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Abstract: In addition to measuring the strain, stress, and Young’s modulus of materials through
tension and compression, in-plane shear modulus measurement is also an important part of parameter
testing of composites. Tensile testing of ±45◦ composite laminates is an economical and effective
method for measuring in-plane shear strength. In this paper, the in-plane shear modulus of T800
carbon fiber/epoxy composites were measured through tensile tests of ±45◦ composite laminates,
and acoustic emission (AE) was used to characterize the damage of laminates under in-plane shear
loading. Factor analysis (FA) on acoustic emission parameters was performed and the reconstructed
factor scores were clustered to obtain three damage patterns. Finally, the development and evolution
of the three damage patterns were characterized based on the cumulative hits of acoustic emission.
The maximum bearing capacity of the laminated plate is about 17.54 kN, and the average in-plane
shear modulus is 5.42 GPa. The damage modes of laminates under in-plane shear behavior were
divided into three types: matrix cracking, delamination and fiber/matrix interface debonding, and
fiber fracture. The characteristic parameter analysis of AE showed that the damage energy under
in-plane shear is relatively low, mostly below 2000 mV ×ms, and the frequency is dispersed between
150–350 kHz.

Keywords: in-plane shear; acoustic emission; digital image correlation; factor analysis; Fuzzy C-Means

1. Introduction

Fiber-reinforced polymer materials have broad application prospects in engineering.
In the aerospace field [1–5], components such as aircraft engine turbine blades and tail
wings require materials with sufficient shear strength to ensure the stability and maneu-
verability of the aircraft. There are generally three methods for testing the in-plane shear
strength of materials: the torsion method; the tensile method such as ±45◦ tensile test;
and the shear method such as the track shear test or V-shaped open-track shear test [6–8].
The thin-walled tube torsion method has high accuracy while ±45◦ tensile test has good
practicality. Meanwhile, when structural components are subjected to external loads, in-
ternal damage may cause structural deformation and decrease in mechanical properties.
Consequently, realizing and understanding the damage evolution process of materials
under in-plane shear behavior is crucial for structural health monitoring.

There are usually two ways to conduct damage assessment. One type of active tech-
nology requires external sources such as thermal imaging [9,10] and eddy current [11],
while the other type of passive technology requires sources inside the material. AE has
unique advantages in damage localization and assessment. As a passive technology, it
cannot directly measure material damage, but rather analyzes the correlation between
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hidden information in the signal and the observed structural state by collecting signal
responses. Various AE parameters were extracted to evaluate the degree of material dam-
age under external forces. Qu et al. [12] used AE energy and peak frequency parameters
to evaluate the damage of C/SiC composite materials under shear monotonic loading.
Rubio-González et al. [13] compared the damage characteristics of glass fiber/epoxy resin
laminates with/without carbon nanotubes under three-point bending state through AE
amplitude and count, and verified the coordination of AE and other technologies in study-
ing composite material damage. Liu et al. [14] studied the damage behavior of several
lattice-reinforced concretes under three-point bending using peak frequency, energy, and
amplitude of AE signal. AE can not only characterize damage under quasi-static test-
ing, but can also be used for dynamic damage characterization such as impact [15] and
fatigue [16,17].

In addition to characterizing damage characteristics, the damage patterns of materials
can also be identified by clustering appropriate AE parameters [16,18–25]. Mi et al. [18] com-
pared the impact of compilation methods on the damage of fiber–resin composite materials
by clustering the amplitude, energy count, and duration of AE parameters. Azadi et al. [20]
studied the damage mode characteristics of carbon/epoxy resin laminates under tension
at different loading rates by performing clustering on the three types of acoustic emis-
sions including average frequency. Özaslan et al. [21] studied the damage development
of composite plates with a single hole or two holes with different orientations relative
to the load direction, and obtained the damage modes in both cases using AE and DIC.
Andraju et al. [23] conducted tensile tests on carbon-fiber-reinforced composite laminates
with different fiber stacking directions and orders, and the peak frequency and ampli-
tude range of damage in the laminates with different stacking methods were compared.
Sawan et al. [24] studied damage types and development modes corresponding to different
clusters of epoxy resin composite material specimens under tension and compression by
clustering five AE time-domain characteristic signals. Xu et al. [25] analyzed the mechanical
behavior response and damage mode of joints under humid and hot conditions using time-
frequency domain analysis and clustering analysis of four AE characteristic parameters.
However, for the clustering of polymer materials, existing research tends to choose two
or a small amount of AE signals, which may result in a lack of information contained in
the acoustic emission signals. It is possible to consider recombining multiple AE feature
parameters to identify the damage mode of the material while preserving information in
dimensionality reduction. Various clustering methods have been developed, such as the
k-Means method [16,24,26], Fuzzy C-Means [20,27], and Self-Organizing Map [28]. Differ-
ent clustering methods are suitable for different classification scenarios; k-Means is suitable
for simple classification. However, it does not perform well in handling classification tasks
with high mixing and is prone to falling into local optima, while Fuzzy C-Means specifies
the membership degree of sample classes between (0, 1) instead of assigning them to specific
categories making it suitable for complex classification tasks. Simultaneously, to evaluate
the clustering results, multiple indicators can be used for clustering evaluation such as the
Silhouette Index, Dunn Index, Davies–Bouldin Index, and Rand Index [16,19,23,29].

Due to the fact that AE cannot directly measure the damage mode of materials, it is
often combined with other damage assessment methods. In many studies [14,30–34], the
DIC method had been used as another complementary detection method in conjunction
with AE detection of material damage, with non-contact methods used to measure the
surface strain and deformation fields of objects. Although DIC cannot obtain internal de-
formation and strain information of materials, it can still provide a reference for evaluating
material damage.

Existing studies tends to choose two parameters—peak frequency and amplitude
not affected by damage for clustering, or extract a small number of parameters based
on principal component analysis. However, fewer parameters can lead to the loss of
information of AE signal. Therefore, the focus of this paper is using factor analysis to
reorganize the original AE parameters into three factors and cluster them. Due to the
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difficulty in identifying the membership categories of the reorganized factors, the FCM
clustering method was chosen, and the number of clusters was evaluated. The results
indicate that clustering after factor recombination of eight AE characteristic parameters can
obtain the damage mode of the laminates while retaining most of the AE signal information.
DIC can provide reference for damage analysis by conducting strain detection on the
surface of the laminates.

2. Experimental Details

The T800 carbon fiber/epoxy-resin-reinforced polymer laminates were produced by
the AECC Beijing Institute of Aeronautical Materials (Beijing, China). The laying angle
is ±45◦, and each layer of carbon fiber has a thickness of 0.1 mm, totaling 20 layers.
The laminates were formed using a hot-pressing process, maintaining a vacuum during
the pre-treatment and curing processes. After the pre-impregnated material was laid,
the pre-formed parts were pressurized at 320–330 ◦C, and the curing temperature was
set between 330–380 ◦C after pressurization. Curing stress was reduced through multi
temperature layered curing, with a maximum curing temperature of 380 ◦C and a curing
time of 1 h. Five specimens were cut according to the ASTM D3518 standard, with the size
of 250 mm × 25 mm × 2 mm. The strain pattern was pasted on the one side before the
experiments and speckles were sprayed on the opposite side surface of the specimens.

Figure 1 shows the experimental setup of AE and image data acquisition equipment.
The loading equipment is a DNS electronic universal testing machine with an accuracy of
±0.5% of the numerical display, with a maximum experimental force of 100 kN. According
to ASTM D3518, the in-plane shear test should be completed within 1–10 min. As a result,
the loading rate should be set to 4 mm/min according to prior experiments.
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Figure 1. The experimental setup. (a) The AE and DIC experimental device. (b) Specimen installa-
tion diagram.

Throughout the in-plane shear experimental process, an image acquisition device
was used to capture images, and the image collection frequency was set to 15 images per
second. The image acquisition device was composed of a five-megapixel CCD camera,
a 0.072 magnification telecentric lens, and a light source. Concurrently, the AE signals
were collected through the DS2-8A AE signal analyzer produced by Ruandao (Abu Dhabi,
United Arab Emirates) including a 40 DB integrated preamplifier and a cylindrical probe
with a diameter of 8 mm, which was fastened to the specimen using coupling agent and
insulation tape. The experimental acquisition accuracy was 16 bits, with the rate of 3 and
threshold set to 30 mV. The strain rosettes were glued to the center of the specimens with a
resistance value of 120 Ω and a sensitivity coefficient of 2 ± 1%. It adopted a 1/4 bridge
connection method and temperature compensation. The sampling frequency of strain data
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is 1 Hz. A lead breaking test was tried out before conducting an in-plane shear experiment
on each specimen.

3. Results and Discussion
3.1. Tangential Shear Modulus Calculation and Parameter Analysis of AE Signals

Figure 2a shows the force-time curve with the time-domain composition curves:
energy, hit, and peak frequency extracted from the obtained AE signals of specimen 1,
while Figure 2b shows in-plane shear stress-strain curves of specimens. In the AE and
force time-domain signal graph, the tensile process was divided into three stages based
on the trend of force over time. In stage I, the response curve between force and time is
linear elastic, with relatively few AE signals and a peak frequency basically below 200 kHz.
In stage II, the force-time curve begins to exhibit a non-linear response, with a decrease
in the rate of force growth over time and an increase in AE signals at medium to high
peak frequencies, while the acoustic emission signals are relatively sparse. In stage III,
the growth rate of force increases with time and reaches its peak; afterwards, it briefly
decreases and the specimen underwent fracture and failure. In addition, at the failure
time of stage III, a sudden change in the AE energy signal can be clearly observed, with
an energy value of 12,000 mV × ms. This is because the fracture of the sample released
a significant amount of energy. Other energy points were lower, with energy values not
exceeding 200 mV ×ms. At the same time, the AE hit also showed a straight upward trend
due to the generation of more AE signals caused by specimen fracture.
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Figure 2. The AE time-domain signals and stress-strain curves of specimens. (a) The AE time-domain
signals of specimen 1. (b) The stress-strain curve of specimens.

In Figure 2b stress-strain curve exhibits a linear response during the initial stage.
After the strain reaches 2000 µε, the stress trend of the sample is relatively stable. At this
stage, a strain point was selected as the starting point, then the shear strain was increased
by 4000 ± 200 µε as the endpoint to calculate the tangential shear modulus. The calculation
results are shown in Table 1. The average value of tangential shear modulus is 5.42 GPa
and the dispersion coefficient value is 0.95%.

Table 1. Tangential shear modulus of specimens.

Number of specimens 1 2 3 4 5

Value (GPa) 5.31 5.23 5.69 5.35 5.48

3.2. DIC Analysis

The longitudinal strain and displacement were calculated through setting the soft-
ware spectrum to 16, and the area from the center of the sample to the failure range was
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selected. The sample image at 527 s was selected as the reference image and the subsequent
images were processed. The image processing results before 527 s can refer to the trend of
displacement and strain changes at 711 s and 991 s.

As shown in Figure 3a, when the strain is relatively small, the longitudinal strain
is more uniform. As the strain increases, higher strain regions gradually appear. As the
specimen approaches failure, necking and strain concentration occur in the failure area.
In addition, as shown in Figure 3b, the longitudinal displacement of the sample before
failure presents a stepped shape. Due to the fixed clamp at the upper end of the testing
machine during stretching, the displacement shows an increasing trend from top to bottom,
and the displacement contour line is basically horizontal. During failure, the deformation
of the displacement contour is more pronounced in the upper part of the specimen.

3.3. Factor Analysis

The damage modes of carbon fiber laminates can be analyzed by clustering the AE
characteristic parameters. In this regard, existing studies are mostly based on peak fre-
quency and amplitude. However, a small number of AE characteristic parameters cannot
fully characterize the characteristics of AE signals, and excessive AE characteristic pa-
rameters will increase the difficulty of analysis. Therefore, the AE parameters were first
dimensionally reduced through FA before implementing clustering, and new components
that contain most of the AE signal information were obtained through factor recombination.

The eight characteristic parameters of amplitude, duration, rise time, ring counts, rise
counts, energy, center frequency, and peak frequency reflecting the characteristics of AE
signals in the time-frequency domain were extracted for FA analysis. Parameters data were
standardized to reduce the impact of data magnitude.

Table 2 showed the Pearson correlation between eight parameters by calculating
Pearson coefficient and significance, where significance less than 0.01 indicates a very
significant correlation and the data are marked with ‘**’, and significance less than 0.05
indicates a significant correlation and the data are marked with ‘*’. The results indicate
that there is a strong correlation between the eight AE parameters; therefore, FA can
be performed.

Table 2. Pearson coefficient of AE parameters of specimen 1.

Amplitude Duration Rise Time Ring Counts Rise Counts Energy Center
Frequency

Peak
Frequency

Amplitude 1 0.051 0.243 ** 0.064 0.618 ** 0.053 0.105 ** 0.065

Duration 1 0.119 ** 0.994 ** 0.087 * 0.993 ** 0.005 0.038

Rise time 1 0.106 ** 0.529 ** 0.099 * 0.091 * −0.015

Ring counts 1 0.101 * 0.999 ** −0.002 0.022

Rise counts 1 0.091 * 0.110 ** 0.048

Energy 1 −0.006 0.016

Center frequency 1 0.683 **

Peak frequency 1

*—significance less than 0.05 indicates a significant correlation; **—significance less than 0.01 indicates a very
significant correlation.

Extracting the number of factors is a process of comprehensive selection, usually
determined by variance contribution rate and eigenvalues to determine the number of
factors extracted by FA. The variance contribution rate and eigenvalues demonstrate the
ability of factors to interpret raw AE parameter information, and the larger their values, the
stronger their explanatory power. At the same time, the component matrix was calculated,
which displays the relationship between factors and original parameters. By rotating the
component matrix, the relationship between factors and original parameters can be better
explained. The factor matrix is shown in Table 2, the cumulative contribution rate and
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eigenvalues are shown in Figure 4a, and the factor loading diagram of the component
matrix is shown in Figure 4b.
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The number of factors can be selected based on different situations. In this analysis,
the criterion for selecting is that the eigenvalues are greater than 1. From Figure 4a, it can
be seen that the first three factors meet the selection requirements and have a cumulative
contribution rate greater than 80%. Therefore, the number of factors was determined
to be 3 in this analysis. As shown in Table 3, factor loading with the three parameters
duration, ring counts, and energy are greater than 0.95, and they are positive to Factor
1. Similarly, amplitude, rise time, and rise count have a positive effect to Factor 2 while
duration, ring count, and energy are negative to Factor 2. Center frequency and peak
frequency have a positive effect on Factor 3. Factor 1 and Factor 2 reflect the time domain
characteristics of AE signals and Factor 3 representative frequency domain characteristics.

Table 3. The factor loading of AE signal parameters.

Factor 1 Factor 2 Factor 3

Amplitude 0.192 0.694 −0.300

Duration 0.980 −0.178 0.059

Rise time 0.246 0.580 −0.340

Ring counts 0.982 −0.178 0.045

Rise counts 0.259 0.783 −0.384

Energy 0.979 −0.189 0.045

Center frequency 0.055 0.514 0.756

Peak frequency 0.065 0.423 0.815

The score coefficients of the three components were calculated as shown in Table 4
and the value of Factor 1, 2, and 3 were obtained on this basis. As for Factor 1, the score is
calculated as follows:

S1 = 0.063x1 + 0.321x2 + . . . + 0.021x8

where S1 represents the score of Factor 1, x1, x2,. . ., x8 represents the value of amplitude,
duration. . . peak frequency of every AE events.
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Table 4. The score coefficient matrix of factors.

Factor 1 Factor 2 Factor 3

Amplitude 0.063 0.352 −0.188

Duration 0.321 −0.090 0.037

Rise time 0.080 0.294 −0.213

Ring counts 0.321 −0.090 0.028

Rise counts 0.085 0.397 −0.241

Energy 0.321 −0.096 0.028

Center frequency 0.018 0.261 0.473

Peak frequency 0.021 0.214 0.510

3.4. Fuzzy C-Means

To further explain the relationship between factors and clusters, score statistics were
performed on the clustering results. The FCM algorithm is a fuzzy partitioning-based
algorithm that maximizes the similarity of the same cluster and minimizes the similarity of
different clusters by calculating the membership of different categories of sample points.

Assuming the number of clusters in the sample set X = {x1, x2, . . . , xn} is c, and the
FCM objective function is as follows:

J(U, V) =
c

∑
i=1

n

∑
j=1

(uij)
md2

ij (1)

d2
ij =

∥∥ci − xj
∥∥2

where uij is membership matrix value between (0, 1); m is the fuzzy weighted index; dij is
the Euclidean distance between sample and cluster center; U is the fuzzy membership set.

Set the constraint condition that the sum of all sample membership degrees is 1:

c

∑
i=1

uij = 1, ∀j = 1, . . . , n (2)

To minimize the objective function, the Lagrange method is used to solve the Lagrange
function, which is as follows:

J(U, c1, . . . , cc, λ1, . . . , λn) = J(U, c1, . . . , cc) +
n

∑
j=1

λj(
c

∑
i=1

uij−1) =
c

∑
i=1

n

∑
j

uijd
2
ij +

n

∑
j=1

λj(
c

∑
i=1

uij − 1) (3)

The clustering center and membership degree were obtained by solving the following:

ci =

n
∑

j=1
uijxj

n
∑

j=1
uij

(4)

uij =
1

c
∑

k=1

( dij
dkj

)2/(m−1)
(5)

When clustering data, determine the clustering center and membership matrix by
following these steps:

Step 1: Initialize the membership matrix U and randomly assign values to (0, 1),
satisfying the constraint conditions;
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Step 2: Calculate cluster center;
Step 3: Calculate the objective function. If it is less than the set threshold or if the

difference between adjacent calculations is less than the threshold, stop;
Step 4: Bring in the membership degree calculation formula to recalculate the U and

return to step 2.
Figure 5a shows the spatial distribution of the three factors; it can be seen that each

sample point does not have a specific category, making it suitable to use the fuzzy clustering
method. Before clustering, it is first necessary to determine the appropriate number of
clusters. The Dunn index (DI) and Davies–Douldin index (DBI) were applied to evaluate
the number of clusters. DI represents the ratio of the minimum distance between any two
clusters to the maximum distance between two sample points in any cluster. DBI evaluates
the number of clusters by calculating the similarity between each cluster and other coarse
values. The larger the DI, the better the clustering effect, while the smaller the DBI, the
better the clustering effect. For carbon fiber composite materials, the damage modes are
generally divided into four categories. The corresponding evaluation indicators for the
number of 2–6 clusters were calculated as shown in Figure 5b. It can be determined that
the optimal number of clusters is 3. The clustering results are shown in Figure 5c.

Polymers 2023, 15, x FOR PEER REVIEW 10 of 14 
 

 

  
(a) (b) 

 
(c) 

Figure 5. FCM results on specimen 1. (a) Spatial distribution of three factors. (b) DBI and DI of FCM. 
(c) FCM three-dimensional diagram result on the scores of factors. 

Score intervals for the corresponding factors of three clusters were obtained. The sta-
tistical results were summarized in Table 5. There are a total of 619 AE data sample points, 
with 134 in Cluster 1, 176 in Cluster 2, and 309 in Cluster 3. The larger the absolute value 
of the numerical value, the greater the impact of the factor on the cluster. The positive and 
negative values represent the positive and negative effects of the factor. 

Table 5. Results of cluster statistics. 

 Factor 1 Factor 2 Factor 3 
Cluster 1 −0.333, 0.079 −1.544, −0.260 −1.122, −0.040 
Cluster 2 −0.076, 1.542 −0.086, 4.516 −3.230, 0.514 
Cluster 3 −0.245, 24.061 −5.403, 1.739 −0.384, 3.794 

Overall, Cluster 1 has the smallest and mostly negative cluster score values on the 
three factors, while Cluster 3 has the highest cluster score on the three factors. Therefore, 
the AE parameters of Cluster 1 have relatively low intensities, exhibiting characteristics 
such as low amplitude, low duration, and low frequency. In addition, three types of dam-
age including fiber breakage can be identified from fracture images, as shown in Figure 6. 
Therefore, Cluster 1 is matrix cracking. Cluster 3 has the highest intensity of AE parame-
ters, exhibiting high amplitude, high energy, and high frequency characteristics. It is 
worth noting that the upper limit of the score interval for Factor 1 in Cluster 3 is 24.06, 
which is significantly higher than the upper limit of the interval for the other two clusters. 
According to the previous section on factor analysis, energy has a strong contribution to 
Factor 1. It can be inferred that Cluster 3 includes the AE event of enormous energy gen-
erated by the failure and fracture of the specimen. Therefore, Cluster 3 is a fiber fracture. 

Figure 5. FCM results on specimen 1. (a) Spatial distribution of three factors. (b) DBI and DI of FCM.
(c) FCM three-dimensional diagram result on the scores of factors.

Score intervals for the corresponding factors of three clusters were obtained. The sta-
tistical results were summarized in Table 5. There are a total of 619 AE data sample points,
with 134 in Cluster 1, 176 in Cluster 2, and 309 in Cluster 3. The larger the absolute value of
the numerical value, the greater the impact of the factor on the cluster. The positive and
negative values represent the positive and negative effects of the factor.
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Table 5. Results of cluster statistics.

Factor 1 Factor 2 Factor 3

Cluster 1 −0.333, 0.079 −1.544, −0.260 −1.122, −0.040

Cluster 2 −0.076, 1.542 −0.086, 4.516 −3.230, 0.514

Cluster 3 −0.245, 24.061 −5.403, 1.739 −0.384, 3.794

Overall, Cluster 1 has the smallest and mostly negative cluster score values on the
three factors, while Cluster 3 has the highest cluster score on the three factors. Therefore, the
AE parameters of Cluster 1 have relatively low intensities, exhibiting characteristics such
as low amplitude, low duration, and low frequency. In addition, three types of damage
including fiber breakage can be identified from fracture images, as shown in Figure 6.
Therefore, Cluster 1 is matrix cracking. Cluster 3 has the highest intensity of AE parameters,
exhibiting high amplitude, high energy, and high frequency characteristics. It is worth
noting that the upper limit of the score interval for Factor 1 in Cluster 3 is 24.06, which is
significantly higher than the upper limit of the interval for the other two clusters. According
to the previous section on factor analysis, energy has a strong contribution to Factor 1.
It can be inferred that Cluster 3 includes the AE event of enormous energy generated by
the failure and fracture of the specimen. Therefore, Cluster 3 is a fiber fracture. The AE
parameter properties of Cluster 2 are between the two; therefore, Cluster 2 is delamination
and fiber/matrix interface debonding.
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Figure 6. Fracture image of specimen 1.

Finally, based on the clustering results, the AE hits were divided to obtain the devel-
opment and evolution trends of each mode. The evolution of damage modes is shown in
Figure 7. The results indicate that the development of each damage mode is similar. Before
failure, the development of various damages is relatively slow. As the failure approaches,
the trend of damage evolution turns and randomly increases rapidly. Overall, there are
more fiber fractures during in-plane shear, occupying a dominant position. The mini-
mum number of delamination and fiber/matrix interface debonding may be related to the
properties of the material.
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4. Conclusions

This paper investigated the in-plane shear failure mode and damage evolution behav-
ior of T800 carbon fiber/epoxy composite materials through AE and DIC. FA was used to
evaluate the relevance between AE parameters. It is difficult to distinguish the member-
ship categories of factors after restructuring the acoustic emission feature parameters, and
the Fuzzy C-Means cluster algorithm was used. The characteristic parameter analysis of
AE showed that the damage energy under in-plane shear is relatively low, mostly below
2000 mV ×ms, and the frequency is dispersed between 150–350 kHz. The fracture of lami-
nates is in a sudden and the energy at fracture is close to 12,000 mV ×ms, with frequency
concentrated between 0–200 kHz. The AE hit increased slowly before fracture, reaching a
cumulative count of 100 at 1000 s, and then showed a straight upward trend, increasing to
600 in a short period of time, which indicated that the accumulation of damage in laminates
is slow and the damage mainly accumulates at the moment of fracture. The FA indicated
that there is a high correlation between the AE characteristic parameters under in-plane
shear, and the development and evolution of three damage modes were obtained through
an unsupervised Fuzzy C-Means cluster algorithm. The clustering effect is better for Clus-
ter 3, corresponding to matrix cracking, delamination, fiber/matrix interface debonding,
and fiber fracture. Cluster 3 dominates the in-plane shear process, with more events than
Cluster 1 and 2. Overall, the trends of development of the three damage patterns were
similar. The DIC analysis results indicate that the strain and deformation on the surface of
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the specimen are relatively uniform, and there is a significant strain concentration when
the specimen is near failure. This can be verified by the flat growth trend of the three
identified damage modes before 1000 s and the rapid upward trend around 1000 s. DIC
can be well combined with AE to evaluate the damage of specimens. There are also some
shortcomings in this work that require further research, such as the impact of specimen
damage on the transmission of AE signals in the specimen. However, the result of the study
can still refer to the establishment of structural health monitoring standards, evaluations,
and related databases.
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