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S1. Methane and nitrogen force field parameters 

The symmetrical two-center Lennard-Jones plus point quadrupole pair potential 

(2CLJQ) from Vrabec et al. [1] was employed for the description of N2. It is a rigid model 

which considers two identical Lennard-Jones (LJ) sites ( ,

) a distance 1.0464 Å apart. An associated quadrupole moment is 

modeled by placing partial charges qN  = -0.5474 on the LJ sites and a balancing counter 

charge at the centre of mass of the molecule, -2qN. The dynamics of such systems with an 

interaction site not located at a mass point were solved within the framework of special 

constraints, as explained by Ciccotti et al.[2]. This potential was found to reproduce a num-

ber of thermophysical properties of nitrogen at the boiling point such as the gas and liquid 

density and the heat of vaporization [3].  

Methane was also represented by a fully atomistic model. All potential parameters, 

including partial charges, were obtained from the flexible methane model of Yin and co-

workers [4] ( ,  ,  , 

,  ; qC  = -0.36, qH  = 0.09). However, to ensure a 

rigid tetrahedral representation, we considered CH4 as an Hb-CHa2-Hb molecule where the 

midpoint of the Ha-Ha vector remains on the bisector of the Hb-C-Hb bending angle and 

the aforementioned vector is maintained perpendicular to the vector joining the Hb hy-

drogen atoms. The latter were considered as ‘bonded’ at a distance . All 

bond lengths were constrained using the SHAKE algorithm [2] and special CH2 constraints were 

used to render the methane molecules completely rigid, as explained above. This allowed the 

integration of the equations of motion using a time step of 1 fs with no problems of equi-

partition of kinetic energy between the different modes. The assessment of the rigid model 

showed satisfactory agreement with experimental data regarding the thermophysical 

properties mentioned earlier [3]. 

s N-N = 3.3211Å

eN-N / kB = 34.897

lC-H =1.111Å sC-C = 3.7595Å eC-C / kB = 47.80

s H-H = 2.3876Å eH -H / kB = 8.5546

lHb-Hb
=1.8142Å
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Figure S1. Structure of the 6FDA fragment. Letters in italics distinguish the different atoms whose 

charges are given in Table S1. 

Table S1. Partial charges, q/e, on the atoms in the 6FDA fragment. An asterisk implies the same 

charge as the symmetrically equivalent atom. 

 a b c d e f g h i j k 

BAPT-6FDA-BAPT -0.3812 0.5697 -0.0677 -0.1345 0.5965 -0.4461 -0.4568 -0.1467 0.2291 -0.1428 -0.0800 

mPDA-6FDA-mPDA -0.4475 0.6045 -0.0866 -0.0963 0.5985 -0.4502 -0.4542 -0.1499 0.2291 -0.1488 -0.0964 

BAPT-6FDA-mPDA -0.3473 0.5792 -0.1579 -0.0587 0.5908 -0.4807 -0.4881 -0.0833 0.1614 -0.0839 -0.1486 

mPDA-6FDA-BAPT -0.3467 0.5798 -0.1573 -0.0581 0.5914 -0.4801 -0.4875 -0.0827 0.1620 -0.0833 -0.1480 

 l m n o p q r s t u v 

BAPT-6FDA-BAPT 0.1340 0.1378 0.1344 -0.4578 0.3949 -0.1093 * * * * * 

mPDA-6FDA-mPDA 0.1331 0.1420 0.1395 -0.4088 0.3855 -0.1085 * * * * * 

BAPT-6FDA-mPDA 0.1416 0.1287 0.1436 -0.4992 0.4524 -0.1220 0.1988 -0.1185 -0.0845 -0.1336 -0.0922 

mPDA-6FDA-BAPT 0.1422 0.1293 0.1442 -0.4980 0.4530 -0.1214 0.1994 -0.1179 -0.0839 -0.1330 -0.0916 

 w x y z a' b' e' f ' g' 

BAPT-6FDA-BAPT * * * * * * * * * 

mPDA-6FDA-mPDA * * * * * * * * * 

BAPT-6FDA-mPDA -0.1357 0.1466 0.1361 0.1407 -0.2275 -0.4655 0.5759 -0.4655 -0.4781 

mPDA-6FDA-BAPT -0.1351 0.1472 0.1367 0.1413 -0.2269 0.5125 0.5765 -0.4649 -0.4775 

 

Figure S2. Structure of the 6FDA end fragment. Letters in italics distinguish the different atoms 

whose charges are given in Table S2. 
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Table S2. Partial charges, q/e, on the atoms in the 6FDA end fragment. 

 a b c d e f g h i j k 

BAPT-6FDA_end -0.2979 0.6346 -0.2172 -0.0475 0.5318 -0.4825 -0.4672 -0.0909 0.3792 -0.2117 -0.1309 

mPDA-6FDA_end -0.4054 0.5418 -0.0342 -0.1307 0.5915 -0.4249 -0.4487 -0.1945 0.2658 -0.1543 -0.0877 

 l m n o p q r s t u v 

BAPT-6FDA_end 0.1352 0.1385 0.1476 -0.5927 0.4292 -0.1139 0.2913 -0.1203 -0.1375 -0.1377 -0.1135 

mPDA-6FDA_end 0.1380 0.1448 0.1388 -0.5362 0.4526 -0.1212 0.3258 -0.1749 -0.0839 -0.1566 -0.0985 

 w x y z a' b' e' f ' g' 

BAPT-6FDA_end -0.2145 0.1281 0.1472 0.1428 -0.3516 0.6704 0.6854 -0.4490 -0.4572 

mPDA-6FDA_end -0.1335 0.1293 0.1450 0.1308 -0.4282 0.6771 0.7000 -0.4239 -0.4317 

 

Figure S3. Structure of the BAPT fragment. Letters in italics distinguish the different atoms whose 

charges are given in Table S3. 

Table S3. Partial charges, q/e, on the atoms in the BAPT fragment. An asterisk implies the same 

charge as the symmetrically equivalent atom. 

 a b c d e f g h i 

6FDA-BAPT-6FDA 

0.2483 -0.2206 -0.2053 0.3332 -0.3522 0.1770 0.1498 0.2614 -0.0999 

j k l m n o p q r 

-0.2471 0.1686 0.1998 0.0273 -0.0035 -0.1707 -0.1222 0.1136 0.1203 
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Figure S4. Structure of the BAPT start fragment. Letters in italics distinguish the different atoms 

whose charges are given in Table S4. 

Table S4. Partial charges, q/e, on the atoms in the BAPT start fragment. 

 a b c d e f g h i 

BAPT_start-6FDA-BAPT 

0.3455 -0.2613 -0.2193 0.3237 -0.3195 0.1593 0.1562 0.1809 -0.0371 

j k l m n o p q r 

-0.1930 0.1324 0.0751 0.0561 0.0141 -0.1731 -0.1177 0.1218 0.1170 

s t u v w x y z e' 

-0.7809 0.3374 0.2982 -0.2517 -0.1718 0.2687 0.1389 0.1754 -0.3410 

h' i' j' k' l' m' n' o' p' 

0.2896 -0.0298 -0.2873  0.1828 -0.2206 0.1505 0.0809 -0.1296 -0.1454 

q' r' 

0.1109 0.1222 

 

Figure S5. Structure of the mPDA fragment. Letters in italics distinguish the different atoms whose 

charges are given in Table S5. 
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Table S5. Partial charges, q/e, on the atoms in the mPDA fragment. An asterisk implies the same 

charge as the symmetrically equivalent atom. 

 a b c d e f g h i j 

6FDA-mPDA-

6FDA 
-0.3793 0.4667 -0.4975 * * 0.0508 0.1893 0.2387 * 0.1098 

 

Figure S6. Structure of the mPDA start fragment. Letters in italics distinguish the different atoms 

whose charges are given in Table S6. 

Table S6. Partial charges, q/e, on the atoms in the mPDA end fragment. 

 a b c d e f g h i j 

mPDA_start-

6FDA-mPDA 

-0.3289 0.4834 -0.4748 0.4020 -0.3559 -0.0176 0.1632 0.2099 0.1764 0.1230 

k l 

-0.7896 0.3250 
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Figure S7. Close-up view of the pure (6FDA-mPDA)/(6FDA-BAPT) copolymer system at 338.5 K. 

For clarity all hydrogens have been omitted. The polymer is presented using bonds with the colour 

code following: C = cyan, F = lime green, O = red and N = blue. Image created using version 1.9.4 of 

VMD [1]. 
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Figure S8. Close-up view of the (6FDA-mPDA)/(6FDA-BAPT) mixed gas CH4/N2 system at 338.5 K 

and p = 65.5 bar. For clarity all hydrogens in the polymer have been omitted. The polymer is pre-

sented using bonds with the colour code following: C = cyan, F = lime green, O = red and N = blue. 

The penetrant molecules are presented in VDW format. For methane: C = purple and H = white. For 

nitrogen: N = yellow. Image created using version 1.9.4 of VMD [1]. 

Table S7. Correspondence between the atom-type numbers, the names used in gmq and the symbols 

used in the TRIPOS 5.2 forcefield. 

Atom Type Number Atom Name in gmq Atom Type in TRIPOS  

1 C1 C3 

2 CF1 C3 

3 Car1 Car 

4 Cket C2 

5 Oket O2 

6 N Nam 

7 F1 F 

8 Car2 Car 

9 C2 C3 

10 CF2 C3 

11 F2 F 
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12 CCH3 C3 

13 Hall H 

14 HCH3 H 

15 Hterm H 

16 O3 O3 

17 N3 N3 

18 Otr O3 

19 Cartr Car 

20 Oterm O3 

21 Carfda Car 

22 Cfda C3 

23 Carbapt Car 

24 Obapt O3 

25 Cbapt C3 
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