting
shape can supplement surface cracks by increasing the interfacial adhesion owing to the
increase in the roughness of the carbon fiber surface and filling the grooves formed along
the length direction.
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Figure 2. Scanning electron microscopy images of the surface of the untreated, electrochemical-
oxidation-treated, and electrochemical-oxidation/silane-treated carbon fiber; (a) AS-CF, (b) EO-CF,
and (c) EOS3-CF.

Figure 3 shows the AFM images of the carbon fibers according to the surface treatment
conditions. For AS-CF, wide and narrow grooves are observed on the fiber surface, and
the average roughness (Ra) was measured to be ~224 nm. The Ra values of EO-CF and
EOS1-CF slightly increase to approximately 230 and 236 nm, respectively. This indicates
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that the roughness increased because of the formation of small grooves on the carbon fiber
surface due to etching during electrochemical oxidation, thereby slightly increasing Ra.
After silane treatment, several silane layers formed on the surface of the carbon fiber, and
Ra increased, which can improve the bonding strength with the thermoplastic resin.
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Figure 4 shows the FTIR spectra, revealing the changes in the functional group accord-
ing to the surface treatment. In the FTIR spectra of AS-CF, stretching peaks of hydroxyl
groups (-OH), carbonyl groups (-C=O), and carboxyl groups (-C-O), which are oxygen
functional groups, are identified at 3440, 1640, and 1250–1050 cm−1 [27]. After electrochem-
ical oxidation, the intensity of the oxygen functional group peaks increased, indicating
that oxygen was introduced to the carbon fiber surface during electrochemical oxida-
tion. In the silane-treated samples, the contents of the oxygen functional groups were
lower than those of EO-CF. Moreover, new Si-OX peaks were observed between 1350 and
1100 cm−1 in the FTIR spectra of the silane-treated samples [27]. It is believed that the
oxygen functional groups formed on the surface of the electrochemical-oxidation-treated
carbon fibers reacted with the -OH functional group of hydrolyzed silane, reducing the
content of the oxygen functional group and forming the Si-OX group owing to the formation
of the siloxane network. This mechanism is illustrated in Figure 5. The silane coupling
agent with an R(4−n)-Si-(R’X)n (n = 1,2) structure was hydrolyzed via treatment with water
and alcohol to produce silanol. The silanol produced by the hydrolysis reaction initiated a
condensation reaction with the neighboring silanol to form an oligomer. Subsequently, the
hydrogen bonds with -OH groups formed on the surface of the electrochemical-oxidation-
treated carbon fiber were condensed in the drying step, thereby forming a siloxane network
with Si-O bonds (-Si-O-Si-). The siloxane network formed on the carbon fiber surface can
affect the improvement of the interfacial adhesion through the covalent bond between the
end group -NH2 and MAPP.

XPS was conducted to investigate the chemical composition of the surfaces of the
carbon fibers subjected to the proposed surface treatment process; the spectra are shown in
Figure 6. The surface of AS-CF is mainly composed of carbon, nitrogen, and oxygen. In
EO-CF, the oxygen content increased from 10.71% to 22.29%, the nitrogen content increased
from 1.91% to 4.28%, and the carbon content decreased from 86.72% to 73.30%. This
result shows that electrochemical oxidation treatment oxidized the carbon fiber surface,
promoting the production of several oxygen-containing groups and activating the carbon
fiber surface. The nitrogen and silicon contents of the silane-treated samples increased
after silane treatment, indicating the formation of a siloxane network via the hydrogen
bonding of the -OH functional and silanol groups generated on the carbon fiber surface
after electrochemical oxidation.
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High-resolution XPS Si2ps and N1 spectra are shown in Figure 6c,d, respectively. The
deconvolution of the N1s and Si2p spectra yielded several peaks, representing Si-O-Si
(101.5 eV), Si-O-H (102.3 eV), Si-O-C (103.1 eV), -NH2 (399.8 eV), and pyridinium-like
structures (401.7 eV) [27,36]. In Figure 6c, the Si2p spectra confirm the formation of silane
functional groups, such as Si-O-C, Si-O-H, and Si-O-Si, due to the combination of the
-OH functional and silanol groups on the carbon fiber surface. In addition, as shown in
Figure 6d, the N1s spectra confirmed the intensity increase and shift after silane treatment.
It is believed that the -NH2 functional group was formed on the carbon fiber surface
under the influence of the -NH2 functional group at the end of the silanol group when the
aqueous solution was used during electrochemical oxidation and silane treatment. Thus,
the proposed surface treatment plays an important role in improving the binding force
between the carbon fibers and matrix by introducing oxygen- and nitrogen-containing
functional groups.



Polymers 2023, 15, 3784 8 of 12
Polymers 2023, 15, x FOR PEER REVIEW 8 of 12 
 

 

 
 

  
Figure 6. X-ray photoelectron spectra of the carbon fiber samples; (a) wide-scan survey, (b) surface 
element concentration of the carbon fiber samples, (c) fitting curve of the Si2p peaks of EOS3-CF, (d) 
N1s spectra of the carbon fiber samples subjected to different treatments. 

High-resolution XPS Si2ps and N1 spectra are shown in Figure 6c,d, respectively. The 
deconvolution of the N1s and Si2p spectra yielded several peaks, representing Si-O-Si 
(101.5 eV), Si-O-H (102.3 eV), Si-O-C (103.1 eV), -NH2 (399.8 eV), and pyridinium-like 
structures (401.7 eV) [27,36]. In Figure 6c, the Si2p spectra confirm the formation of silane 
functional groups, such as Si-O-C, Si-O-H, and Si-O-Si, due to the combination of the -OH 
functional and silanol groups on the carbon fiber surface. In addition, as shown in Figure 
6d, the N1s spectra confirmed the intensity increase and shift after silane treatment. It is 
believed that the -NH2 functional group was formed on the carbon fiber surface under the 
influence of the -NH2 functional group at the end of the silanol group when the aqueous 
solution was used during electrochemical oxidation and silane treatment. Thus, the pro-
posed surface treatment plays an important role in improving the binding force between 
the carbon fibers and matrix by introducing oxygen- and nitrogen-containing functional 
groups. 

3.2. Mechanical Property Analysis 
Figure 7 shows the tensile properties of single carbon fibers and the IFSS of untreated 

and surface-treated carbon fibers. The tensile strength of EO-CF is lower than that of AS-
CF because chemical etching during electrochemical oxidation damaged the surface struc-
ture of the carbon fiber [23]. However, after silane treatment, the tensile strength of EOS3-
CF increased by approximately 21% compared to that of AS-CF. The silane layer formed 
on the carbon fiber surface covered the surface crack when a tensile load was applied, 
thereby increasing the tensile strength [15,27]. 

800 700 600 500 400 300 200 100 0

Binding energy (eV)

EO-CF

Si2p
N1s

C1sO1s

AS-CF

EOS1-CF

EOS2-CF

EOS3-CF

(a)

C N O Si
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

 AS-CF
 EO-CF
 EOS1-CF
 EOS2-CF
 EOS3-CF

(b)

106 105 104 103 102 101 100 99

Binding Energy (eV)

Si-O-H

Si-O-Si
Si-O-C

EOS3-CF(c)

405 404 403 402 401 400 399 398 397 396 395

406 405 404 403 402 401 400 399 398 397 396

Binding Energy (eV)

-NH2

Pyridinium-like

EOS3-CF

Binding Energy (eV)

AS-CF

EO-CF

EOS3-CF

EO-CF

(d)

Figure 6. X-ray photoelectron spectra of the carbon fiber samples; (a) wide-scan survey, (b) surface
element concentration of the carbon fiber samples, (c) fitting curve of the Si2p peaks of EOS3-CF,
(d) N1s spectra of the carbon fiber samples subjected to different treatments.

3.2. Mechanical Property Analysis

Figure 7 shows the tensile properties of single carbon fibers and the IFSS of untreated
and surface-treated carbon fibers. The tensile strength of EO-CF is lower than that of AS-CF
because chemical etching during electrochemical oxidation damaged the surface structure
of the carbon fiber [23]. However, after silane treatment, the tensile strength of EOS3-CF
increased by approximately 21% compared to that of AS-CF. The silane layer formed on
the carbon fiber surface covered the surface crack when a tensile load was applied, thereby
increasing the tensile strength [15,27].
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The interaction between the surface-treated carbon fiber and polymer matrix is an
important factor in the mechanical properties of the fabricated CFRTPs. The physical mixing
of the surface-treated carbon fibers and thermoplastic matrix can improve mutual adhesion
through intermolecular entanglement or acid–base interaction. The surface-treated EO-
CF, EOS1-CF, EOS2-CF, and EOS3-CF samples exhibited higher IFSS than AS-CF. The
oxygen functional group formed on the carbon fiber surface after electrochemical oxidation
and the -NH2 functional group formed on the carbon fiber surface after silane treatment
were considered to affect the increase in the IFSS owing to the covalent bonding with
polar MAPP. In addition, the improvement of the interfacial adhesion can be interpreted
as the formation of a cage-type interpenetrating polymer network (IPN) composed of a
polysiloxane network, and the amino group has a strong affinity for the hydroxyl group of
the fiber. The polysiloxane network hydrogen-bonded with the hydroxyl group formed
on the carbon fiber surface during silane treatment can form IPN due to the entanglement
of the molecular chain of the thermoplastic matrix, improving the interfacial adhesion
between the fiber and matrix [21]. The binding mechanism of the carbon fiber and MAPP
according to the carbon fiber surface treatment is shown in Figure 8.
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4. Conclusions and Future Perspectives

In this study, a two-step surface treatment comprising electrochemical oxidation and
silane treatment was performed to improve the bonding strength between carbon fibers
and a thermoplastic resin. In the surface analysis, the SEM and AFM images confirmed the
etching of the carbon fiber surface during electrochemical oxidation, resulting in shallow
longitudinal grooves and the formation of more grooves. Subsequently, the formation of a
silane layer on the surface of the carbon fiber during the silane treatment was confirmed,
which increased the roughness. The FTIR analysis confirmed the formation of Si-OX groups
on the surface of the silane-treated carbon fibers through the hydrogen bonding between
the hydroxyl group introduced to the carbon fiber surface by electrochemical oxidation
treatment and hydrolyzed silanol. In addition, the XPS analysis noted the increase in
the N1s peak owing to the influence of the siloxane network end group -NH2 formed on
the carbon fiber surface. From the measurement of the mechanical properties, the tensile
strength of the silane-treated carbon fiber increased by up to 21% (4.7 GPa) compared
to the untreated carbon fiber, indicating the increase in the tensile strength by filling the
grooves of the carbon fiber. IFSS also increased the strength of the silane-treated carbon
fibers by up to 450% (11.8 MPa) compared to the untreated carbon fibers. The IFSS of
the carbon fiber/MAPP composite was considered to improve owing to the increase in
the specific surface area due to the increase in roughness after the surface treatment and
covalent bonding of the -NH2 functional group and MAPP of the terminal group of the
siloxane network formed on the surface of the carbon fiber. Consequently, the formation of
covalent bonds between silane and the thermoplastic matrix substantially improved the
mechanical properties of the carbon fibers and thermoplastic composites. Therefore, the
proposed surface treatment facilitated continuous processing and improved the chemical
activity of the carbon fiber surface to produce CFRTPs with excellent mechanical properties.
The improvement of the interfacial adhesion of CFRTPs has the potential to replace metals
in various vehicles, including automobiles and aircraft.
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